JP3240945B2 - Control method of hot-dip galvanized coating weight - Google Patents
Control method of hot-dip galvanized coating weightInfo
- Publication number
- JP3240945B2 JP3240945B2 JP35676996A JP35676996A JP3240945B2 JP 3240945 B2 JP3240945 B2 JP 3240945B2 JP 35676996 A JP35676996 A JP 35676996A JP 35676996 A JP35676996 A JP 35676996A JP 3240945 B2 JP3240945 B2 JP 3240945B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- hot
- coating
- bath
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Coating With Molten Metal (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、溶融亜鉛めっき浴
を通って連続的に走行する鋼板にワイピングガスノズル
を噴射し、亜鉛めっき付着量を制御する連続溶融亜鉛め
っきの ガスワイピングによるめっき付着量制御方法に
関し、特に薄目付材における付着量の精度向上を図った
溶融亜鉛めっき付着量の制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous hot-dip galvanizing method for controlling the amount of galvanized coating by spraying a wiping gas nozzle onto a steel sheet running continuously through a hot-dip galvanizing bath. More particularly, the present invention relates to a method for controlling the amount of hot-dip galvanized coating with the aim of improving the accuracy of the amount of coating on a thinned material.
【0002】[0002]
【従来の技術】従来、連続溶融亜鉛めっきのめっき付着
量制御は 、図5に示すような連続溶融亜鉛めっきライ
ンの付着量制御部において、溶融亜鉛めっき浴2の上方
に設置されている一対のワイピングノズル3からガスを
走行中の鋼板1に噴射することにより余剰の溶融亜鉛を
掻き落とすことによって行われている。2. Description of the Related Art Conventionally, the coating weight control of continuous hot-dip galvanizing is performed by a pair of hot-dip galvanizing baths 2 installed above a hot-dip galvanizing bath 2 in a continuous hot-dip galvanizing line coating weight control section as shown in FIG. This is performed by scraping excess molten zinc by injecting gas from the wiping nozzle 3 to the running steel sheet 1.
【0003】連続溶融亜鉛めっきの付着量制御方法とし
ては、めっき付着量Wは、鋼板ラインV、ワイピングノ
ズルの噴射ガス圧力P、ノズル―鋼板間距離B等を因子
とした付着量予測式に基づき、めっき付着量を制御する
方法が提案されている。付着量予測式は 多数発表され
ており、例えば特開平6‐116696号公報には以下
の(1)式に示すような予測式が示されている。 W=h0Ph1 Vh2Bh3 ……(1) ここで、h0、h1、h2、h3の係数の値は、実績め
っき付着量から重回帰計算によって決定されるものであ
る。[0003] As a method for controlling the coating weight of continuous hot-dip galvanizing, the coating weight W is determined based on a coating weight prediction formula using the steel sheet line V, the injection gas pressure P of the wiping nozzle, the nozzle-steel distance B, and the like as factors. A method for controlling the amount of plating has been proposed. A large number of adhesion amount prediction formulas have been published. For example, Japanese Patent Application Laid-Open No. 6-116696 discloses a prediction formula as shown in the following formula (1). Here W = h 0 P h1 V h2 B h3 ...... (1), h0, h1, h2, the value of the coefficient of h3 is to be determined by multiple regression calculation from the actual coating weight.
【0004】また、めっき付着量に鋼板の板厚tの影響
も考慮し、上記3つの制御因子、ライン速度、ノズル
圧、ノズル―鋼板間距離に板厚tを組み合わせた以下の
(2)式に基づく制御方法が、例えば特開平5‐171
395号公報に開示されている。 W=a0Pa1Va2Ba3ta4exp(a5/V) ……(2)Also, taking into account the effect of the sheet thickness t of the steel sheet on the amount of plating, the following equation (2) combining the above three control factors, line speed, nozzle pressure, and nozzle-steel distance with the sheet thickness t is used. A control method based on, for example, JP-A-5-171
No. 395, disclosed. W = a 0 Pa 1 Va 2 Ba 3 t a4 exp (a5 / V) (2)
【0005】さらに、特開平6‐296923号公報に
は、流体力学理論に基づき、ワイピングガス噴流がノズ
ル−鋼板間距離によって、展開領域と完全発達領域とに
分けられ、これらの領域でノズル−鋼板間距離がめっき
付着量に及ぼす影響が異なることを考慮し、展開領域と
完全発達領域とで以下の(3)および(4)式に示すよ
うにそれぞれ異なる付着量予測式を用いることが開示さ
れている。 B/D≦C(展開領域の時) W=a1ρ{(κ-1)/(2ηκP0)}1/2B1/2 ×[μV/(P/P0)(κ-1)/κ-1}]1/2 ……(3) B/D>C(完全発達領域の時) W=a2ρ{(κ-1)/(2ηκP0)}1/2DB1/2 ×[μV/(P/P0)(κ-1)/κ-1}]1/2 ……(4) (ρ:溶融亜鉛密度、μ:溶融亜鉛粘度、P0:大気
圧、κ:ガスの比熱比、D:ワイピングノズル−鋼板間
距離、η:ワイピングノズル効率) 一般に、上記各公報に記載されているようなめっき付着
量予測式を用い、フィードフォワード制御、フィードバ
ック制御を行い、めっき付着量を予測している。したが
って、めっき付着量を精度良く制御するためには、めっ
き付着量予測式の精度が重要となる。Further, Japanese Patent Application Laid-Open No. Hei 6-296923 discloses that a wiping gas jet is divided into a developed region and a fully developed region according to a distance between a nozzle and a steel plate based on a fluid dynamics theory. Taking into consideration that the influence of the distance on the coating weight is different, it is disclosed that different coating weight prediction formulas are used for the developed region and the fully developed region as shown in the following formulas (3) and (4). ing. B / D ≦ C (in the development area) W = a1ρ {(κ-1) / (2ηκP 0 )} 1/2 B 1/2 × [μV / (P / P 0 ) (κ-1) / κ −1}] 1/2 (3) B / D> C (in the fully developed region) W = a2ρ {(κ-1) / (2ηκP 0 )} 1/2 DB 1/2 × [μV / (P / P 0 ) (κ-1) / κ-1}] 1/2 (4) (ρ: molten zinc density, μ: molten zinc viscosity, P0: atmospheric pressure, κ: gas specific heat ratio, D: distance between wiping nozzle and steel sheet, η: wiping nozzle efficiency) In general, feedforward control and feedback control are performed using a plating weight prediction formula as described in each of the above publications to predict the plating weight. ing. Therefore, in order to control the coating weight with high accuracy, the accuracy of the plating weight prediction formula is important.
【0006】[0006]
【発明が解決しようとする課題】上述したように、ワイ
ピング条件(ワイピングノズル−鋼板間距離、ワイピン
グガス圧力、ワイピングガスノズルギャップ等)および
ライン速度とめっき付着量の予測式が種々提案されてい
るが、現状では充分な付着量予測が行われていない。例
えば、ワイピング条件およびライン速度が同じであって
も、鋼種やめっき浴中アルミニウム濃度が異なると付着
量は異なってくる。As described above, various formulas for estimating the wiping conditions (distance between wiping nozzle and steel plate, wiping gas pressure, wiping gas nozzle gap, etc.), line speed, and coating weight have been proposed. However, at present, sufficient adhesion amount prediction has not been performed. For example, even if the wiping conditions and the line speed are the same, the amount of adhesion differs if the steel type or the aluminum concentration in the plating bath is different.
【0007】特に薄目付材において精度の良いめっき付
着量制御を行うためには、鋼種やめっき付着量浴中アル
ミニウムの濃度の相違によるめっき付着量の相違を考慮
しためっき付着量予測式を用いる必要がある。本発明は
かかる事情に鑑みてなされたものであって、鋼種やめっ
き付着量、浴中アルミニウムの濃度の相違によるめっき
付着量の相違を考慮しためっき付着量予測式を用いた溶
融亜鉛めっき付着量の制御方法を提供することを目的と
する。[0007] In order to control the coating weight with high accuracy, especially for thin-coated materials, it is necessary to use a plating weight prediction formula that takes into account the difference in the coating weight due to the difference in the steel type and the concentration of aluminum in the coating weight bath. There is. The present invention has been made in view of the above circumstances, and the amount of hot-dip galvanized coating using a coating weight prediction formula in consideration of the difference in the coating weight due to the difference in the steel type, the coating weight, and the concentration of aluminum in the bath. The purpose of the present invention is to provide a control method.
【0008】[0008]
【課題を解決するための手段】本発明は、上記課題を解
決するために、溶融亜鉛めっき浴を通過して連続的に走
行する鋼板にワイピングよりガスを噴射して溶融亜鉛の
めっき付着量を制御するにあたり、めっき浴を通過する
際に形成された初期合金層を考慮した付着量予測式を用
いることを特徴とする溶融亜鉛めっき付着量制御方法を
提供するものである。また、前記初期合金層による付着
量予測因子として、鋼種、めっき浴中のアルミニウム濃
度、鋼板がめっき浴を通過する時間、およびめっき浴温
度を用いることを特徴とする 溶融亜鉛めっき付着量の
制御方法を提供するものである。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to reduce the amount of hot-dip galvanized coating by injecting gas from a wiping nozzle onto a steel sheet that continuously travels through a hot-dip galvanizing bath. An object of the present invention is to provide a hot-dip galvanized coating amount control method, characterized by using a coating amount prediction formula in consideration of an initial alloy layer formed when passing through a plating bath. A method for controlling the amount of hot-dip galvanized coating characterized by using a steel type, an aluminum concentration in a plating bath, a time during which a steel sheet passes through the plating bath, and a plating bath temperature as factors for predicting the amount of coating by the initial alloy layer. Is provided.
【0009】[0009]
【発明の実施の形態】本発明者らは、同一のワイピング
条件およびライン速度であっても、鋼種やめっき浴中の
アルミニウム濃度が異なると付着量が異なってくる原因
について検討を重ねた結果、その原因がめっき浴通過中
に鋼板表面において鉄−亜鉛の反応により初期合金層と
呼ばれる層が形成されることにあることを見出した。し
たがって、本発明では、めっき浴を通過する際に形成さ
れた初期合金層を考慮した付着量予測式を用いるのであ
る。BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have repeatedly studied the cause of the difference in the amount of adhesion when the steel type and the aluminum concentration in the plating bath are different even under the same wiping condition and line speed. It has been found that the cause is that a layer called an initial alloy layer is formed on the surface of the steel sheet by a reaction of iron-zinc while passing through the plating bath. Therefore, in the present invention, the adhesion amount prediction formula that takes into account the initial alloy layer formed when passing through the plating bath is used.
【0010】初期合金層の形成は、特に、鋼種、めっき
浴中のアルミニウム濃度、鋼板がめっき浴を通過する時
間、およびめっき浴温度により影響される。したがっ
て、これらの因子と付着増加量の定量的な関係を把握し
ておけば、初期合金層形成に伴う付着量増加を予測する
ことが可能である。[0010] The formation of the initial alloy layer is affected by, among other things, the type of steel, the aluminum concentration in the plating bath, the time the steel sheet passes through the plating bath, and the plating bath temperature. Therefore, if the quantitative relationship between these factors and the increase in the amount of adhesion is grasped, it is possible to predict the increase in the amount of adhesion due to the formation of the initial alloy layer.
【0011】初期合金層の形成に伴う付着増加量として
は、初期合金層自体の生成量、およびこの層が形成され
ることにより増加する持ち上げ溶融亜鉛を考慮する必要
がある。このように初期合金層形成により持ち上げ溶融
亜鉛が増加するのは、図1に示すように、ストリップ表
面に形成される凹凸の鉄−亜鉛の結晶(ζ相)により、
鋼板表面での摩擦抗力が初期合金層が形成されない滑ら
かな場合に比べて増加するためである。It is necessary to consider the amount of increase in the adhesion due to the formation of the initial alloy layer, the amount of the initial alloy layer itself, and the amount of lifted molten zinc that increases due to the formation of this layer. As shown in FIG. 1, the increase in the amount of molten zinc lifted by the formation of the initial alloy layer is caused by the uneven iron-zinc crystals (ζ phase) formed on the strip surface, as shown in FIG. 1.
This is because the frictional drag on the surface of the steel sheet increases as compared with a case where the initial alloy layer is not formed smoothly.
【0012】[0012]
【実施例】以下、本発明の実施例について説明する。ま
ず、ワイピング条件とライン速度が同一であっても、め
っき付着量が異なる例を示す。表1に示すA鋼とB鋼に
対し、ライン速度80mpm、浴温度460℃、アルミニ
ウム濃度0.12wt%のめっき浴を用い、ワイピング条
件としては、ノズルギャップ0.7mm、ヘッダー圧力
0.8kg/cm2G、ノズル−鋼板間距離4mmで亜鉛めっき
を行った。この時、計測された付着量は片面あたりB鋼
では31g/m2であり、A鋼では26g/m2であっ
た。Embodiments of the present invention will be described below. First, an example will be described in which even if the wiping conditions and the line speed are the same, the plating adhesion amount is different. For steel A and steel B shown in Table 1, a plating bath having a line speed of 80 mpm, a bath temperature of 460 ° C., and an aluminum concentration of 0.12 wt% was used. The wiping conditions were a nozzle gap of 0.7 mm and a header pressure of 0.8 kg /. Galvanization was carried out at a distance of 4 mm between the nozzle and the steel plate at a density of 2 cm. At this time, the measured adhesion amount per side was 31 g / m 2 for Steel B and 26 g / m 2 for Steel A.
【0013】[0013]
【表1】 [Table 1]
【0014】このように鋼種の違いにより、ワイピング
条件およびライン速度が同一であってもめっき付着量は
異なっていた。両者の初期合金層を観察したところ、B
鋼のζ相高さのほうが高かった。したがって、両者の付
着量差は、めっき浴を通過中に形成された初期合金層の
形態の相違によるものということができる。As described above, depending on the type of steel, even when the wiping conditions and the line speed were the same, the amount of plating was different. When the initial alloy layers of both were observed, B
The steel phase height was higher. Therefore, it can be said that the difference in the amount of adhesion between the two is due to the difference in the form of the initial alloy layer formed while passing through the plating bath.
【0015】上記例で示したワイピング条件およびライ
ン速度の場合に、噴流理論に基づいて予測した付着量
は、約23g/m2であった。したがって、この理論予
測値と計測値との差が初期合金層の形成による付着増加
量であり、この付着増加量を取り込んだ付着量予測式を
用いなければ精度の高い付着量制御を行うことができな
いことは明らかである。In the case of the wiping conditions and the line speed shown in the above example, the adhesion amount predicted based on the jet theory was about 23 g / m 2 . Therefore, the difference between the theoretical predicted value and the measured value is the amount of adhesion increase due to the formation of the initial alloy layer, and it is possible to perform highly accurate adhesion amount control without using the adhesion amount prediction formula incorporating the adhesion increase amount. Obviously you can't.
【0016】また、浴温度を500℃に変更して上記め
っきを実施したところ、浴温度460℃の場合ほど付着
量および初期合金層高さに差は認められず、初期合金層
の形成状態は浴温度にも影響されることが確認された。When the plating was carried out with the bath temperature changed to 500 ° C., no difference was observed in the adhesion amount and the initial alloy layer height as in the case of the bath temperature of 460 ° C. It was confirmed that the temperature was also affected by the bath temperature.
【0017】さらに、アルミニウム濃度を0.14wt%
にした場合には、付着量がアルミ濃度0.12wt%の場
合より約5g/m2少なくなった。これは、アルミニウ
ム濃度を高めることにより鉄−亜鉛の合金化反応が抑制
されたためであるといえる。Further, when the aluminum concentration is 0.14 wt%
In this case, the adhesion amount was reduced by about 5 g / m 2 compared to the case where the aluminum concentration was 0.12 wt%. This can be said to be because the alloying reaction of iron-zinc was suppressed by increasing the aluminum concentration.
【0018】付着量の増加量(初期合金層が形成されな
い場合の付着量との差)と初期合金層(ζ相)高さとの
関係の一例を図2に示す。この図に示すように、両者は
ほぼ直線関係にあることが理解される。すなわち、ζ相
が高くなると付着量増加量も増えてくる。FIG. 2 shows an example of the relationship between the increase in the amount of adhesion (difference from the amount of adhesion when the initial alloy layer is not formed) and the height of the initial alloy layer (層 phase). As shown in this figure, it is understood that the two have a substantially linear relationship. That is, as the Δ phase increases, the amount of increase in the amount of adhesion also increases.
【0019】また、例えば、図3に示すように、ζ相高
さは、亜鉛めっき皮膜中への鉄拡散量と強い相関があ
る。さらに、鉄拡散量は、鋼種、めっき浴中のアルミニ
ウム濃度、めっき浴通過時間、およびめっき浴温度に依
存する。例えば、浴中アルミニウム濃度が0.12wt%
の場合には、浴滞留時間と鉄拡散量とが、浴温度に応じ
て図4のような関係となる。For example, as shown in FIG. 3, the Δ phase height has a strong correlation with the amount of iron diffusion into the galvanized film. Furthermore, the amount of iron diffusion depends on the type of steel, the aluminum concentration in the plating bath, the plating bath passage time, and the plating bath temperature. For example, if the aluminum concentration in the bath is 0.12 wt%
In this case, the bath residence time and the amount of iron diffusion have a relationship as shown in FIG. 4 according to the bath temperature.
【0020】すなわち、鉄拡散量Feは、Fe=at
0.5で求められる。ここでaは浴温度、アルミニウム濃
度、鋼種で定まる係数、tは浴通過時間である。さら
に、鉄拡散量が求まれば、図3に示したような関係から
ζ相高さhは、h=f(Fe)で求められ、このhより
付着量の増加分ΔCは、図2に示したように、ΔC=b
h+cで求めることができる。ここで、b、cは溶融亜
鉛の動粘性係数、ライン速度に依存する係数である。こ
のように、初期合金層形成による増加付着量と初期合金
層が形成されない場合の付着量を加算することにより高
精度で付着量を予測することができる。That is, the iron diffusion amount Fe is given by Fe = at
It is calculated with 0.5 . Here, a is a coefficient determined by the bath temperature, aluminum concentration, and steel type, and t is the bath passage time. Further, if the iron diffusion amount is obtained, the ζ-phase height h is obtained by h = f (Fe) from the relationship as shown in FIG. 3, and the increase ΔC in the amount of adhesion from this h is shown in FIG. As shown, ΔC = b
h + c. Here, b and c are coefficients depending on the kinematic viscosity coefficient and the line speed of the molten zinc. As described above, by adding the increased adhesion amount due to the formation of the initial alloy layer and the adhesion amount when the initial alloy layer is not formed, the adhesion amount can be predicted with high accuracy.
【0021】なお、本発明において、初期合金層が形成
されない場合の付着量予測式は、特に限定されるもので
はないが、例えば、初期合金層の形成が抑制される高ア
ルミニウム濃度浴(例えば0.20wt%アルミニウム濃
度浴)を用いた操業から得られた付着量の結果をまとめ
ることにより求められる予測式、あるいは、上述した特
開平6−296923号公報に記載されたような噴流理
論に基づいて構築された予測式等を用いることができ
る。In the present invention, the formula for predicting the amount of deposition when the initial alloy layer is not formed is not particularly limited. For example, a high aluminum concentration bath (for example, 0 (20 wt% aluminum concentration bath), based on a prediction formula obtained by summarizing the results of the adhesion amount obtained from the operation using the jet flow theory described in JP-A-6-296923. The constructed prediction formula or the like can be used.
【0022】[0022]
【発明の効果】以上説明したように、本発明によれば、
めっき付着量予測式の精度を向上させることができるた
め、めっき付着量の制御、特に薄目付材のめっき付着量
制御を高精度で行うことができる。As described above, according to the present invention,
Since the accuracy of the plating weight prediction equation can be improved, the control of the plating weight, particularly the control of the plating weight of the thinned material, can be performed with high accuracy.
【図1】初期合金層(ζ相)のイメージを示す図。FIG. 1 is a view showing an image of an initial alloy layer (ζ phase).
【図2】亜鉛めっき付着量の増加量と初期合金層(ζ
相)高さとの関係の一例を示す図。FIG. 2 shows the increase in the amount of galvanized coating and the initial alloy layer (ζ
The figure which shows an example of the relationship with phase) height.
【図3】ζ相高さと亜鉛めっき皮膜への鉄拡散量との関
係の一例を示す図。FIG. 3 is a diagram showing an example of the relationship between the phase height and the amount of iron diffusion into a zinc plating film.
【図4】各要因が亜鉛めっき皮膜への鉄拡散量に及ぼす
影響の一例を示す図。FIG. 4 is a diagram showing an example of the effect of each factor on the amount of iron diffusion into a galvanized film.
【図5】連続溶融めっきラインの概要を示す概略構成
図。FIG. 5 is a schematic configuration diagram showing an outline of a continuous hot-dip plating line.
1;鋼板、2;溶融亜鉛めっき浴、3;ワイピングノズ
ル、4;シンクロール1; steel plate; 2; hot-dip galvanizing bath; 3; wiping nozzle; 4; sink roll.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小崎 純一 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 永山 隆治 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 山下 敬士 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平7−41925(JP,A) 特開 平9−157822(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 2/00 - 2/40 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Junichi Ozaki 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Takaharu Nagayama 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Keishi Yamashita 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56) References JP-A-7-41925 (JP, A) JP-A 9-157822 (JP) , A) (58) Field surveyed (Int. Cl. 7 , DB name) C23C 2/00-2/40
Claims (2)
行する鋼板にワイピングよりガスを噴射して溶融亜鉛の
めっき付着量を制御するにあたり、めっき浴を通過する
際に形成された初期合金層を考慮した付着量予測式を用
いることを特徴とする溶融亜鉛めっき付着量制御方法。1. A method for controlling the amount of hot-dip galvanized coating by injecting a gas from a wiping gas into a steel sheet continuously running through a hot-dip galvanizing bath, the initial alloy formed when passing through the hot-dip galvanizing bath. A method for controlling the amount of hot-dip galvanized coating, characterized by using a coating amount predicting formula in consideration of the layer.
して、鋼種、めっき浴中のアルミニウム濃度、鋼板がめ
っき浴を通過する時間、およびめっき浴温度を用いるこ
とを特徴とする 溶融亜鉛めっき付着量の制御方法。2. The amount of hot-dip galvanized coating characterized by using a steel type, an aluminum concentration in a plating bath, a time during which the steel sheet passes through the plating bath, and a plating bath temperature as factors for predicting the amount of coating by the initial alloy layer. Control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35676996A JP3240945B2 (en) | 1996-12-27 | 1996-12-27 | Control method of hot-dip galvanized coating weight |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35676996A JP3240945B2 (en) | 1996-12-27 | 1996-12-27 | Control method of hot-dip galvanized coating weight |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10195622A JPH10195622A (en) | 1998-07-28 |
JP3240945B2 true JP3240945B2 (en) | 2001-12-25 |
Family
ID=18450677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35676996A Expired - Fee Related JP3240945B2 (en) | 1996-12-27 | 1996-12-27 | Control method of hot-dip galvanized coating weight |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3240945B2 (en) |
-
1996
- 1996-12-27 JP JP35676996A patent/JP3240945B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10195622A (en) | 1998-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3240945B2 (en) | Control method of hot-dip galvanized coating weight | |
JP2003253416A (en) | Hot-dip zincing steel sheet | |
JP2792346B2 (en) | Manufacturing method of alloyed hot-dip galvanized steel sheet with excellent clarity after painting | |
JP2709173B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and sliding properties | |
JP4256929B2 (en) | Zinc plating method and system | |
EP0245862B1 (en) | Liquid film coating of iron-based metals | |
US5409553A (en) | Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property | |
JP5596334B2 (en) | Roll for hot metal plating bath | |
JP3278607B2 (en) | Method for producing hot-dip galvanized steel sheet with good surface properties | |
JP3224208B2 (en) | Method for preventing adhesion of bath surface splash in continuous hot metal plating line | |
JPS633949B2 (en) | ||
JP2000064015A (en) | PRODUCTION OF HOT DIP Zn-Al-Mg PLATED STEEL SHEET EXCELLENT IN SURFACE APPEARANCE | |
JPS6134504B2 (en) | ||
JP2709174B2 (en) | Multi-layer alloyed hot-dip galvanized steel sheet with excellent powdering resistance, sliding properties and cratering resistance | |
JPH10226864A (en) | Production of hot dip galvanized steel sheet | |
JPH03211263A (en) | Equipment for producing hot dip galvanized steel sheet | |
JP2709194B2 (en) | Manufacturing method of galvannealed steel sheet with excellent powdering resistance | |
KR950004778B1 (en) | Method for making a galvannealed steel sheet with an excellant anti-powdering | |
JP3275686B2 (en) | Galvannealed steel sheet with excellent press formability | |
JP2776151B2 (en) | Method for producing two-layer alloyed hot-dip galvanized steel sheet | |
JPH0115588B2 (en) | ||
JP3071350B2 (en) | Manufacturing method of galvannealed steel sheet | |
JPH09324251A (en) | Hot dip galvanized steel sheet having excellent appearance after coating | |
KR100762487B1 (en) | Pretreatment Control Method for Optimum Alloying of Alloyed Hot-dip Galvanized Steel Sheets | |
JPH07180016A (en) | Device for controlling Al concentration in bath in continuous hot dip galvanizing line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081019 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091019 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |