JP3242289B2 - Method for treating iron chloride solution containing copper and nickel - Google Patents
Method for treating iron chloride solution containing copper and nickelInfo
- Publication number
- JP3242289B2 JP3242289B2 JP12493095A JP12493095A JP3242289B2 JP 3242289 B2 JP3242289 B2 JP 3242289B2 JP 12493095 A JP12493095 A JP 12493095A JP 12493095 A JP12493095 A JP 12493095A JP 3242289 B2 JP3242289 B2 JP 3242289B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- copper
- nickel
- iron
- liter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims 8
- 229910052802 copper Inorganic materials 0.000 title claims 8
- 239000010949 copper Substances 0.000 title claims 8
- 238000000034 method Methods 0.000 title claims 5
- 229910052759 nickel Inorganic materials 0.000 title claims 5
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 title claims 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 8
- 229910052742 iron Inorganic materials 0.000 claims 4
- 239000002244 precipitate Substances 0.000 claims 3
- 239000007788 liquid Substances 0.000 claims 2
- 239000000463 material Substances 0.000 claims 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims 1
- 238000005868 electrolysis reaction Methods 0.000 claims 1
- 239000007800 oxidant agent Substances 0.000 claims 1
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- ing And Chemical Polishing (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、銅成分とニッケル成分
を含有する塩化第2鉄を主成分とした溶液の再生処理方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a solution containing ferric chloride containing a copper component and a nickel component as a main component.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】ニッケ
ル又はニッケル合金及び銅又は銅合金の両方を、塩化第
2鉄を主成分とするエッチング液で処理すると、エッチ
ングの進行に伴いそれぞれの金属からニッケルや銅が溶
出し、液のエッチング能力が徐々に低下して最終的に使
用困難な廃液となってしまう。2. Description of the Related Art When both nickel or a nickel alloy and copper or a copper alloy are treated with an etching solution containing ferric chloride as a main component, as the etching progresses, the respective metals are removed. Nickel and copper are eluted, and the etching ability of the liquid gradually decreases, resulting in a waste liquid which is finally difficult to use.
【0003】経済性及び省資源の観点より、エッチング
廃液を再生しリサイクルすることは望ましいところであ
り、本出願人は、例えば銅を含む塩化第2鉄溶液に対し
ては、特開平5−125564号公報において、隔膜電
解処理として、金属イオン濃度を調整した陰極側で銅を
析出しながら、陽極側で発生する塩素ガスを酸化剤とし
て用いて、当該溶液を再生することを提案している。ま
たニッケルを含む塩化第2鉄溶液に対しても同じく、上
記隔膜電解法に基づく再生を特開平6−240475号
公報において提案している。From the viewpoints of economy and resource saving, it is desirable to regenerate and recycle the etching waste liquid, and the present applicant has disclosed, for example, Japanese Patent Application Laid-Open No. 5-125564 for a ferric chloride solution containing copper. In the gazette, as a diaphragm electrolysis treatment, it is proposed to regenerate the solution by using chlorine gas generated on the anode side as an oxidizing agent while depositing copper on the cathode side where the metal ion concentration is adjusted. Japanese Patent Application Laid-Open No. 6-240475 also proposes regeneration of the ferric chloride solution containing nickel based on the diaphragm electrolysis method.
【0004】しかしながら、銅及びニッケルの両成分を
含む廃液については、有効な処理方法が確立していな
い。上記2件の提案に照らして、当該廃液を1段階の隔
膜電解法で再生することも可能であるが、この場合、
回収金属が銅、ニッケル、鉄及びこれらの合金の混合物
となり、再資源化する際の価値が予め分別されている場
合よりも低く、再生液中の銅濃度、ニッケル濃度はと
もに低い程、再生液としての価値が高く、特に銅成分に
ついてはニッケル・鉄系の素材のエッチングに再生液を
使用する際には、その濃度が20ppm以下にする必要
がある。そのため、従来のように陽極側の液を再生液と
しようとする場合、ニッケル成分については濃度低下さ
せるのに都合が良いが、銅成分については濃度低下が不
十分である。[0004] However, no effective treatment method has been established for waste liquid containing both components of copper and nickel. In view of the above two proposals, it is also possible to regenerate the waste liquid by a one-stage diaphragm electrolysis method.
The recovered metal is a mixture of copper, nickel, iron and their alloys, and the value at the time of recycling is lower than in the case where it has been separated in advance.The lower the copper concentration and nickel concentration in the regenerating solution, the lower the regenerating solution In particular, when a regenerant is used for etching a nickel-iron-based material, the concentration of the copper component needs to be 20 ppm or less. Therefore, when the anode-side liquid is used as the regenerating liquid as in the conventional case, it is convenient to lower the concentration of the nickel component, but the concentration of the copper component is insufficient.
【0005】そこで本発明は、銅成分とニッケル成分を
含有する塩化第2鉄を主成分とした溶液中の銅成分及び
ニッケル成分の各濃度をできるだけ低下させるとともに
析出する金属の使用価値がより高くなる塩化鉄溶液の再
生方法を提供することを課題とする。Accordingly, the present invention reduces the concentrations of the copper component and the nickel component in a ferric chloride-based solution containing a copper component and a nickel component as much as possible and increases the use value of the precipitated metal. An object of the present invention is to provide a method for regenerating an iron chloride solution.
【0006】[0006]
【課題を解決するための手段】本発明は上記の課題を、
銅とニッケルを含有する塩化鉄溶液を第1隔膜電解槽の
陰極側に供給して電解還元し、銅成分を還元析出した
後、脱銅液を第2隔膜電解槽に供給し、陰極側でニッケ
ル成分を還元析出することによって、解決する。The present invention solves the above problems,
An iron chloride solution containing copper and nickel is supplied to the cathode side of the first membrane electrolytic cell to perform electrolytic reduction, and after reducing and depositing a copper component, a copper-removing solution is supplied to the second membrane electrolytic cell. The problem is solved by reducing and precipitating a nickel component.
【0007】本発明者らが鋭意試験を重ね検討した結
果、銅成分とニッケル成分を含有する塩化鉄溶液を隔膜
電解すると、鉄イオン及び銅イオンは電気泳動により陽
極側に移動しやすく、ニッケルイオンは陰極側に移動し
やすいことが判明した。その理由は明らかではないが、
2価鉄、3価鉄、1価銅、2価銅については各種錯イオ
ンとして負の電荷を帯びている比率が単独の陽イオンと
して解離している比率より高く、ニッケルイオンの場合
にはその逆だからと推定される。そこでこのような現象
を利用して、銅成分とニッケル成分を含有する塩化鉄溶
液の効果的な銅成分及びニッケル成分の除去を行うこと
としたのが本発明であり、電解処理を2段階で行うこと
を骨子とする。各電解処理にあたっては、電気的に中性
で電気抵抗の小さな隔膜、例えばモドアクリル、酢酸ビ
ニル、ポリエステル、塩化ビニリデン等を有した電解槽
を用いるのが好ましい。また第1電解槽で電解処理した
後の液を第2電解槽に供給するに際しては、比重管理を
する等、電解槽内の液組成が一定となるように供給液量
を調節し、金属の電析並びに隔膜を通してのイオン移動
に伴う濃度変化に対応して、陰極側及び陽極側に適切な
比率で供給することが好ましいが、陰極側のみに供給し
てもよい。As a result of extensive studies by the present inventors, when an iron chloride solution containing a copper component and a nickel component is subjected to diaphragm electrolysis, iron ions and copper ions are easily moved to the anode side by electrophoresis, and nickel ions Was found to be easily moved to the cathode side. The reason is not clear,
In the case of divalent iron, trivalent iron, monovalent copper, and divalent copper, the ratio of negative charges as various complex ions is higher than the ratio of dissociation as a single cation. It is presumed to be the opposite. Therefore, the present invention utilizes such a phenomenon to effectively remove the copper component and the nickel component of the iron chloride solution containing the copper component and the nickel component, and the electrolytic treatment is performed in two stages. The outline is to do. In each electrolytic treatment, it is preferable to use an electrolytic tank having an electrically neutral diaphragm having a small electric resistance, such as modacrylic, vinyl acetate, polyester, and vinylidene chloride. When supplying the liquid after the electrolytic treatment in the first electrolytic cell to the second electrolytic cell, the amount of the supplied liquid is adjusted so that the liquid composition in the electrolytic cell becomes constant, for example, by controlling the specific gravity. It is preferable to supply to the cathode side and the anode side at an appropriate ratio in accordance with the concentration change accompanying the electrodeposition and the ion movement through the diaphragm, but it is also possible to supply to only the cathode side.
【0008】なお、銅成分に関しては、電解のみで20
ppm以下の再生液を連続して得ることは実用上困難で
ある。したがって、銅濃度を可能な限り低減させる必要
がある場合には、第1隔膜電解槽で銅成分を還元析出し
た後の電解処理液を鉄材と接触させ、残留する銅を更に
除去するようにしてもよい。また電析させた金属の性状
については、銅が非密着性の粉状であるのに対して、ニ
ッケル-鉄合金は密着性で不安定な析出となりやすく、
回収が比較的容易でない。更に電解のみで500ppm
以下にニッケル濃度を低下させることもコストが嵩む。
そこで第1隔膜電解槽で銅成分を還元析出した後の電解
処理液を鉄材と接触させ、残留する銅と共にニッケル成
分をこの鉄置換処理の段階でニッケル成分を取り除くよ
うにしてもよい。即ち、銅とニッケルを含有する塩化鉄
溶液を第1隔膜電解槽の陰極側に供給して電解還元して
銅成分を還元析出した後、還元処理液を鉄材と接触させ
て当該液中に含有する銅及びニッケルを還元析出し、し
かる後に当該鉄置換処理液を第2隔膜電解槽に供給し、
陰極側で鉄を還元析出するようにしても、上記課題を効
果的に解決することができる。[0008] With respect to the copper component, only 20%
It is practically difficult to continuously obtain a regenerating solution of not more than ppm. Therefore, when it is necessary to reduce the copper concentration as much as possible, the electrolytic treatment solution after reducing and precipitating the copper component in the first diaphragm electrolyzer is brought into contact with an iron material so as to further remove the remaining copper. Is also good. Regarding the properties of the deposited metal, copper is a non-adhesive powder, whereas nickel-iron alloy is likely to be unstable due to adhesion,
Recovery is not relatively easy. Furthermore, 500ppm only by electrolysis
Below, lowering the nickel concentration also increases costs.
Therefore, the electrolytic treatment solution obtained by reducing and precipitating the copper component in the first diaphragm electrolytic cell may be brought into contact with an iron material, and the nickel component may be removed at the stage of the iron substitution process with the nickel component together with the remaining copper. That is, an iron chloride solution containing copper and nickel is supplied to the cathode side of the first diaphragm electrolyzer and electrolytically reduced to reduce and precipitate a copper component. Then, the reduction treatment solution is brought into contact with an iron material and contained in the solution. Copper and nickel to be reduced and precipitated, and then the iron replacement treatment liquid is supplied to a second diaphragm electrolytic cell,
The above problem can also be effectively solved by reducing and depositing iron on the cathode side.
【0009】置換反応に使用する鉄材としては、取り扱
いが容易で接触面積を大きくすることができる鉄粉を使
用するのが好ましい。例えば粒径として、100メッシ
ュパス以上が好ましく、150〜350メッシュパスが
より好ましい。更に比表面積として、1m2/g以上を
有すれば、ニッケルの除去効率が上がり、好ましい。As the iron material used in the substitution reaction, it is preferable to use iron powder which can be easily handled and has a large contact area. For example, the particle size is preferably 100 mesh passes or more, and more preferably 150 to 350 mesh passes. Further, when the specific surface area is 1 m 2 / g or more, nickel removal efficiency increases, which is preferable.
【0010】上記第1隔膜電解槽の陽極側で発生する塩
素ガスを酸化剤として、電解処理後の液と接触させるよ
うにすれば、電解工程に関係する物質を全て有効的に利
用することができるので好適である。If chlorine gas generated on the anode side of the first diaphragm electrolytic cell is used as an oxidizing agent and is brought into contact with the solution after the electrolytic treatment, it is possible to effectively use all the substances related to the electrolytic process. It is preferable because it can be performed.
【0011】[0011]
【実施例】以下に本発明の実施例を挙げて更に具体的に
説明する。 (実施例1)図1に示されるように、2価の鉄成分5
2.3g/リットル、3価の鉄成分130g/リット
ル、ニッケル成分8.6g/リットル、2価の銅成分2
2.6g/リットル、塩素成分382g/リットルの組
成、比重1.423の廃液を、ポリエステル濾過布の隔
膜を有した第1隔膜電解槽1の陰極室(陰極:チタン
板)に29.2リットル/時で定量供給し、電流300
0A(定電流)、電圧3.2Vで電解した。当該陰極室
から29.2リットル/時で抜き出した脱銅液の組成
は、2価の鉄成分182g/リットル、3価の鉄成分
0.5g/リットル未満、ニッケル成分8.6g/リッ
トル、2価の銅成分0.2g/リットル、塩素成分25
4g/リットルであった。The present invention will be described more specifically with reference to the following examples. (Example 1) As shown in FIG.
2.3 g / l, trivalent iron component 130 g / l, nickel component 8.6 g / l, divalent copper component 2
29.2 liters of a waste liquid having a composition of 2.6 g / liter and a chlorine component of 382 g / liter and a specific gravity of 1.423 is supplied to the cathode chamber (cathode: titanium plate) of the first membrane electrolytic cell 1 having a membrane of polyester filter cloth. / Hour, constant current supply, current 300
Electrolysis was performed at 0 A (constant current) and a voltage of 3.2 V. The composition of the copper removal liquid withdrawn at 29.2 liters / hour from the cathode chamber was 182 g / liter of divalent iron component, less than 0.5 g / liter of trivalent iron component, 8.6 g / liter of nickel component, Valent copper component 0.2g / l, chlorine component 25
It was 4 g / liter.
【0012】第1隔膜電解槽の陰極室からは、陰極板か
ら払い落とした銅粉を653.6g/時で回収し、陽極
室(陽極:RuO2/Ti網(DSA電極))からは塩
素ガスが3735g/時で発生したので、当該ガスを吸
収塔3に導いた。From the cathode chamber of the first diaphragm electrolytic cell, 653.6 g / hour of copper powder removed from the cathode plate was recovered, and chlorine was collected from the anode chamber (anode: RuO 2 / Ti net (DSA electrode)). Since the gas was generated at 3735 g / h, the gas was led to the absorption tower 3.
【0013】上記脱銅液を第1電解槽と同じ構成の第2
隔膜電解槽2の陰極室、陽極室にそれぞれ24.8リッ
トル/時、4.4リットル/時で定量供給した。電流2
000A(定電流)、電圧3.2Vで電解し、29.2
リットル/時で抜き出した液の組成は、2価の鉄成分1
2.3g/リットル、3価の鉄成分120.3g/リッ
トル、ニッケル成分2.0g/リットル、2価の銅成分
0.09g/リットル、塩素成分254g/リットルで
あった。陰極板からは鉄・ニッケル合金を1634g/
時で剥離回収した。その組成は鉄88.2%、ニッケル
11.6%であった。The above-mentioned copper removal liquid is used in a second electrolytic cell having the same structure as the first electrolytic cell.
A constant amount of 24.8 liters / hour and 4.4 liters / hour were supplied to the cathode chamber and the anode chamber of the diaphragm electrolyzer 2 respectively. Current 2
2,000 A (constant current), electrolysis at a voltage of 3.2 V, and 29.2
The composition of the liquid extracted at a rate of 1 liter / hour is as follows.
2.3 g / L, trivalent iron component 120.3 g / L, nickel component 2.0 g / L, divalent copper component 0.09 g / L, and chlorine component 254 g / L. 1634g / iron / nickel alloy from cathode plate
It was peeled and collected at times. Its composition was 88.2% iron and 11.6% nickel.
【0014】第2隔膜電解槽2を経た脱ニッケル液を吸
収塔3へ導き、第1隔膜電解槽1で発生した塩素ガスと
接触させたところ、2価の鉄成分0.5g/リットル未
満、3価の鉄成分132.6g/リットル、ニッケル成
分2.0g/リットル、2価の銅成分0.09g/リッ
トル、塩素成分262g/リットルの再生液が得られ
た。The nickel-removed solution passed through the second diaphragm electrolyzer 2 was led to the absorption tower 3 and was brought into contact with chlorine gas generated in the first diaphragm electrolyzer 1. When the divalent iron component was less than 0.5 g / liter, A regenerating solution containing 132.6 g / liter of a trivalent iron component, 2.0 g / liter of a nickel component, 0.09 g / liter of a divalent copper component, and 262 g / liter of a chlorine component was obtained.
【0015】(実施例2)図2に示されるように、2価
の鉄成分52.3g/リットル、3価の鉄成分130g
/リットル、ニッケル成分8.6g/リットル、2価の
銅成分22.6g/リットル、塩素成分382g/リッ
トルの組成、比重1.423の廃液を、図1の実施例で
の隔膜電解槽と同じ構成からなる第1隔膜電解槽1の陰
極室に29.2リットル/時で定量供給し、電流300
0A(定電流)、電圧3.2Vで電解した。当該陰極室
から29.2リットル/時で抜き出した脱銅液の組成
は、2価の鉄成分182g/リットル、3価の鉄成分
0.5g/リットル未満、ニッケル成分8.6g/リッ
トル、2価の銅成分0.2g/リットル、塩素成分25
4g/リットルであった。Example 2 As shown in FIG. 2, 52.3 g / liter of divalent iron component and 130 g of trivalent iron component
1 / liter, nickel component 8.6 g / l, divalent copper component 22.6 g / l, chlorine component 382 g / l, wastewater having a specific gravity of 1.423 are the same as those in the diaphragm electrolytic cell in the embodiment of FIG. A constant amount of 29.2 liters / hour was supplied to the cathode chamber of the first diaphragm electrolytic cell 1 having
Electrolysis was performed at 0 A (constant current) and a voltage of 3.2 V. The composition of the copper removal liquid withdrawn at 29.2 liters / hour from the cathode chamber was 182 g / liter of divalent iron component, less than 0.5 g / liter of trivalent iron component, 8.6 g / liter of nickel component, Valent copper component 0.2g / l, chlorine component 25
It was 4 g / liter.
【0016】第1隔膜電解槽の陰極室からは、陰極板か
ら払い落とした銅粉を653.6g/時で回収し、陽極
室からは塩素ガスが3735g/時で発生したので、当
該ガスを吸収塔3に導いた。The copper powder removed from the cathode plate was recovered at 653.6 g / hour from the cathode chamber of the first diaphragm electrolytic cell, and chlorine gas was generated at 3735 g / hour from the anode chamber. It led to absorption tower 3.
【0017】第1隔膜電解槽の電解処理液を鉄置換槽4
に導いた。この鉄置換槽4は鉄粉を充填したカラムと
し、1バッチ500リットルとして回分操作で約0.5
kg/バッチの鉄粉と接触させた。液温50℃で反応さ
せた後の液組成は、2価の鉄成分184g/リットル、
3価の鉄成分0.5g/リットル未満、ニッケル成分
8.5g/リットル、銅成分5mg/リットル未満であ
った。また金属銅粉5.9g/時がカラムの鉄粉中に析
出した。The electrolytic solution of the first diaphragm electrolyzer is replaced with an iron-substitute tank 4.
Led to. The iron replacement tank 4 is a column filled with iron powder, and is prepared as a batch of 500 liters in a batch operation of about 0.5.
kg / batch of iron powder. The liquid composition after the reaction at a liquid temperature of 50 ° C. is 184 g / liter of a bivalent iron component,
The trivalent iron component was less than 0.5 g / liter, the nickel component was 8.5 g / liter, and the copper component was less than 5 mg / liter. Further, 5.9 g / hour of metallic copper powder was precipitated in the iron powder of the column.
【0018】上記の鉄置換処理液を第1電解槽と同じ構
成の第2隔膜電解槽2の陰極室、陽極室にそれぞれ2
4.8リットル/時、4.4リットル/時で定量供給し
た。電流2000A(定電流)、電圧3.2Vで電解
し、29.2リットル/時で陽極室から抜き出した液の
組成は、2価の鉄成分11.9g/リットル、3価の鉄
成分121.3g/リットル、ニッケル成分2.1g/
リットル、2価の銅成分5mg/リットル未満、塩素成
分256g/リットルであった。陰極板からは鉄87.
5%、ニッケル11.9%からなる鉄ニッケル合金を1
625g/時で剥離回収した。The above-mentioned iron-substituted solution is placed in a cathode chamber and an anode chamber of a second diaphragm electrolytic cell 2 having the same structure as the first electrolytic cell, respectively.
The fixed amount was supplied at 4.8 liter / hour and 4.4 liter / hour. Electrolysis at a current of 2000 A (constant current) and a voltage of 3.2 V, and the composition of the solution extracted from the anode chamber at 29.2 liter / hour has a composition of divalent iron component of 11.9 g / liter and trivalent iron component of 121. 3 g / liter, nickel component 2.1 g /
Liter, divalent copper component was less than 5 mg / liter, and chlorine component was 256 g / liter. Iron from the cathode plate 87.
1% iron-nickel alloy consisting of 5% and 11.9% nickel
Peeling and recovery were performed at 625 g / hour.
【0019】第2隔膜電解槽2を経た液を吸収塔3へ導
き、第1隔膜電解槽1で発生した塩素ガスと接触させた
ところ、2価の鉄成分0.5g/リットル未満、3価の
鉄成分133.2g/リットル、ニッケル成分2.1g
/リットル、2価の銅成分5mg/リットル未満、塩素
成分264g/リットルの再生液が得られた。The liquid having passed through the second diaphragm electrolytic cell 2 was led to the absorption tower 3 and brought into contact with chlorine gas generated in the first diaphragm electrolytic cell 1. When the divalent iron component was less than 0.5 g / liter, 133.2 g / liter of iron component, 2.1 g of nickel component
/ Liter, a regenerating liquid having a divalent copper component of less than 5 mg / liter and a chlorine component of 264 g / liter was obtained.
【0020】(実施例3)図2に示されるように、2価
の鉄成分52.3g/リットル、3価の鉄成分130g
/リットル、ニッケル成分8.6g/リットル、2価の
銅成分22.6g/リットル、塩素成分382g/リッ
トルの組成、比重1.423の廃液を、図1の実施例で
の隔膜電解槽と同じ構成からなる第1隔膜電解槽1の陰
極室に29.2リットル/時で定量供給し、電流300
0A(定電流)、電圧3.2Vで電解した。当該陰極室
から29.2リットル/時で抜き出した脱銅液の組成
は、2価の鉄成分182g/リットル、3価の鉄成分
0.5g/リットル未満、ニッケル成分8.6g/リッ
トル、2価の銅成分0.2g/リットル、塩素成分25
4g/リットルであった。Example 3 As shown in FIG. 2, 52.3 g / liter of divalent iron component and 130 g of trivalent iron component
1 / liter, nickel component 8.6 g / l, divalent copper component 22.6 g / l, chlorine component 382 g / l, wastewater having a specific gravity of 1.423 are the same as those in the diaphragm electrolytic cell in the embodiment of FIG. A constant amount of 29.2 liters / hour was supplied to the cathode chamber of the first diaphragm electrolytic cell 1 having
Electrolysis was performed at 0 A (constant current) and a voltage of 3.2 V. The composition of the copper removal liquid withdrawn at 29.2 liters / hour from the cathode chamber was 182 g / liter of divalent iron component, less than 0.5 g / liter of trivalent iron component, 8.6 g / liter of nickel component, Valent copper component 0.2g / l, chlorine component 25
It was 4 g / liter.
【0021】第1隔膜電解槽の陰極室からは、陰極板か
ら払い落とした銅粉を653.6g/時で回収し、陽極
室からは塩素ガスが3735g/時で発生したので、当
該ガスを吸収塔3に導いた。From the cathode chamber of the first diaphragm electrolyzer, 653.6 g / hour of copper powder washed off from the cathode plate was recovered, and chlorine gas was generated at 3735 g / hour from the anode chamber. It led to absorption tower 3.
【0022】第1隔膜電解槽の電解処理液を鉄置換槽4
に導いた。この鉄置換槽4では、1バッチ500リット
ルとして回分操作で約20kg/バッチの鉄粉と接触さ
せた。撹拌しながら液温65℃で反応させ濾過した後の
液組成は、2価の鉄成分198g/リットル、3価の鉄
成分0.5g/リットル、ニッケル成分160mg/リ
ットル、2価の銅成分10mg/リットルであった。ま
た鉄77.5%、ニッケル20.5%からなるニッケル
を含む鉄粉1200g/時が得られた。The electrolytic treatment solution in the first diaphragm electrolyzer is replaced with an iron replacement
Led to. In this iron displacement tank 4, a batch was made up to 500 liters and brought into contact with about 20 kg / batch of iron powder by batch operation. The liquid composition after reacting and filtering at a liquid temperature of 65 ° C. with stirring has a divalent iron component of 198 g / liter, a trivalent iron component of 0.5 g / liter, a nickel component of 160 mg / liter, and a divalent copper component of 10 mg. / Liter. Further, 1200 g / hour of iron powder containing nickel composed of 77.5% of iron and 20.5% of nickel was obtained.
【0023】上記の鉄置換処理液を第1電解槽と同じ構
成の第2隔膜電解槽2の陰極室に29.2リットル/時
で定量供給した。電流2000A(定電流)、電圧3.
2Vで電解し、29.2リットル/時で陽極室から抜き
出した液の組成は、2価の鉄成分12.5g/リット
ル、3価の鉄成分122.3g/リットル、ニッケル成
分160mg/リットル、2価の銅成分10mg/リッ
トル、塩素成分254g/リットルであった。陰極板か
らは電解鉄を1850g/時で剥離回収した。The above-mentioned iron-substituted solution was supplied at a constant rate of 29.2 liters / hour to the cathode chamber of the second diaphragm electrolytic cell 2 having the same structure as the first electrolytic cell. 2. Current 2000A (constant current), voltage 3.
The composition of the solution electrolyzed at 2 V and withdrawn from the anode chamber at 29.2 liters / hour was 12.5 g / liter of a divalent iron component, 122.3 g / liter of a trivalent iron component, 160 mg / liter of a nickel component, The divalent copper component was 10 mg / liter and the chlorine component was 254 g / liter. Electrolytic iron was separated and recovered from the cathode plate at 1850 g / hour.
【0024】第2隔膜電解槽2を経た液を吸収塔3へ導
き、第1隔膜電解槽1で発生した塩素ガスと接触させた
ところ、2価の鉄成分0.5g/リットル未満、3価の
鉄成分134.8g/リットル、ニッケル成分160m
g/リットル、2価の銅成分10mg/リットル、塩素
成分262g/リットルの再生液が得られた。The liquid passed through the second diaphragm electrolytic cell 2 was led to the absorption tower 3 and brought into contact with chlorine gas generated in the first diaphragm electrolytic cell 1. When the divalent iron component was less than 0.5 g / liter, 134.8 g / liter of iron component, 160 m of nickel component
g / liter, a regenerating liquid having a divalent copper component of 10 mg / liter and a chlorine component of 262 g / liter was obtained.
【0025】[0025]
【発明の効果】請求項1に記載の発明は再生液中の残留
銅濃度がある程度高くても許容される場合に適し、それ
によれば、銅とニッケルを含有する塩化鉄溶液を第1隔
膜電解槽の陰極側に供給して電解還元し、銅成分を還元
析出した後、脱銅液を第2隔膜電解槽で処理し、陰極側
でニッケル成分を還元析出するので、電気泳動によって
陰・陽極のそれぞれに引き寄せられる各金属の性質に応
じて電解析出することができ、再資源化する際の価値を
高めることが可能である。The first aspect of the present invention is suitable for a case where the concentration of residual copper in the regenerating solution is acceptable to a certain extent, whereby the iron chloride solution containing copper and nickel can be used in the first diaphragm electrolysis. It is supplied to the cathode side of the cell and electrolytically reduced to reduce and precipitate the copper component. Then, the copper removal solution is treated in the second diaphragm electrolyzer, and the nickel component is reduced and precipitated at the cathode side. Can be electrolytically deposited in accordance with the properties of each metal attracted to each of them, and the value at the time of recycling can be enhanced.
【0026】請求項2に記載の発明は、再生液中の銅濃
度を20mg/リットル以下にする必要があり且つニッ
ケル濃度についてはある程度高くても許容される場合に
適し、これによれば、第1隔膜電解槽での電解還元後の
電解処理液を鉄材と接触させて当該液中に残留する銅を
還元析出し、しかる後に脱銅液を第2隔膜電解槽に供給
するので、銅濃度を極めて低い水準に下げながら請求項
1と同様の効果を奏することが可能となる。The invention described in claim 2 is suitable when the copper concentration in the regenerating solution needs to be 20 mg / liter or less and the nickel concentration is acceptable even if it is somewhat high. (1) The electrolytic treatment solution after electrolytic reduction in the diaphragm electrolyzer is brought into contact with an iron material to reduce and precipitate the copper remaining in the solution, and then the copper removal solution is supplied to the second diaphragm electrolyzer. It is possible to achieve the same effect as in claim 1 while lowering the level to an extremely low level.
【0027】請求項3に記載の発明によれば、銅とニッ
ケルを含有する塩化鉄溶液を第1隔膜電解槽の陰極側に
供給して電解還元して銅成分を還元析出した後、電解処
理液を鉄材と接触させて当該液中に含有する残留銅及び
ニッケルを還元析出し、しかる後に当該鉄置換処理液を
第2隔膜電解槽で処理し、陰極側で鉄を還元析出するの
で、各金属の再資源化の際の価値を高めることができ、
当該処理の際の金属回収を比較的簡単に行うことができ
るとともに、再生液中の銅及びニッケル濃度を新液並み
に低下できる。According to the third aspect of the invention, an iron chloride solution containing copper and nickel is supplied to the cathode side of the first diaphragm electrolytic cell and electrolytically reduced to reduce and deposit a copper component. The solution is brought into contact with an iron material to reduce and precipitate residual copper and nickel contained in the solution, and thereafter, the iron replacement treatment solution is treated in a second diaphragm electrolytic tank, and iron is reduced and precipitated on the cathode side. Can increase the value of metal recycling.
Metal recovery during the treatment can be performed relatively easily, and the copper and nickel concentrations in the regenerating solution can be reduced to the same level as the new solution.
【0028】請求項4に記載の発明では、第1隔膜電解
槽の陽極側で発生する塩素ガスを酸化剤として電解処理
後の液と接触させるので、電解工程に関係する物質を全
て有効的に利用することができ、しかも当該液を効果的
に再生することができる。According to the fourth aspect of the present invention, the chlorine gas generated on the anode side of the first diaphragm electrolytic cell is brought into contact with the solution after the electrolytic treatment as an oxidizing agent, so that all substances related to the electrolytic process can be effectively used. It can be used, and the liquid can be effectively regenerated.
【図1】本発明に係る処理工程を説明する概念図であ
る。FIG. 1 is a conceptual diagram illustrating a processing step according to the present invention.
【図2】図1と異なるプロセスの発明に係る処理工程を
説明する概念図である。FIG. 2 is a conceptual diagram illustrating processing steps according to the invention of a process different from that of FIG. 1;
1 第1隔膜電解槽 2 第2隔膜電解槽 3 吸収塔 4 鉄置換槽 DESCRIPTION OF SYMBOLS 1 1st diaphragm electrolysis tank 2 2nd diaphragm electrolysis tank 3 Absorption tower 4 Iron substitution tank
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三上 八州家 東京都西多摩郡日の出町平井字欠下2− 1 日鉄鉱業株式会社内 (72)発明者 加藤 正義 神奈川県横浜市栄区小菅ケ谷1−11−2 (56)参考文献 特開 平7−278849(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23F 1/46 C02F 1/461 C02F 1/72 ZAB ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Mikami Yasushiya 2-1 Hirai-cho, Hinode-cho, Nishitama-gun, Tokyo Nippon Steel Mining Co., Ltd. (72) Inventor Masayoshi Kato 1 Kosugaya, Sakae-ku, Yokohama-shi, Kanagawa Prefecture -11-2 (56) References JP-A-7-278849 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23F 1/46 C02F 1/461 C02F 1/72 ZAB
Claims (4)
1隔膜電解槽の陰極側に供給して電解還元し、銅成分を
還元析出した後、脱銅液を第2隔膜電解槽に供給し、陰
極側でニッケル成分を還元析出する方法。1. An iron chloride solution containing copper and nickel is supplied to a cathode side of a first diaphragm electrolytic cell to perform electrolytic reduction to reduce and precipitate a copper component, and then supply a decoppered liquid to a second diaphragm electrolytic cell. Then, a nickel component is reduced and precipitated on the cathode side.
電解処理液を鉄材と接触させて当該液中に残留する銅を
還元析出し、しかる後に脱銅液を第2隔膜電解槽に供給
することを特徴とする請求項1に記載の方法。2. After the electrolytic reduction in the first diaphragm electrolytic cell,
2. The method according to claim 1, wherein the electrolytic treatment solution is brought into contact with an iron material to reduce and precipitate copper remaining in the solution, and then the copper removal solution is supplied to the second diaphragm electrolytic cell.
1隔膜電解槽の陰極側に供給して電解還元し、銅成分を
還元析出した後、電解処理液を鉄材と接触させて当該液
中に含有する残留銅及びニッケルを還元析出し、しかる
後にこの鉄置換処理液を第2隔膜電解槽に供給し、陰極
側で鉄を還元析出する方法。3. An iron chloride solution containing copper and nickel is supplied to the cathode side of the first diaphragm electrolysis tank to perform electrolytic reduction, to reduce and precipitate a copper component, and then contact the electrolytic treatment solution with an iron material to cause the electrolytic treatment. A method in which residual copper and nickel contained therein are reduced and precipitated, and thereafter, the iron replacement treatment liquid is supplied to a second diaphragm electrolytic cell, and iron is reduced and precipitated on the cathode side.
塩素ガスを酸化剤として、電解処理後の液と接触させる
ことを特徴とする請求項1〜3のいずれか一項に記載の
方法。4. The method according to claim 1, wherein chlorine gas generated on the anode side of the first diaphragm electrolytic cell is brought into contact with the solution after the electrolytic treatment as an oxidizing agent. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12493095A JP3242289B2 (en) | 1995-05-24 | 1995-05-24 | Method for treating iron chloride solution containing copper and nickel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12493095A JP3242289B2 (en) | 1995-05-24 | 1995-05-24 | Method for treating iron chloride solution containing copper and nickel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08311445A JPH08311445A (en) | 1996-11-26 |
JP3242289B2 true JP3242289B2 (en) | 2001-12-25 |
Family
ID=14897694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12493095A Expired - Fee Related JP3242289B2 (en) | 1995-05-24 | 1995-05-24 | Method for treating iron chloride solution containing copper and nickel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3242289B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112251755B (en) * | 2020-09-27 | 2022-04-29 | 深圳市祺鑫环保科技有限公司 | Recovery processing method and recovery processing system for ferric trichloride etching waste liquid |
-
1995
- 1995-05-24 JP JP12493095A patent/JP3242289B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08311445A (en) | 1996-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3764503A (en) | Electrodialysis regeneration of metal containing acid solutions | |
KR100207041B1 (en) | How to recover antimony and bismuth from copper electrolyte | |
CN1038950C (en) | Methods of handling etchant | |
JPH0780466A (en) | Method and device for regenerating aqueous solution containing metal ion and sulfuric acid | |
JP3242289B2 (en) | Method for treating iron chloride solution containing copper and nickel | |
JP2005187865A (en) | Method and apparatus for recovering copper from copper etching waste liquid by electrolysis | |
JP2007254800A (en) | Method for producing high-purity nickel and high-purity nickel obtained thereby | |
JP3243929B2 (en) | Adjustment method of copper ion concentration of copper removal electrolytic solution | |
JP3112807B2 (en) | Method of treating iron chloride solution containing nickel | |
JP2698253B2 (en) | Treatment method of ferric chloride etching solution containing copper | |
JP3112805B2 (en) | Method of treating iron chloride solution containing nickel | |
JPH06240475A (en) | Treatment of iron chloride based etchant containing nickel | |
JP3112806B2 (en) | Method of treating iron chloride solution containing nickel | |
JP3350917B2 (en) | Method for selective recovery of antimony and bismuth in electrolytic solution in copper electrorefining | |
JPH0699178A (en) | Electrolytical treating method for waste chemical plating liquid | |
JPH01219186A (en) | Method for refining indium | |
CN112251755B (en) | Recovery processing method and recovery processing system for ferric trichloride etching waste liquid | |
JP3294678B2 (en) | Regeneration method of copper etchant | |
JP2003183858A (en) | Method and device for regenerating etching waste liquid | |
JPH05117879A (en) | Etching liquid treatment method | |
JP2965442B2 (en) | Regeneration method of iron chloride waste liquid containing nickel | |
JP2965457B2 (en) | Regeneration method of iron chloride waste liquid containing nickel | |
JP2005281827A (en) | Method for electrolytic purification of silver | |
JP4147079B2 (en) | Method for removing Ag from chloride bath | |
JPS6160148B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071019 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081019 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091019 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |