[go: up one dir, main page]

JP3241839B2 - Electrode materials for secondary batteries - Google Patents

Electrode materials for secondary batteries

Info

Publication number
JP3241839B2
JP3241839B2 JP35104792A JP35104792A JP3241839B2 JP 3241839 B2 JP3241839 B2 JP 3241839B2 JP 35104792 A JP35104792 A JP 35104792A JP 35104792 A JP35104792 A JP 35104792A JP 3241839 B2 JP3241839 B2 JP 3241839B2
Authority
JP
Japan
Prior art keywords
electrode material
lithium
electrode
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35104792A
Other languages
Japanese (ja)
Other versions
JPH06176760A (en
Inventor
健児 佐藤
敦 出町
実 野口
尚彦 沖
一浩 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP35104792A priority Critical patent/JP3241839B2/en
Priority to DE69325006T priority patent/DE69325006T2/en
Priority to EP93309822A priority patent/EP0601832B1/en
Publication of JPH06176760A publication Critical patent/JPH06176760A/en
Priority to US08/590,874 priority patent/US5725968A/en
Application granted granted Critical
Publication of JP3241839B2 publication Critical patent/JP3241839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、二次電池用電極材料に
関する。
The present invention relates to an electrode material for a secondary battery.

【0002】[0002]

【従来の技術】近年、電子機器の小型化が進み、これに
伴い電池の高エネルギー密度化が求められ、種々の非水
電解液電池が提案されている。例えば、従来より非水電
解液電池用負極として、主に一次電池用に金属リチウム
が知られており、またアルミニウム/リチウム合金に代
表されるリチウム合金、炭素負極なども知られている。
しかしながら、金属リチウムは、二次電池の負極として
用いた場合、デンドライトの生成などに起因してサイク
ル安定性に劣ることが知られている。また、アルミニウ
ム/リチウム合金に代表されるリチウム合金負極も、金
属リチウムよりはサイクル安定性の向上はみられるもの
の、リチウム電池の性能を充分に引き出すうえでは充分
とはいえない。
2. Description of the Related Art In recent years, downsizing of electronic equipment has been progressed, and accordingly, high energy density of batteries has been demanded, and various non-aqueous electrolyte batteries have been proposed. For example, conventionally, as a negative electrode for a non-aqueous electrolyte battery, lithium metal has been known mainly for a primary battery, and a lithium alloy represented by an aluminum / lithium alloy, a carbon negative electrode, and the like are also known.
However, when lithium metal is used as a negative electrode of a secondary battery, it is known that cycle stability is inferior due to generation of dendrites and the like. A lithium alloy negative electrode represented by an aluminum / lithium alloy also has improved cycle stability compared to metallic lithium, but is not sufficient to sufficiently bring out the performance of a lithium battery.

【0003】このような問題を解決するため、リチウム
の炭素層間化合物が電気化学的に容易にできることを利
用した炭素負極を用いることも提案されている。このよ
うな炭素負極としては、多種、多様なものがあり、例え
ば結晶セルロースをチッ素ガス流下、1,800℃で焼
成して得られる炭素物質(特開平3−176963号公
報)、石炭ピッチあるいは石油ピッチを不活性雰囲気で
2,500℃以上で黒鉛化処理したもの(特開平2−8
2466号公報)、2,000℃を超える高温で処理さ
れたグラファイト化の進んだものなどが用いられ、金属
リチウム、リチウム合金と比較して容量の低下はある
が、サイクル安定性のあるものが得られている。しかし
ながら、このような負極でも、高電流密度での充放電に
おいては充分なサイクル安定性は得られていない。
[0003] In order to solve such a problem, it has been proposed to use a carbon anode utilizing the fact that lithium intercalation compounds can be electrochemically easily formed. There are many kinds and various kinds of such carbon anodes. For example, a carbon material obtained by calcining crystalline cellulose at 1,800 ° C. under a nitrogen gas flow (Japanese Patent Application Laid-Open No. 3-1769693), coal pitch or Petroleum pitch which has been graphitized at 2,500 ° C. or higher in an inert atmosphere (Japanese Patent Laid-Open No. 2-8
No. 2466), and those having advanced graphitization treated at a high temperature exceeding 2,000 ° C. are used, and although the capacity is reduced as compared with lithium metal and lithium alloy, those having cycle stability are used. Have been obtained. However, even with such a negative electrode, sufficient cycle stability has not been obtained in charging and discharging at a high current density.

【0004】[0004]

【発明が解決しようとする課題】このように、リチウム
電池の負極として、金属リチウムを用いた場合、充放電
にともない、デンドライトが生成し、劣化の原因となる
ばかりでなく、水分との接触により、激しい反応を起こ
し、劣化の可能性が増大するという問題がある。また、
リチウム合金も、金属リチウムに較べ安定性はあるもの
の、充分とはいえない。
As described above, when metal lithium is used as the negative electrode of a lithium battery, dendrite is generated during charging and discharging, which causes not only deterioration but also contact with moisture. This causes a problem of causing a violent reaction and increasing the possibility of deterioration. Also,
Lithium alloys, though more stable than metallic lithium, are not satisfactory.

【0005】一方、炭素負極は、金属リチウムやリチウ
ム合金に較べ、充電状態、すなわち、炭素にリチウムが
インターカレーションされた状態においても、水との反
応が充分に穏やかで、充放電にともなうデンドライトの
形成もほとんどみられず優れたものである。しかしなが
ら、炭素の種類によっては、充放電のほとんどできない
ものや、理論容量(充電時にLiC6 の状態を最大容量
と仮定)と比較して容量が極端に低いものが多い。ま
た、初期容量は比較的大きくても、充放電を繰り返すこ
とで劣化し、急激に容量が低下したり、また比較的容量
の大きい炭素負極においても、高電流密度で充放電を繰
り返すと劣化が激しく、二次電池としての性能を満足し
得ないなど、従来の炭素負極では、満足すべき性能の負
極は得られていない。
On the other hand, the carbon anode has a sufficiently mild reaction with water even in a charged state, that is, in a state where lithium is intercalated in carbon, and has a dendrite accompanying charge / discharge as compared with lithium metal or a lithium alloy. The formation was excellent with almost no formation. However, depending on the type of carbon, there are many carbons that can hardly be charged and discharged, and those whose capacity is extremely low as compared with the theoretical capacity (assuming the state of LiC 6 at the time of charging as the maximum capacity). In addition, even if the initial capacity is relatively large, it deteriorates due to repeated charging and discharging, and the capacity rapidly decreases. Conventional carbon anodes have not been able to provide satisfactory performance with conventional carbon anodes, such as being so violent that the performance as a secondary battery cannot be satisfied.

【0006】そこで、これらの問題を解決するため、ポ
リパラフェニレンをアルゴンなどの不活性雰囲気中で比
較的低温、すなわち500℃〜1,500℃で熱処理す
ることにより、高容量でサイクル安定性に優れ、高出力
(高電流密度)の充放電にも対応できる負極材料が提案
されている(特願平3−329676号明細書)。しか
しながら、この材料でも、充放電容量は充分とはいえな
い。本発明は、以上のような従来の技術的課題を背景に
なされたものであり、高容量でサイクル安定性に優れ、
高出力(高電流密度)の充放電にも対応できる二次電池
用電極材料を得ることを目的とする。
In order to solve these problems, polyparaphenylene is heat-treated in an inert atmosphere such as argon at a relatively low temperature, that is, at 500 ° C. to 1,500 ° C., thereby achieving high capacity and cycle stability. A negative electrode material which is excellent and can cope with high output (high current density) charge / discharge has been proposed (Japanese Patent Application No. 3-329676). However, even with this material, the charge / discharge capacity is not sufficient. The present invention has been made against the background of the conventional technical problems as described above, and has a high capacity and excellent cycle stability.
It is an object of the present invention to obtain a secondary battery electrode material that can handle high output (high current density) charge and discharge.

【0007】[0007]

【課題を解決するための手段】本発明は、繰り返し構造
単位に、o−位結合、m−位結合および枝分かれ構造の
群から選ばれた少なくとも一種の構造を含み、o−位結
合、m−位結合、あるいは枝分かれ結合の割合が、1〜
20モル%である芳香族系高分子化合物を、500℃〜
1,500℃で熱処理後、粉砕し、平均粒径5μm以下
として得られる二次電池用電極材料を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention, in the repeating structural units, o- position bond, seen contains at least one structure selected from the group consisting of m- position coupling and branching structures, o- position forming
When the ratio of the m-position bond or the branched bond is 1 to
20 mol% of an aromatic polymer compound is heated at 500 ° C.
An object of the present invention is to provide a secondary battery electrode material obtained by heat treatment at 1,500 ° C. and pulverization to obtain an average particle size of 5 μm or less.

【0008】炭素は、その出発原料、製造方法によっ
て、その物性、結晶構造が異なり、二次電池用電極とし
て用いた場合にも、性能に大きな差異が生ずる。本発明
においては、出発原料として、直線型ポリマーでなく、
o−結合、m−結合、あるいは枝分かれ構造を持ったポ
リマーを用い、これを500℃〜1,500℃の温度
で、熱処理することで、優れた電極材料を得ることがで
きるのである。
[0008] Carbon has different physical properties and crystal structures depending on its starting material and production method, and there is a large difference in performance when used as an electrode for a secondary battery. In the present invention, as a starting material, not a linear polymer,
An excellent electrode material can be obtained by using a polymer having an o-bond, an m-bond, or a branched structure and performing a heat treatment at a temperature of 500 ° C. to 1,500 ° C.

【0009】本発明において、芳香族系高分子化合物
は、その繰り返し構造単位に、o−位結合、m−位結合
および枝分かれ構造の群から選ばれた少なくとも一種の
構造を含むものである。このような芳香族系高分子化合
物は、例えばo−位結合、m−位結合を含むものであれ
ば、o−ジハロゲン化ベンゼン、m−ジハロゲン化ベン
ゼン、またはその混合体を1〜20モル%とp−ジハロ
ゲン化ベンゼン99〜80モル%を出発モノマーとし
て、グリニャール試薬を用いて、ニッケル(II)触媒の
存在下で重合させて得ることができる。また、枝分かれ
構造を持つものであれば、1,2,4−トリハロゲン化
ベンゼン、1,3,5−トリハロゲン化ベンゼン、また
はその混合体とp−ジハロゲン化ベンゼンを上記と同様
の方法で重合させて得ることができる。上記の方法(山
本法)以外でも、結合位置規制ができればどのような方
法でもよく、例えばジハロベンゼンまたはトリハロベン
ゼンをニッケル(0)錯体触媒の存在下に重合させても
よい。これらの方法により、繰り返し構造単位がフェニ
レン基である芳香族系高分子化合物を得ることができ
る。本発明に使用される芳香族系高分子化合物中の、o
−位結合、m−位結合、あるいは枝分かれ結合の割合
、1〜20モル%、好ましくは2〜10モル%であ
り、1モル%未満ではポリパラフェニレンと同等の特性
しか示さない。
In the present invention, the aromatic polymer compound has at least one structure selected from the group consisting of an o-position bond, an m-position bond and a branched structure in its repeating structural unit. Such an aromatic polymer compound may contain, for example, o-dihalogenated benzene, m-dihalogenated benzene, or a mixture thereof in an amount of 1 to 20 mol% if it contains an o-position bond or an m-position bond. And 99-80 mol% of p-dihalogenated benzene and p-dihalogenated benzene as starting monomers, and polymerized using a Grignard reagent in the presence of a nickel (II) catalyst. If the compound has a branched structure, 1,2,4-trihalogenated benzene, 1,3,5-trihalogenated benzene, or a mixture thereof and p-dihalogenated benzene are prepared in the same manner as described above. It can be obtained by polymerization. Any method other than the above method (Yamamoto method) may be used as long as the binding position can be regulated. For example, dihalobenzene or trihalobenzene may be polymerized in the presence of a nickel (0) complex catalyst. By these methods, an aromatic polymer compound in which the repeating structural unit is a phenylene group can be obtained. In the aromatic polymer compound used in the present invention, o
- position coupling, m- position bond, or the proportion of branched bonds, 1 20 mol%, favorable Mashiku is 2-10 mol%, exhibit only polyparaphenylene characteristics equivalent is less than 1 mole%.

【0010】本発明において、熱処理は500〜1,5
00℃であり、500℃未満では炭化が進まず、一方
1,500℃を超えるとグラファイト化が進みすぎるの
で電池としての容量の低下をもたらしてしまうことにな
る。芳香族系高分子化合物を500〜1,500℃で熱
処理することにより(X線回折パターンによると)一部
グラファイト化されたアモルファス状態の炭素が得ら
れ、この状態では有機成分、すなわち出発原料中に含ま
れる炭素以外の元素(通常の場合は水素)が残存してい
るが、これがリチウム電池用電極材料として最適なので
ある。好ましくは、該芳香族系高分子化合物の炭化温度
付近で熱処理する。炭化温度とは、出発原料の芳香族系
高分子化合物から水素などの脱離が起こる温度であり、
TG(熱重量測定)、DTA(示差熱分析)により測定
される。この炭化温度は、出発原料によって異なり、最
適な熱処理温度も異なるが、炭化温度から炭化温度+3
00℃程度の範囲が好ましく、通常、600〜1,00
0℃位であり、さらに好ましくは600〜800℃であ
る。
In the present invention, the heat treatment is performed at 500 to 1.5.
When the temperature is lower than 500 ° C., the carbonization does not proceed. On the other hand, when the temperature exceeds 1,500 ° C., the graphitization proceeds excessively, so that the capacity of the battery decreases. By subjecting the aromatic polymer compound to heat treatment at 500 to 1,500 ° C. (according to the X-ray diffraction pattern), a partially graphitized amorphous carbon can be obtained. , Except for carbon (generally, hydrogen), which is the most suitable as an electrode material for a lithium battery. Preferably, a heat treatment at around carbonization temperature of the aromatic polymer compound. The carbonization temperature is a temperature at which elimination of hydrogen or the like from an aromatic polymer compound as a starting material occurs,
It is measured by TG (thermogravimetry) and DTA (differential thermal analysis). The carbonization temperature varies depending on the starting materials and the optimum heat treatment temperature also varies.
The range of about 00 ° C. is preferable, and usually, 600 to 1,000.
It is about 0 ° C, more preferably 600 to 800 ° C.

【0011】加熱時間は0〜6時間、好ましくは0〜2
時間が適当である。ここで、加熱時間とは、設定温度、
すなわち熱処理温度到達後の時間であり、この時間が0
でも、電極としての性能に大きな影響はない。この具体
的な熱処理方法としては、室温から重量減少開始温度ま
で昇温はどのような昇温速度でもよく、これから得られ
た炭素の電極材料としての性能に影響することはない。
重量減少開始温度から熱処理温度に到達するまでは、一
定の昇温速度で行うのがよく、0.1℃/分〜20℃/
分が適当であり、好ましくは0.5℃/分〜15℃/
分、さらに好ましくは1℃/分〜10℃/分である。
The heating time is from 0 to 6 hours, preferably from 0 to 2 hours.
Time is appropriate. Here, the heating time is the set temperature,
That is, it is the time after the heat treatment temperature is reached, and this time is 0
However, there is no significant effect on the performance as an electrode. As a specific heat treatment method, the temperature may be raised from room temperature to the weight reduction start temperature at any rate, and the performance of carbon obtained as an electrode material is not affected.
It is preferable to carry out the heating at a constant heating rate from the temperature at which the weight starts to decrease to the heat treatment temperature.
Min. Is appropriate, preferably 0.5 ° C./min to 15 ° C./min.
Min, more preferably 1 ° C / min to 10 ° C / min.

【0012】次に、加熱は、中性雰囲気中、還元雰
囲気中、あるいは著しい酸化が開始するまでは大気中
でその後還元雰囲気中、中性雰囲気中または酸化ガス中
で行われるのが好ましい。中性雰囲気としては、アル
ゴン、ヘリウム、チッ素などが挙げられる。還元雰囲
気としては、水素雰囲気、アンモニア雰囲気、アンモニ
ア−水素雰囲気などが挙げられ、還元性であり活性な水
素によりダングリングボンド(他の原子と結合していな
い不安定な炭素の結合手)を低減できるので、好ましい
ものである。また、のように著しい酸化が開始するま
では大気中で熱処理してもよい。著しい酸化が開始する
温度は、出発原料によって異なるが、通常、200〜5
00℃で、200〜400℃まで大気中で熱処理するこ
とが好ましい。この場合、その後、還元雰囲気、中性雰
囲気または酸化ガス雰囲気中で熱処理しなければならな
い。酸化ガスとしては、NO/N2 O(体積比=1/9
9〜99/1)の混合ガス、H2 O/N2 O(体積比=
1/999〜2/8)の混合ガスなどが挙げられる。こ
のような処理は、低分子の芳香族系高分子化合物が酸素
の結合を介して高分子化し、炭化開始温度より低い温度
での蒸発を低減できると考えられ、好ましいものであ
る。
Next, heating is preferably performed in a neutral atmosphere, a reducing atmosphere, or in the air until significant oxidation starts, and then in a reducing atmosphere, a neutral atmosphere, or an oxidizing gas. Examples of the neutral atmosphere include argon, helium, and nitrogen. Examples of the reducing atmosphere include a hydrogen atmosphere, an ammonia atmosphere, and an ammonia-hydrogen atmosphere. The reducing and active hydrogen reduces dangling bonds (unstable carbon bonds that are not bonded to other atoms). It is preferable because it can be performed. Further, heat treatment may be performed in the air until remarkable oxidation starts, as described above. The temperature at which significant oxidation starts depends on the starting material, but is usually 200 to 5
It is preferable that the heat treatment is performed in the air at a temperature of 00 ° C. to 200 to 400 ° C. In this case, after that, heat treatment must be performed in a reducing atmosphere, a neutral atmosphere, or an oxidizing gas atmosphere. As the oxidizing gas, NO / N 2 O (volume ratio = 1/9)
9 to 99/1), H 2 O / N 2 O (volume ratio =
1/999 to 2/8) mixed gas. Such a treatment is preferable because it is considered that a low-molecular aromatic polymer compound is polymerized through a bond of oxygen and evaporation at a temperature lower than the carbonization start temperature can be reduced.

【0013】熱処理は、大気中で行われる場合を除き、
所定のガス中で行われるが、このガスは、昇温速度のコ
ントロールに影響を与えない範囲の流量で流されていれ
ばよい。また、冷却は、所定のガスフロー中で自然冷却
にて室温まで戻せばよい。そして、後処理としての熱処
理、表面改質などの処理は必要ない。以上のようにし
て、本発明の炭素材料よりなる電極材料が得られるが、
このようにして得られる電極材料は、通常、粉体または
固体であり、これを機械的に粉砕し、優れた電極材料を
得ることができる。
[0013] The heat treatment, except when performed in air,
The heating is performed in a predetermined gas, and the gas may be flowed at a flow rate that does not affect the control of the heating rate. Cooling may be returned to room temperature by natural cooling in a predetermined gas flow. Further, there is no need for post-treatment such as heat treatment and surface modification. As described above, an electrode material made of the carbon material of the present invention is obtained.
The electrode material thus obtained is usually a powder or a solid, which can be mechanically pulverized to obtain an excellent electrode material.

【0014】この電極材料を用いて電極を作製する場
合、電極材料の平均粒径が5μm以下のものを用いるこ
とにより高性能の電極を作ることができる。本発明の場
合、平均粒径が5μm以下の粉末に、ポリエチレン粉末
などのバインダーを添加混合し、ロールで圧延し、電極
を作ることができる。バインダーの配合量は、電極材料
100重量部に対して2〜30重量部、好ましくは5〜
20重量部である。ここで、バインダーとしては、有
機、無機いずれのバインダーも使用することができる。
有機バインダーとしては、前記ポリエチレンのほかに、
ポリテトラフルオロエチレンなどのフッ素樹脂、ポリビ
ニルアルコール、ポリ塩化ビニルなどの多くのバインダ
ーを使用することができる。この場合、ポリエチレンを
除いて、バインダーの炭化温度付近での熱処理が必要と
なる。
[0014] When producing an electrode using the electrode material, it is possible to make a high-performance electrode by flat Hitoshitsubu diameter of the electrode material is used as the 5μm or less. In the case of the present invention , an electrode can be prepared by adding a binder such as polyethylene powder to a powder having an average particle diameter of 5 μm or less , rolling the mixture with a roll, and the like. The compounding amount of the binder is 2 to 30 parts by weight, preferably 5 to 30 parts by weight based on 100 parts by weight of the electrode material.
20 parts by weight. Here, any of organic and inorganic binders can be used as the binder.
As the organic binder, in addition to the polyethylene,
Many binders can be used, such as fluororesins such as polytetrafluoroethylene, polyvinyl alcohol, polyvinyl chloride, and the like. In this case, except for polyethylene, heat treatment is required at around the carbonization temperature of the binder.

【0015】また、無機バインダーとしては、ケイ素ガ
ラスなどのケイ素系バインダーが使用できるが、この場
合もバインダーとしての性能を発揮させるため融点を超
えた温度での熱処理が必要である。この場合、出発物質
である芳香族系高分子化合物とこれらのバインダーを混
合して成形し、前記のように熱処理することにより、直
接、電極体を得ることができる。この場合、電極体の形
状変化に注意する必要があるが、二次電池用の電極とし
ての性能は、本発明の電極材料とポリエチレンとを圧粉
成形したものと同等である。このようにして得られる電
極体は、これにリチウムまたはリチウムを主体とするア
ルカリ金属を担持させて、リチウム電池用電極とするこ
とができる。
As the inorganic binder, a silicon-based binder such as silicon glass can be used. In this case, however, a heat treatment at a temperature exceeding the melting point is required in order to exhibit the performance as a binder. In this case, the electrode body can be directly obtained by mixing and molding the aromatic polymer compound as a starting material and these binders and performing the heat treatment as described above. In this case, it is necessary to pay attention to the shape change of the electrode body, but the performance as an electrode for a secondary battery is equivalent to that obtained by compacting the electrode material of the present invention and polyethylene. The electrode body thus obtained can be used as a lithium battery electrode by supporting lithium or an alkali metal mainly composed of lithium on the electrode body.

【0016】担持させる方法としては、リチウム箔を接
触させ熱拡散させたり、リチウム塩溶液中で電気化学的
にリチウムをドープさせたり、あるいは溶融リチウムに
浸漬させるなど、従来より行われているどのような方法
でもよい。本発明の電極材料は、二次電池の負極として
広範囲に使用でき、各種の正極、例えば二酸化マンガ
ン、五酸化バナジウムなどの酸化物やポリピロールなど
芳香族系高分子を用いた正極などと組み合わせて使用
することができる。また、負極ばかりでなく、同様にし
て各種の負極、例えば本発明の電極材料より低い電位を
有するリチウム金属、リチウム合金、Li−GICなど
の電極材料などと組み合わせて正極としても使用でき
る。
As a method of carrying the compound, any conventional method such as contacting and thermally diffusing a lithium foil, electrochemically doping lithium in a lithium salt solution, or immersing in molten lithium can be used. Method may be used. The electrode material of the present invention can be widely used as a negative electrode of a secondary battery, and is combined with various positive electrodes, for example, a positive electrode using an aromatic polymer such as manganese dioxide, an oxide such as vanadium pentoxide, or polypyrrole, and the like. Can be used. In addition, not only the negative electrode, but also various negative electrodes, for example, a lithium metal, a lithium alloy having a lower potential than the electrode material of the present invention, and an electrode material such as Li-GIC can be used as a positive electrode.

【0017】また、本発明の電極材料を用いた電池に使
用する非水系の電解質としては、正極材料および負極材
料に対して化学的に安定であり、かつリチウムイオンが
正極活物質と電気化学反応をするために移動できる非水
物質であればどのようなものでも使用でき、特にカチオ
ンとアニオンの組み合わせよりなる化合物であって、カ
チオンとしてはLi+ 、またアニオンの例としてはPF
6 - 、AsF6 - 、SbF6 - のようなVa族元素のハ
ロゲン化物アニオン、I- 、I3 - 、Br- 、Cl-
ようなハロゲンアニオン、ClO4 - のような過塩素酸
アニオン、HF2 - 、CF3 SO3 - 、SCN- などの
アニオンを有する化合物を挙げることができるが、必ず
しもこれらのアニオンに限定されるものではない。この
ようなカチオン、アニオンを持つ電解質の具体例として
は、LiPF6 、LiAsF6 、LiSbF6 、LiB
4 、LiClO4 、LiI、LiBr、LiCl、L
iAlCl4 、LiHF2 、LiSCN、LiCF3
3 などが挙げられる。これらのうちでは、特にLiP
6 、LiAsF6 、LiSbF6 、LiBF4 、Li
ClO4 、LiCF3 SO3 が好ましい。
The non-aqueous electrolyte used in the battery using the electrode material of the present invention is chemically stable with respect to the positive electrode material and the negative electrode material, and lithium ions are chemically reacted with the positive electrode active material. Any non-aqueous substance can be used as long as it can move in order to perform the reaction. Particularly, it is a compound composed of a combination of a cation and an anion. Li + is used as the cation, and PF is used as the anion.
6 -, AsF 6 -, SbF 6 - halide anion such Va group element as, I -, I 3 -, Br -, Cl - halogen anion, ClO 4, such as - perchlorate anion such as, Compounds having anions such as HF 2 , CF 3 SO 3 , and SCN can be given, but are not necessarily limited to these anions. Such cation, specific examples of the electrolyte with anion, LiPF 6, LiAsF 6, LiSbF 6, LiB
F 4 , LiClO 4 , LiI, LiBr, LiCl, L
iAlCl 4 , LiHF 2 , LiSCN, LiCF 3 S
O 3 and the like. Among these, in particular, LiP
F 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , Li
ClO 4 and LiCF 3 SO 3 are preferred.

【0018】なお、非水系の電解質は、通常、溶媒に溶
解された状態で使用され、この場合、溶媒は特に限定さ
れないが、比較的極性の大きい溶媒が良好に用いられ
る。具体的にはプロピレンカーボネート、エチレンカー
ボネート、テトラヒドロフラン、2−メチルテトラヒド
ロフラン、ジオキソラン、ジオキサン、ジメトキシエタ
ン、ジエチレングリコールジメチルエーテルなどのグラ
イム類、γ−ブチロラクトンなどのラクトン類、トリエ
チルホスフェートなどのリン酸エステル類、ホウ酸トリ
エチルなどのホウ酸エステル類、スルホラン、ジメチル
スルホキシドなどのイオウ化合物、アセトニトリルなど
のニトリル類、ジメチルホルムアミド、ジメチルアセト
アミドなどのアミド類、硫酸ジメチル、ニトロメタン、
ニトロベンゼン、ジクロロエタンなどの1種または2種
以上の混合物を挙げることができる。これらのうちで
は、特にプロピレンカーボネート、エチレンカーボネー
ト、ブチレンカーボネート、テトラヒドロフラン、2−
メチルテトラヒドロフラン、ジオキサン、ジメトキシエ
タン、ジオキソランおよびγ−ブチロラクトンから選ば
れた1種または2種以上の混合物が好適である。さら
に、この非水電解質としては、上記非水電解質を、例え
ばポリエチレンオキサイド、ポリプロピレンオキサイ
ド、ポリエチレンオキサイドのイソシアネート架橋体、
エチレンオキサイドオリゴマーを側鎖に持つホスファゼ
ンポリマーなどの重合体に含浸させた有機固体電解質、
Li3 N、LiBCl4 などの無機イオン誘導体、Li
4 SiO4 、Li3 BO3 などのリチウムガラスなどの
無機固体電解質を用いることもできる。
The non-aqueous electrolyte is usually used in a state of being dissolved in a solvent. In this case, the solvent is not particularly limited, but a solvent having a relatively large polarity is preferably used. Specifically, propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, dioxane, dimethoxyethane, glymes such as diethylene glycol dimethyl ether, lactones such as γ-butyrolactone, phosphates such as triethyl phosphate, boric acid Borates such as triethyl, sulfolane, sulfur compounds such as dimethyl sulfoxide, nitriles such as acetonitrile, amides such as dimethylformamide and dimethylacetamide, dimethyl sulfate, nitromethane,
One or a mixture of two or more such as nitrobenzene and dichloroethane can be mentioned. Among these, propylene carbonate, ethylene carbonate, butylene carbonate, tetrahydrofuran, 2-
One or a mixture of two or more selected from methyltetrahydrofuran, dioxane, dimethoxyethane, dioxolane and γ-butyrolactone is preferred. Further, as the non-aqueous electrolyte, the above-mentioned non-aqueous electrolyte, for example, polyethylene oxide, polypropylene oxide, isocyanate cross-linked body of polyethylene oxide,
An organic solid electrolyte impregnated with a polymer such as a phosphazene polymer having an ethylene oxide oligomer in a side chain,
Inorganic ion derivatives such as Li 3 N and LiBCl 4 , Li
An inorganic solid electrolyte such as lithium glass such as 4 SiO 4 and Li 3 BO 3 can also be used.

【0019】本発明の電極材料を負極として使用したリ
チウム二次電池を図面を参照してさらに詳細に説明す
る。すなわち、本発明の電極材料を使用したリチウム二
次電池は、図1に示すように開口部10aが負極蓋板2
0で密閉されたボタン形の正極ケース10内を微細孔を
有するセパレータ30で区画し、区画された正極側空間
内に正極集電体40を正極ケース10側に配置した正極
50が収納される一方、負極側空間内に負極集電体60
を負極蓋板20側に配置した負極70が収納されたもの
である。
A lithium secondary battery using the electrode material of the present invention as a negative electrode will be described in more detail with reference to the drawings. That is, in the lithium secondary battery using the electrode material of the present invention, as shown in FIG.
The inside of the button-shaped positive electrode case 10 sealed with 0 is partitioned by a separator 30 having fine holes, and the positive electrode 50 in which the positive electrode current collector 40 is arranged on the positive electrode case 10 side is accommodated in the partitioned positive electrode side space. On the other hand, the negative electrode current collector 60
Is disposed on the side of the negative electrode cover plate 20 and the negative electrode 70 is accommodated.

【0020】なお、セパレータ30としては、多孔質で
電解液を通したり含んだりすることのできる、例えばポ
リテトラフルオロエチレン、ポリプロピレンやポリエチ
レンなどの合成樹脂製の不織布、織布および編布などを
使用することができる。また、正極50に用いられる正
極材料としては、リチウム含有五酸化バナジウム、リチ
ウム含有二酸化マンガンなどの焼成体粒子を使用するこ
とができる。なお、符号80は、正極ケース10の内周
面に周設されて負極蓋板20を絶縁支持するポリエチレ
ン製の絶縁パッキンである。
As the separator 30, a nonwoven fabric, a woven fabric, a knitted fabric, or the like made of a synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, which is porous and through which an electrolyte can pass or is used, is used. can do. As the positive electrode material used for the positive electrode 50, fired particles such as lithium-containing vanadium pentoxide and lithium-containing manganese dioxide can be used. Reference numeral 80 denotes a polyethylene insulating packing which is provided around the inner peripheral surface of the positive electrode case 10 and insulates and supports the negative electrode cover plate 20.

【0021】[0021]

【作用】本発明においては、芳香族系高分子化合物を5
00℃〜1,500℃で熱処理することにより、これが
炭化されグラファイト(結晶状)とアモルファスの中間
にある、すなわちグラファイトとアモルファスの両方の
特徴を有する炭素が形成される。さらに、形成された炭
素中には、有機成分、すなわち出発原料中に含まれる炭
素以外の元素(通常の場合には水素)が残存している。
通常、高温で熱処理されるほど、X線回折パターンによ
ると、グラファイト化が高くなり、一定以上にグラファ
イト化が進んだ炭素は、電池としての容量の低下をもた
らす。
According to the present invention, the aromatic polymer compound is
By heat treatment at 00 ° C. to 1,500 ° C., this is carbonized to form carbon intermediate between graphite (crystalline) and amorphous, that is, having both graphite and amorphous characteristics. Furthermore, in the formed carbon, an organic component, that is, an element other than carbon (hydrogen in a normal case) contained in the starting material remains.
Normally, the higher the heat treatment at a higher temperature, the more the X-ray diffraction pattern
As a result, the degree of graphitization increases, and the carbon which has been graphitized more than a certain level causes a reduction in the capacity of the battery.

【0022】しかしながら、本発明の炭素材料からなる
電極材料は、比較的低温で処理されるので、完全なグラ
ファイト構造を持たず、一次元的グラファイト類似構造
を持ち、そのためリチウムイオンの拡散がスムーズに行
われ、高容量、高サイクル安定性を示すと考えられる。
さらに、本発明では、o−位、m−位、あるいは枝分か
れの構造を分子構造中に持つのでポリマーの結晶性が低
下しており、熱処理によって得られる電極材料の結晶性
および層間距離が充放電容量の増大に好適な範囲となっ
ている。
However, since the electrode material made of the carbon material of the present invention is processed at a relatively low temperature, it does not have a complete graphite structure, but has a one-dimensional graphite-like structure, so that lithium ions can diffuse smoothly. It is considered to show high capacity and high cycle stability.
Furthermore, in the present invention, since the molecular structure has an o-position, an m-position, or a branched structure in the molecular structure, the crystallinity of the polymer is reduced, and the crystallinity and interlayer distance of the electrode material obtained by the heat treatment are reduced. The range is suitable for increasing the capacity.

【0023】一方、グラファイト化が進むと、層間への
リチウムのインターカレーションは行われるものの、バ
ルクへのリチウムの拡散速度が制限され、高電流密度
(高パワー)の充放電に対応できなくなるものと考えら
れる。しかしながら、本発明の電極材料は、炭素中に適
度にグラファイトが存在するので、これにより導電性が
上がり、電極としての性能を高める作用があるものと推
察される。
On the other hand, when the graphitization proceeds, lithium intercalation between the layers is performed, but the diffusion rate of lithium into the bulk is limited, and it becomes impossible to cope with high current density (high power) charge / discharge. it is conceivable that. However, in the electrode material of the present invention, since graphite is appropriately present in carbon, it is supposed that the electrode material has an effect of increasing conductivity and enhancing performance as an electrode.

【0024】[0024]

【実施例】以下、実施例を挙げて本発明をさらに具体的
に説明するが、本発明は、これらの実施例に限定される
ものではない。なお、実施例中においての放電容量の評
価は、次のようにして測定したものである。すなわち、
得られた負極を用い、対極をLiとし、エチレンカーボ
ネート/ジメトキシエタン(体積比=1:1)の溶媒
に、LiClO4 を1モル/lの濃度で溶解したものを
電解液とし、電池を組み立て、半電池評価を行った。参
照極としてLiを用い、充放電電流密度1.6mA/c
2 、充電終止電位+10mV対Li/Li+ 、放電終
止電位3V対Li/Li+ の条件で評価した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The evaluation of the discharge capacity in the examples was measured as follows. That is,
Using the obtained negative electrode, Li was used as a counter electrode, and a solution obtained by dissolving LiClO 4 at a concentration of 1 mol / L in a solvent of ethylene carbonate / dimethoxyethane (volume ratio = 1: 1) was used as an electrolytic solution to assemble a battery. And half-cell evaluation. Using Li as a reference electrode, charge / discharge current density 1.6 mA / c
The evaluation was performed under the conditions of m 2 , end-of-charge potential +10 mV vs. Li / Li + , and end-of-discharge potential 3 V vs. Li / Li + .

【0025】実施例1 p−ジブロモベンゼン10.6g(45mmol)と
1,3,5−トリブロモベンゼン0.787g(2.5
mmol)をテトラヒドロフラン中でマグネシウム1.
22g(50mmol)と反応させてグリニャール試薬
を合成した。これに塩化ニッケル−2,2′−ビピリジ
ン錯体65mgを加え4時間リフラックスした。反応混
合物を希塩酸中に投入し攪拌したのち、ろ過した。ろ別
された固形物を蒸留水、エタノール、熱トルエン、エタ
ノールの順に溶剤で洗浄したのち、80℃にて真空乾燥
した。これにより、1,3,5位で結合したベンゼン環
を5.26モル%含んだポリフェニレンが得られた。
EXAMPLE 1 10.6 g (45 mmol) of p-dibromobenzene and 0.787 g (2.5 mmol) of 1,3,5-tribromobenzene
mmol) in tetrahydrofuran.
By reacting with 22 g (50 mmol), a Grignard reagent was synthesized. To this, 65 mg of nickel chloride-2,2'-bipyridine complex was added and refluxed for 4 hours. The reaction mixture was poured into dilute hydrochloric acid, stirred, and then filtered. The filtered solid was washed with a solvent in the order of distilled water, ethanol, hot toluene, and ethanol, and then dried in vacuum at 80 ° C. As a result, polyphenylene containing 5.26 mol% of a benzene ring bonded at the 1, 3, and 5 positions was obtained.

【0026】この枝分かれを含んだポリフェニレンを水
素気流下で1時間かけて300℃まで昇温し、次いで5
0℃/時の昇温速度で700℃まで昇温し、700℃に
達した時点で加熱を中止し、炉冷した。このようにして
得られた炭素材料からなる電極材料のX線回折パターン
を図2に示す。特定な回折パターンを示さず非晶質であ
る。このようにして得られた電極材料にバインダーとし
て20重量%となるようにポリエチレン粉末を混合し、
9.8×108 Pの圧力でプレスし負極とした。作製し
た電極について、充放電を繰り返した。重量当たりの放
電容量を図3に示す。
The temperature of the branched polyphenylene is raised to 300 ° C. over 1 hour under a hydrogen stream,
The temperature was raised to 700 ° C. at a rate of 0 ° C./hour, and when the temperature reached 700 ° C., heating was stopped and the furnace was cooled. FIG. 2 shows an X-ray diffraction pattern of the electrode material made of the carbon material thus obtained. It is amorphous without showing a specific diffraction pattern. Polyethylene powder was mixed with the thus obtained electrode material so as to have a binder content of 20% by weight,
It was pressed at a pressure of 9.8 × 10 8 P to form a negative electrode. Charge and discharge were repeated for the produced electrode. FIG. 3 shows the discharge capacity per weight.

【0027】比較例1 1,3,5−トリブロモベンゼンを用いず、p−ジブロ
モベンゼンを11.8g(50mmol)とした以外は
実施例1と同様にしてポリフェニレンを合成した。この
ようにして得られたポリマーは、完全にp−位結合のみ
からなるポリパラフェニレンであった。このポリパラフ
ェニレンを実施例1と同様に熱処理して、負極を製造し
て半電池評価を行った。結果を図3に示す。
Comparative Example 1 Polyphenylene was synthesized in the same manner as in Example 1 except that 11.8 g (50 mmol) of p-dibromobenzene was used without using 1,3,5-tribromobenzene. The polymer thus obtained was polyparaphenylene consisting entirely of the p-position bond. This polyparaphenylene was heat-treated in the same manner as in Example 1 to produce a negative electrode, which was evaluated for a half cell. The results are shown in FIG.

【0028】実施例2 実施例1の1,3,5−トリブロモベンゼンを1,2,
4−トリブロモベンゼンに代えた以外は、実施例1と同
様に合成、評価した。結果を図3に示す。
Example 2 The 1,3,5-tribromobenzene of Example 1 was replaced with 1,2,2
Synthesis and evaluation were performed in the same manner as in Example 1 except that 4-tribromobenzene was used. The results are shown in FIG.

【0029】実施例3 実施例1の1,3,5−トリブロモベンゼンをo−ジブ
ロモベンゼン1.18g(5mmol)に代えた以外
は、実施例1と同様に合成、評価した。結果を図3に示
す。
Example 3 Synthesis and evaluation were carried out in the same manner as in Example 1 except that 1,3,5-tribromobenzene in Example 1 was replaced with 1.18 g (5 mmol) of o-dibromobenzene. The results are shown in FIG.

【0030】実施例4 実施例1の1,3,5−トリブロモベンゼンをm−ジブ
ロモベンゼン1.18g(5mmol)に代えた以外
は、実施例1と同様に合成、評価した。結果を図3に示
す。
Example 4 Synthesis and evaluation were performed in the same manner as in Example 1, except that 1,3,5-tribromobenzene in Example 1 was replaced with 1.18 g (5 mmol) of m-dibromobenzene. The results are shown in FIG.

【0031】図3から明らかなように、ポリパラフェニ
レンに枝分かれ構造を導入したり(実施例1〜2)、o
−、m−位結合を導入する(実施例3〜4)ことによっ
て、p−位結合のみのもの(比較例1)より、負極とし
ての放電容量が増大する。
As apparent from FIG. 3, a branched structure was introduced into polyparaphenylene (Examples 1 and 2),
By introducing the-and m-position bonds (Examples 3 and 4), the discharge capacity as a negative electrode is increased as compared with the case of only the p-position bond (Comparative Example 1).

【0032】[0032]

【発明の効果】本発明の電極材料を用いることにより、
充放電におけるサイクル安定性に優れ、高電流密度の充
放電に耐え得、しかも充放電容量の向上した二次電池用
電極が得られる。
By using the electrode material of the present invention,
An electrode for a secondary battery having excellent charge / discharge cycle stability, withstanding high current density charge / discharge, and improved charge / discharge capacity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の二次電池用電極材料を用いたリチウム
二次電池の一部断面図を含む正面図である。
FIG. 1 is a front view including a partial cross-sectional view of a lithium secondary battery using a secondary battery electrode material of the present invention.

【図2】実施例1で得られた電極材料のX線回折パター
ンである。
FIG. 2 is an X-ray diffraction pattern of the electrode material obtained in Example 1.

【図3】実施例1〜4および比較例1の評価結果を示す
グラフである。
FIG. 3 is a graph showing evaluation results of Examples 1 to 4 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

30 セパレータ 50 正極 70 負極 30 Separator 50 Positive electrode 70 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沖 尚彦 埼玉県和光市中央一丁目4番1号 株式 会社 本田技術研究所内 (72)発明者 荒木 一浩 埼玉県和光市中央一丁目4番1号 株式 会社 本田技術研究所内 (56)参考文献 特開 昭61−58810(JP,A) 特開 昭63−69155(JP,A) 特開 昭61−277164(JP,A) 特開 昭60−112264(JP,A) 特開 昭60−264052(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 - 4/60 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Naohiko Oki 1-4-1 Chuo, Wako-shi, Saitama Pref. Inside of Honda R & D Co., Ltd. (72) Kazuhiro Araki 1-4-1 Chuo, Wako-shi, Saitama pref. (56) References JP-A-61-58810 (JP, A) JP-A-63-69155 (JP, A) JP-A-61-277164 (JP, A) JP-A-60-112264 ( JP, A) JP-A-60-264052 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/58-4/60 H01M 10 / 40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繰り返し構造単位に、o−位結合、m−
位結合および枝分かれ構造の群から選ばれた少なくとも
一種の構造を含み、o−位結合、m−位結合、あるいは
枝分かれ結合の割合が、1〜20モル%である芳香族系
高分子化合物を、500℃〜1,500℃で熱処理後、
粉砕し、平均粒径5μm以下として得られる二次電池用
電極材料。
1. The repeating structural unit has an o-position bond, an m-
Position coupling and saw including at least one structure selected from the group of branched structure, o- position bond, m- position bond, or
After heat-treating an aromatic polymer compound having a branched bond ratio of 1 to 20 mol% at 500 ° C to 1,500 ° C,
An electrode material for a secondary battery obtained by pulverization to obtain an average particle size of 5 μm or less.
【請求項2】 上記芳香族系高分子化合物の繰り返し構
造単位がフェニレン基である、請求項1記載の二次電池
用電極材料。
2. The electrode material for a secondary battery according to claim 1, wherein the repeating structural unit of the aromatic polymer compound is a phenylene group.
【請求項3】 請求項1または2記載の芳香族系高分子
化合物を、600℃〜1,000℃で熱処理して得られ
る二次電池用電極材料。
3. The aromatic polymer according to claim 1 or 2.
An electrode material for a secondary battery obtained by heat-treating a compound at 600 ° C. to 1,000 ° C.
【請求項4】 熱処理温度到達後に、0〜6時間熱処理
温度で加熱して得られる請求項1〜3いずれか1項記載
の二次電池用電極材料。
4. A heat treatment for 0 to 6 hours after reaching the heat treatment temperature.
The product obtained by heating at a temperature.
Electrode material for secondary batteries.
JP35104792A 1992-12-07 1992-12-07 Electrode materials for secondary batteries Expired - Fee Related JP3241839B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP35104792A JP3241839B2 (en) 1992-12-07 1992-12-07 Electrode materials for secondary batteries
DE69325006T DE69325006T2 (en) 1992-12-07 1993-12-07 Alkaline ion absorbing / desorbing carbonaceous material, electrode material for secondary battery using this material and lithium battery using this electrode material
EP93309822A EP0601832B1 (en) 1992-12-07 1993-12-07 Alkaline ion-absorbing/desorbing carbon material, electrode material for secondary battery using the carbon material and lithium battery using the electrode material
US08/590,874 US5725968A (en) 1992-12-07 1996-01-24 Alkaline ion-absorbing/desorbing carbon material electrode material for secondary battery using the carbon material and lithium secondary battery using the electron material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35104792A JP3241839B2 (en) 1992-12-07 1992-12-07 Electrode materials for secondary batteries

Publications (2)

Publication Number Publication Date
JPH06176760A JPH06176760A (en) 1994-06-24
JP3241839B2 true JP3241839B2 (en) 2001-12-25

Family

ID=18414685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35104792A Expired - Fee Related JP3241839B2 (en) 1992-12-07 1992-12-07 Electrode materials for secondary batteries

Country Status (1)

Country Link
JP (1) JP3241839B2 (en)

Also Published As

Publication number Publication date
JPH06176760A (en) 1994-06-24

Similar Documents

Publication Publication Date Title
KR100776523B1 (en) Non-aqueous Electrolyte Secondary Battery
KR101451801B1 (en) Anode active material, method of preparing the same, anode and lithium battery containing the material
US5591545A (en) Carbon material and method for producing same
US5093216A (en) Carbonaceous material and a non aqueous electrolyte cell using the same
KR100777932B1 (en) Method for the preparation of cathode active material and method for the preparation of non-aqueous electrolyte cell
EP0573266B1 (en) Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
US5725968A (en) Alkaline ion-absorbing/desorbing carbon material electrode material for secondary battery using the carbon material and lithium secondary battery using the electron material
KR20190093177A (en) Anode active material, anode and lithium secondary battery comprising the same
JP5164477B2 (en) Nonaqueous electrolyte secondary battery
JPH06325765A (en) Nonaqueous electrolytic secondary battery and its manufacture
JP3136594B2 (en) Non-aqueous electrolyte secondary battery
JP4798741B2 (en) Non-aqueous secondary battery
KR101037766B1 (en) Manufacturing Method of Secondary Battery Using Graphene
KR101908101B1 (en) Graphene-vanadium oxide nanowire, method for preparation thereof, positive active material comprising the same and lithium battery comprising the positive active material
JP2500677B2 (en) Improved non-aqueous solvent lithium secondary battery
JP3241839B2 (en) Electrode materials for secondary batteries
JP4717276B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP3322962B2 (en) Alkali ion adsorption / desorption material
JP3429561B2 (en) Electrode materials for lithium secondary batteries
JP3363959B2 (en) Alkali metal storage carbon-based material
JPH06163033A (en) Manufacture of secondary battery electrode material
JPH09283146A (en) Carbon negative electrode material for lithium ion secondary battery
KR102746297B1 (en) Manufacturing method of cathode additives for lithium secondary battery
JP3024157B2 (en) Non-aqueous electrolyte secondary battery
JPH09219195A (en) Electrode for lithium secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees