JP3249074B2 - Force detector - Google Patents
Force detectorInfo
- Publication number
- JP3249074B2 JP3249074B2 JP24468997A JP24468997A JP3249074B2 JP 3249074 B2 JP3249074 B2 JP 3249074B2 JP 24468997 A JP24468997 A JP 24468997A JP 24468997 A JP24468997 A JP 24468997A JP 3249074 B2 JP3249074 B2 JP 3249074B2
- Authority
- JP
- Japan
- Prior art keywords
- force
- point
- strain
- difference
- cylindrical portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measurement Of Force In General (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、力を測定するため
の新規な構造を有する力検出器に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a force detector having a novel structure for measuring force.
【0002】[0002]
【従来の技術】荷重を測定する1つの方法としてロード
セルが使用されているが、荷重を測定する場合等には、
ロードセルは方形の金属ブロックから一体的に削り出す
ことが多い。例えば、図7に示すように板体状の金属ブ
ロック1に対し切削、切込みを行い、中央部に略ひょう
たん形の剥抜部2を設けてフレクシャ3を備えたロバー
バル機構を有する測定部4を形成し、ロバーバル機構の
フレクシャ3にひずみゲージ5を貼り付け、ロードセル
として荷重Fを測定している。2. Description of the Related Art A load cell is used as one method for measuring a load.
Load cells are often integrally cut from a rectangular metal block. For example, as shown in FIG. 7, a measuring unit 4 having a roberval mechanism provided with a flexure 3 by cutting and incising a plate-shaped metal block 1, providing a roughly gourd-shaped exfoliated portion 2 in the center, and providing a flexure 3. The strain gauge 5 is attached to the flexure 3 of the Roberval mechanism, and the load F is measured as a load cell.
【0003】[0003]
【発明が解決しようとする課題】しかしながらこの場合
に、略ひょうたん形の剥抜部2を形成するのは極めて厄
介であり、加工時間も掛かりコスト高となる。また、フ
レクシャ3の厚みは側面からノギスを挿し込んでしか測
定できず、測定精度に影響を与えるフレクシャ3の厚み
管理が不充分になり易いという問題点もある。更には、
ひずみゲージ5のフレクシャ3への貼り付けの際には、
ひずみゲージ5を隙間から挿し込んで行わなければなら
ず、完成後もその貼り付け状態を詳細に確認することは
容易ではない。However, in this case, it is extremely troublesome to form the substantially gourd-shaped exfoliated portion 2, and the processing time is increased and the cost is increased. In addition, the thickness of the flexure 3 can be measured only by inserting a vernier caliper from the side, and there is a problem that the thickness control of the flexure 3 which affects the measurement accuracy tends to be insufficient. Furthermore,
When attaching the strain gauge 5 to the flexure 3,
It is necessary to insert the strain gauge 5 from a gap, and it is not easy to confirm the attached state in detail even after completion.
【0004】また、ロードセルの力受部に荷重受部を固
定する際に、フレクシャ3にねじりモーメントがかかり
易く、破損しないように注意して取り付けなければなら
ない。Further, when fixing the load receiving portion to the force receiving portion of the load cell, the flexure 3 is likely to be subjected to a torsional moment and must be attached with care so as not to be damaged.
【0005】本発明の目的は、上述の問題点を解消し、
フレクシャを用いることがなく、加工が容易で小型化で
き剛性が高い力検出器を提供することにある。An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a force detector which is easy to be processed, can be reduced in size, and has high rigidity without using a flexure.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
の本発明に係る力検出器は、一端を力受部の自由端とし
他端を固定端とする金属柱の外側に力受体となる筒部を
離隔的に配置し、該筒部の一端部を前記力受部に接続
し、前記金属柱の力受部と固定端の間の長手方向の異な
る位置にひずみゲージを貼付し、前記筒部に加わる力に
よる前記ひずみゲージ同士の出力の差分を求めることに
より、前記力を検出することを特徴とする。A force detector according to the present invention for achieving the above object has a force receiving member provided outside a metal column having one end as a free end of a force receiving portion and the other end as a fixed end. The cylindrical portion is spaced apart, one end of the cylindrical portion is connected to the force receiving portion, and strain gauges are attached to different positions in the longitudinal direction between the force receiving portion and the fixed end of the metal column, The force is detected by calculating a difference between outputs of the strain gauges due to a force applied to the cylindrical portion.
【0007】[0007]
【発明の実施の形態】図1は本発明で使用する起歪体の
側面図、図2は正面図であり、起歪体11は例えば鋼、
アルミニウムなどの金属ブロックを基に角柱状に切削さ
れている。起歪体11の一端は力受部となる自由端12
とされ、他端は固定端13とされていてフレーム14に
固定されている。起歪体11の中間部の長手方向に沿っ
て距離Lだけ離れた2個所のA点、B点には、上下左右
の側面にひずみゲージ15a、15bが貼付されてお
り、これらの出力は図示しないブリッジ回路に接続され
ている。なお、上下面のひずみゲージ15は自由端に上
下方向から加わる力を検出するためのものであり、左右
面のひずみゲージ15は左右方向から加わる力を検出す
るためのものである。FIG. 1 is a side view of a flexure element used in the present invention, FIG. 2 is a front view, and a flexure element 11 is made of, for example, steel.
It is cut into a prismatic shape based on a metal block such as aluminum. One end of the flexure element 11 is a free end 12 serving as a force receiving portion.
The other end is a fixed end 13 and is fixed to the frame 14. At two points A and B separated by a distance L along the longitudinal direction of the middle portion of the strain body 11, strain gauges 15a and 15b are affixed to the upper, lower, left and right side surfaces. Not connected to a bridge circuit. The strain gauges 15 on the upper and lower surfaces are for detecting the force applied to the free end from the vertical direction, and the strain gauges 15 on the left and right surfaces are for detecting the force applied from the left and right directions.
【0008】ここで、自由端12に上方から力Fを加え
ると、起歪体11は変形し、A点、B点には反時計廻り
のモーメントが発生し、上下2組のひずみゲージ15
a、15bから出力が得られ、これらの出力を差分する
ことにより力Fを検出することができる。When a force F is applied to the free end 12 from above, the flexure element 11 is deformed, and counterclockwise moments are generated at points A and B, and two sets of upper and lower strain gauges 15 are provided.
Outputs are obtained from a and 15b, and the force F can be detected by subtracting these outputs.
【0009】この原理を次に説明すると、図1において
力Fが起歪体11の自由端12のC点に加わるとき、A
点とC点間の距離をLaとすると、A点における曲げモ
ーメントMaは、Ma=F・Laとなる。The principle will now be described. In FIG. 1, when a force F is applied to a point C of the free end 12 of the flexure element 11, A
Assuming that the distance between the point and the point C is La, the bending moment Ma at the point A is Ma = F · La.
【0010】また、断面係数をZとすると、A点におけ
る応力は、σa=Ma/Z=F・La/Zとなる。If the section modulus is Z, the stress at point A is σa = Ma / Z = F · La / Z.
【0011】更に、起歪体11の材料の縦弾性係数をE
とすると、ひずみゲージ15aによるひずみ量εaはε
a=σa/E=F・La/(E・Z)となる。Further, the modulus of longitudinal elasticity of the material of the flexure element 11 is expressed by E
Then, the strain amount εa by the strain gauge 15a is ε
a = σa / E = F · La / (EZ)
【0012】同様に、B点においてB点とC点間の距離
をLbとすると、B点での曲げモーメントMb、応力σ
b、ひずみゲージ15bによるひずみ量εbは、それぞ
れ次の通りとなる。 Mb=F・Lb σb=F・Lb/Z εb=F・Lb/(E・Z)Similarly, assuming that the distance between the point B and the point C at the point B is Lb, the bending moment Mb at the point B and the stress σ
b, the strain amount εb by the strain gauge 15b is as follows. Mb = F · Lb σb = F · Lb / Z εb = F · Lb / (E · Z)
【0013】ここで、A点、B点の曲げモーメントMの
差分を求めると、 Ma−Mb=F・La−F・Lb=F(La−Lb)=F・L が得られ、同様にして応力σの差分は、 σa−σb=Ma/Z−Mb/Z=(Ma−Mb)/Z=F・L/Z となり、2組のひずみゲージ15a、15bで得られた
ひずみ量εの差分は、次式となる。 εa−εb=σa/E−σb/E=(σa−σb)/E=F・L/(E・Z)Here, when the difference between the bending moments M at the points A and B is obtained, the following equation is obtained: Ma−Mb = F · La−F · Lb = F (La−Lb) = F · L The difference between the stresses σ is as follows: σa−σb = Ma / Z−Mb / Z = (Ma−Mb) / Z = F · L / Z The difference between the strain amounts ε obtained by the two sets of strain gauges 15a and 15b Becomes the following equation. εa−εb = σa / E−σb / E = (σa−σb) / E = FL / (EZ)
【0014】従って、検出すべき力Fは、 F=(εa−εb)(E・Z)/L …(1) となり、仮にC点が移動し距離La、Lbが変化して
も、La−Lb=L及びE、Zは一定であるから、2個
所のひずみゲージ15a、15bの出力の差分から、
(1) 式のように力Fを求めることができる。また、力F
がC点とB点の間に分散して加えられても、(1) 式が適
用され、力Fは合成力として検出される。Accordingly, the force F to be detected is as follows: F = (εa−εb) (E · Z) / L (1) Even if point C moves and distances La and Lb change, La− Since Lb = L and E and Z are constant, from the difference between the outputs of the two strain gauges 15a and 15b,
The force F can be obtained as in the equation (1). Also, force F
Is applied dispersedly between the points C and B, the equation (1) is applied, and the force F is detected as a resultant force.
【0015】なお、この場合に上方から力Fが加えられ
ると、上面のひずみゲージ15は引き伸ばされ、下面の
ひずみゲージ15は圧縮されるので、差分は上面のひず
みゲージ15同士、及び下面のひずみゲージ15同士の
出力の差分を求めてから、これらの差分を合成するよう
にブリッジ回路を構成すればよい。In this case, when a force F is applied from above, the strain gauges 15 on the upper surface are stretched and the strain gauges 15 on the lower surface are compressed. The bridge circuit may be configured so as to calculate the difference between the outputs of the gauges 15 and then combine these differences.
【0016】また、ひずみゲージ15は上下両面に設け
なくとも、上面又は下面のみに貼付し差分を求めるよう
にしても支障はない。Even if the strain gauges 15 are not provided on both the upper and lower surfaces, there is no problem even if the strain gauges 15 are attached only to the upper surface or the lower surface and the difference is obtained.
【0017】左右方向から起歪体11に対して加わる力
Fについても、同様に検出が可能である。更に、力Fが
上下、左右の中間の斜め方向から加えられた場合には、
上下、左右でそれぞれ検出された力の分力から加えられ
た力の方向、大きさを求めることができる。The force F applied to the flexure element 11 from the left and right directions can be similarly detected. Further, when the force F is applied from an oblique direction between the upper and lower sides and the left and right sides,
The direction and magnitude of the applied force can be obtained from the component force of the force detected in each of the up, down, left, and right directions.
【0018】また、起歪体11は全長に渡って曲げ剛
性、ねじり剛性とも一定であるから、発生する応力は集
中応力を生じない一様な応力変化を示すことになる。Further, since the flexure element 11 has a constant flexural rigidity and a constant torsional rigidity over the entire length, the generated stress shows a uniform change in stress which does not cause concentrated stress.
【0019】図3は本発明の実施例の断面図を示し、図
1、図2に示す起歪体11の外側に力受体となる円筒状
の筒部16が離隔的に設けられ、起歪体11とは自由端
12において筒部16のフランジ部17を介して連結さ
れている。FIG. 3 is a cross-sectional view of an embodiment of the present invention. A cylindrical tube portion 16 serving as a force receiving member is provided separately from the strain generating member 11 shown in FIGS. The free end 12 is connected to the strain body 11 via the flange portion 17 of the cylindrical portion 16.
【0020】この場合に、筒部16上の任意の個所に力
Fが加わっても、その位置に拘わらず正確に力Fを測定
することができる。In this case, even if the force F is applied to an arbitrary position on the cylindrical portion 16, the force F can be accurately measured regardless of the position.
【0021】この原理を次に説明すると、図4において
力FがB点よりも先端側で筒部16に上方から加えられ
た場合には、A点、B点には反時計曲りのモーメントが
発生する。A点とD点間の距離をLa’とすると、A点
での曲げモーメントMaは、Ma=F・La’となる。The principle will now be described. In FIG. 4, when a force F is applied to the cylindrical portion 16 from above on the tip side of the point B, counterclockwise moments are applied to the points A and B. appear. Assuming that the distance between the point A and the point D is La ′, the bending moment Ma at the point A is Ma = F · La ′.
【0022】また、断面係数をZとすると、A点におけ
る応力は、σa=Ma/Z=F・La’/Zとなる。If the section modulus is Z, the stress at point A is σa = Ma / Z = F · La ′ / Z.
【0023】更に、起歪体11の材料の縦弾性係数をE
とすると、ひずみゲージ15aによるひずみ量εaはε
a=σa/E=F・La’/(E・Z)となる。Further, the longitudinal elastic modulus of the material of the flexure element 11 is expressed by E
Then, the strain amount εa by the strain gauge 15a is ε
a = σa / E = F · La ′ / (E · Z)
【0024】同様に、B点においてB点とD点間の距離
をLb’とすると、曲げモーメントMb、応力σb、ひ
ずみゲージ15bによるひずみ量εbはそれぞれ次の通
りとなる。 Mb=F・Lb’ σb=F・Lb’/Z εb=F・Lb’/(E・Z)Similarly, assuming that the distance between the points B and D at the point B is Lb ', the bending moment Mb, stress σb, and strain εb by the strain gauge 15b are as follows. Mb = F · Lb ′ σb = F · Lb ′ / Z εb = F · Lb ′ / (EZ)
【0025】ここで、A点、B点の曲げモーメントMの
差分を求めると、 Ma−Mb=F・La’−F・Lb’ =F(La’−Lb’)=F・L が得られ、同様にして応力σの差分は、 σa−σb=Ma/Z−Mb/Z=F・L/Z となり、2組のひずみゲージ15a、15bで得られる
ひずみ量εの差分は、次式となる。 εa−εb=σa/E−σb/E=F・L/(E・Z)Here, when the difference between the bending moments M at the points A and B is obtained, the following equation is obtained: Ma−Mb = F · La′−F · Lb ′ = F (La′−Lb ′) = FL Similarly, the difference between the stresses σ is as follows: σa−σb = Ma / Z−Mb / Z = FL·L / Z The difference between the strain amounts ε obtained by the two sets of strain gauges 15a and 15b is expressed by the following equation. Become. εa−εb = σa / E−σb / E = FL / (EZ)
【0026】従って、力Fは、 F=(εa−εb)(E・Z)/L …(2) となり、得られるひずみゲージ15a、15bの出力の
差分から、D点の位置に拘わらず、先の例と同様にして
力Fを求めることができる。Accordingly, the force F is expressed as follows: F = (εa−εb) (E · Z) / L (2) From the obtained difference between the outputs of the strain gauges 15a and 15b, regardless of the position of the point D, The force F can be obtained in the same manner as in the previous example.
【0027】また、図5に示すように、力FがA点とB
点の中間のD点で筒部16に加えられると、A点に対し
ては反時計廻りの曲げモーメント、B点に対しては時計
廻りの曲げモーメントが発生する。A点と力Fが加えら
れるD点との距離をLa”、B点とD点の距離をLb”
とすると、A点とB点間の距離Lは、L=La”+L
b”となる。Further, as shown in FIG.
When applied to the cylindrical portion 16 at a point D intermediate between the points, a counterclockwise bending moment is generated at the point A, and a clockwise bending moment is generated at the point B. The distance between point A and point D to which force F is applied is La ", and the distance between point B and point D is Lb".
Then, the distance L between point A and point B is L = La ″ + L
b ".
【0028】A点の曲げモーメントMaはMa=F・L
a”であり、その応力はσaはσa=F・La”/Zと
なり、ひずみ量εaはεa=F・La”/(E・Z)と
なる。The bending moment Ma at the point A is Ma = FL
a ", and the stress σa is σa = F · La ″ / Z, and the strain εa is εa = F · La ″ / (EZ).
【0029】B点においては、曲げモーメントMa、応
力σb、ひずみ量εbはそれぞれ、次式の通りとなる。 Mb=−F・Lb” σb=−F・Lb”/Z εb=−F・Lb”/(E・Z)At the point B, the bending moment Ma, the stress σb, and the strain amount εb are as follows. Mb = −F · Lb ″ σb = −F · Lb ″ / Z εb = −F · Lb ″ / (E · Z)
【0030】ここで、A点とB点の曲げモーメントMの
差分は、 Ma−Mb=F・La”−(−F・Lb”) =F(La”+Lb”)=F・L となり、同様にして応力σの差分は、 σa−σb=Ma/Z−Mb/Z=F・L/Z となり、ひずみ量εの差分は次式となる。 εa−εb=σa/E−σb/E=F・L/(E・Z)Here, the difference between the bending moments M at the points A and B is as follows: Ma−Mb = F · La ″ − (− F · Lb ″) = F (La ″ + Lb ″) = FL Then, the difference of the stress σ is as follows: σa−σb = Ma / Z−Mb / Z = FL · Z / Z, and the difference of the strain ε is as follows. εa−εb = σa / E−σb / E = FL / (EZ)
【0031】従って、 F=(εa−εb)(E・Z)/L …(3) が得られる。Therefore, F = (εa−εb) (EZ) / L (3) is obtained.
【0032】このように、力Fが加えられるD点がこの
範囲で移動しても、La”+Lb”=Lは一定であるか
ら、力Fを求めることができる。As described above, even if the point D to which the force F is applied moves within this range, the force F can be obtained because La "+ Lb" = L is constant.
【0033】更に、図6に示すように、力FがA点より
も後方のD点で筒部16に加えられると、A点、B点に
は共に時計廻りの曲げモーメントが発生する。Further, as shown in FIG. 6, when a force F is applied to the cylindrical portion 16 at a point D behind the point A, a clockwise bending moment is generated at both the points A and B.
【0034】A点と力Fが加えられる点Dとの距離をL
a"'、B点とD点との距離をLb"'とすると、A点とB
点との距離LはL=Lb"'−La"'となる。The distance between point A and point D to which force F is applied is represented by L
a "', and the distance between point B and point D is Lb"', then point A and point B
The distance L to the point is L = Lb "'-La"'.
【0035】A点の曲げモーメントMa、応力σa、ひ
ずみ量εaはそれぞれ、次の通りとなる。 Ma=−F・La"' σa=−F・La"'/Z εa=−F・Lb"'/(E・Z)The bending moment Ma, stress σa, and strain εa at point A are as follows. Ma = −F · La ″ ′ σa = −F · La ″ ′ / Z εa = −F · Lb ″ ′ / (EZ)
【0036】同様に、B点における曲げモーメントM
b、応力σb、ひずみ量εbはそれぞれ、次の通りとな
る。 Mb=−F・Lb"' σb=−F・Lb"'/Z εb=−F・Lb"'/(E・Z)Similarly, bending moment M at point B
b, stress σb, and strain amount εb are as follows, respectively. Mb = −F · Lb ″ ′ σb = −F · Lb ″ ′ / Z εb = −F · Lb ″ ′ / (E · Z)
【0037】A点とB点の曲げモーメントMの差分は、 Ma−Mb=−F・La"'−(−F・Lb"') =F(Lb"'−La"')=F・L となり、同様にして応力σの差分は、 σa−σb=Ma/Z−Mb/Z=F・L/Z となり、ひずみ量εの差分は、 εa−εb=σa/E−σb/E=F・L/(E・Z)The difference between the bending moments M at point A and point B is: Similarly, the difference between the stresses σ is as follows: σa−σb = Ma / Z−Mb / Z = F · L / Z, and the difference between the strain amounts ε is as follows:・ L / (EZ)
【0038】従って、 F=(εa−εb)(E・Z)/L …(4) となり、力Fが加わるD点がこの範囲で移動してもその
位置に関係なく、力Fを正確に求めることができる。Therefore, F = (εa−εb) (E · Z) / L (4), and even if the point D to which the force F is applied moves within this range, the force F can be accurately calculated regardless of its position. You can ask.
【0039】このように、本実施例においては、式(2)
〜(4) は全く同一であり、力Fが筒部16の何れの個所
に加えられても、同様に検出が可能である。また、力F
が分散して筒部16に加えられても、これらの力には合
成力として検出することが可能である。そして、実施例
は例えば操縦桿等に加わる力を、握力を相殺して検出す
る場合などに好適に使用することができる。As described above, in this embodiment, the expression (2)
(4) is exactly the same, and detection can be performed in the same manner, regardless of where the force F is applied to the cylindrical portion 16. Also, force F
Can be detected as a combined force of these forces even if the force is dispersed and applied to the cylindrical portion 16. The embodiment can be suitably used, for example, when detecting the force applied to the control stick or the like by canceling out the grip force.
【0040】なお、実施例では起歪体の断面形状を角柱
状としたが、丸柱状とすることもできる。ただし、この
場合にはひずみゲージの貼付個所は平坦に研削すること
が好ましい。In the embodiment, the cross-sectional shape of the flexure element is a rectangular column, but it may be a round column. However, in this case, it is preferable that the portion where the strain gauge is attached is ground flat.
【0041】[0041]
【発明の効果】以上説明したように本発明に係る力検出
器は、起歪体の外側に離隔的に筒部を配置し、この筒部
に加わる力を検出するようにすることにより、例えば握
持して操作するなどの対象物に加わる力を握力と無関係
に検出することができる。As described above, in the force detector according to the present invention, by disposing a cylindrical portion at a distance outside the strain body and detecting the force applied to this cylindrical portion, for example, It is possible to detect a force applied to an object such as gripping and operating, regardless of the gripping force.
【図面の簡単な説明】[Brief description of the drawings]
【図1】起歪体の側面図である。FIG. 1 is a side view of a flexure element.
【図2】正面図である。FIG. 2 is a front view.
【図3】実施例の断面図である。FIG. 3 is a sectional view of the embodiment.
【図4】検出原理の説明図である。FIG. 4 is an explanatory diagram of a detection principle.
【図5】検出原理の説明図である。FIG. 5 is an explanatory diagram of a detection principle.
【図6】検出原理の説明図である。FIG. 6 is an explanatory diagram of a detection principle.
【図7】従来例の側面図である。FIG. 7 is a side view of a conventional example.
11 起歪体 12 自由端 14 固定端 15 ひずみゲージ 16 筒部 DESCRIPTION OF SYMBOLS 11 Flexure element 12 Free end 14 Fixed end 15 Strain gauge 16 Tube part
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01L 1/22 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) G01L 1/22
Claims (2)
とする金属柱の外側に力受体となる筒部を離隔的に配置
し、該筒部の一端部を前記力受部に接続し、前記金属柱
の力受部と固定端の間の長手方向の異なる位置にひずみ
ゲージを貼付し、前記筒部に加わる力による前記ひずみ
ゲージ同士の出力の差分を求めることにより、前記力を
検出することを特徴とする力検出器。1. A cylindrical portion serving as a force receiving member is spaced apart from a metal column having one end as a free end of a force receiving portion and the other end as a fixed end, and one end of the cylindrical portion is connected to the force receiving portion. Connected to the part, the metal pillar
Affixing strain gauges at different positions in the longitudinal direction between the force receiving portion and the fixed end of the force receiving portion, and detecting the force by calculating a difference between outputs of the strain gauges due to a force applied to the cylindrical portion. And force detector.
の力検出器。2. The force detector according to claim 1, wherein the metal pillar is a prism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24468997A JP3249074B2 (en) | 1997-08-26 | 1997-08-26 | Force detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24468997A JP3249074B2 (en) | 1997-08-26 | 1997-08-26 | Force detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1164126A JPH1164126A (en) | 1999-03-05 |
JP3249074B2 true JP3249074B2 (en) | 2002-01-21 |
Family
ID=17122484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24468997A Expired - Fee Related JP3249074B2 (en) | 1997-08-26 | 1997-08-26 | Force detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3249074B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4933778B2 (en) * | 2003-05-07 | 2012-05-16 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Force measuring element |
JP2005172619A (en) * | 2003-12-11 | 2005-06-30 | Yamato Scale Co Ltd | Moment detection device and multi-component force detection device |
GB2582282A (en) * | 2019-03-08 | 2020-09-23 | Datum Electronics Ltd | Torque sensor calibration |
CN112747842B (en) * | 2020-12-22 | 2023-04-07 | 浙江理工大学 | Detection method of composite stress sensor applying nonlinear elastic modulus material |
-
1997
- 1997-08-26 JP JP24468997A patent/JP3249074B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1164126A (en) | 1999-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180024015A1 (en) | Load Transducer System | |
US4107985A (en) | Load cell | |
JP2002503800A (en) | Elongation measurement sensor for measuring deformation by default mechanical adjustment and automatic verification according to this adjustment | |
US20090183561A1 (en) | Load pin brake cell apparatus | |
US4522066A (en) | Temperature-compensated extensometer | |
JP3249074B2 (en) | Force detector | |
AU681306B2 (en) | Force measuring device | |
Bellow et al. | Anticlastic behavior of flat plates: The mode of transverse distortion in a rectangular plate subjected to large longitudinal curvatures depends on the dimensionless parameter b 2/Rt. Using a numerical technique, experimental results are shown to agree with theory for b 2/Rt values up to 50 | |
US11320326B2 (en) | Force sensor and sensing element thereof | |
US7131340B2 (en) | Device for low-vibration force measurement in rapid dynamic tensile experiments on material samples | |
JPS5912326A (en) | Load converter | |
JPS5984131A (en) | How to measure stress in structures | |
JPH0862061A (en) | Detecting device for strain | |
JPH0461289B2 (en) | ||
JPS54133176A (en) | Load detector of electronic measuring instruments | |
JP2005121603A (en) | Rotational torque detector | |
US5742011A (en) | Load cell having a neutral plane spaced from a top surface thereof by a distance greater than from a bottom surface thereof | |
JP2604692B2 (en) | 2 component force / 1 moment detector | |
SU371464A1 (en) | TENSOMETRIC ELASTIC ELEMENT | |
JPS59187205A (en) | Shearing type strain detector | |
JPS61145427A (en) | Load detecting apparatus | |
JP2906704B2 (en) | Manufacturing method of load cell | |
EP0094646A2 (en) | Temperature-compensated extensometer | |
SU930004A1 (en) | Strain gauge girder | |
JP2000329611A (en) | Load-measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111109 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121109 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121109 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131109 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |