JP3240636B2 - Surface emitting semiconductor laser - Google Patents
Surface emitting semiconductor laserInfo
- Publication number
- JP3240636B2 JP3240636B2 JP23340991A JP23340991A JP3240636B2 JP 3240636 B2 JP3240636 B2 JP 3240636B2 JP 23340991 A JP23340991 A JP 23340991A JP 23340991 A JP23340991 A JP 23340991A JP 3240636 B2 JP3240636 B2 JP 3240636B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor laser
- emitting
- light
- contact layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2301/00—Functional characteristics
- H01S2301/16—Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
- H01S2301/166—Single transverse or lateral mode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
- H01S5/18338—Non-circular shape of the structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18361—Structure of the reflectors, e.g. hybrid mirrors
- H01S5/18369—Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18386—Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
- H01S5/18394—Apertures, e.g. defined by the shape of the upper electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2211—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on II-VI materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2222—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
- H01S5/2224—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semi-insulating semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4068—Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers
Landscapes
- Semiconductor Lasers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、基板の垂直方向にレー
ザ光を発振する面発光型半導体レーザに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-emitting type semiconductor laser which oscillates a laser beam in a direction perpendicular to a substrate.
【0002】[0002]
【従来の技術】基板の垂直方向に共振器を持つ面発光レ
ーザは、第50回応用物理学会学術講演会の講演予稿集
第3分冊p.909 29a−ZG−7(1989年9月
27日発行)に開示されている。この従来技術によれ
ば、図11に示すように、先ず、(602)n型GaA
s基板に(603)n型AlGaAs/AlAs多層
膜、(604)n型AlGaAsクラッド層、(60
5)p型GaAs活性層、(606)p型AlGaAs
クラッド層を順次成長させて形成している。その後、円
柱状の領域を残してエッチングし、(607)p型、
(608)n型、(609)p型、(610)p型の順
にAlGaAsを液相成長させて形成し、円柱状領域の
周囲を埋め込む。しかる後、(610)p型AlGaA
sキャップ層の上部に(611)誘電体多層膜を蒸着
し、(612)p型オーミック電極、(601)n型オ
ーミック電極を形成することで、面発光型半導体レーザ
を構成している。2. Description of the Related Art A surface emitting laser having a resonator in a direction perpendicular to a substrate is disclosed in the third edition of p. 909 29a-ZG-7 (issued September 27, 1989). According to this conventional technique, first, as shown in FIG.
(603) n-type AlGaAs / AlAs multilayer film, (604) n-type AlGaAs cladding layer, (60
5) p-type GaAs active layer, (606) p-type AlGaAs
The cladding layer is formed by sequentially growing. Thereafter, etching is performed while leaving a columnar region, and (607) p-type,
(608) n-type, (609) p-type, and (610) p-type are formed by liquid phase growth of AlGaAs, and the periphery of the columnar region is buried. Then, (610) p-type AlGaAs
A surface emitting semiconductor laser is formed by depositing a (611) dielectric multilayer film on the s cap layer and forming a (612) p-type ohmic electrode and a (601) n-type ohmic electrode.
【0003】このように、従来技術では活性層以外の部
分に電流が流れるのを防ぐ手段として、埋込み層に(6
07−608)から成るp−n接合を設けている。As described above, in the prior art, as a means for preventing a current from flowing to a portion other than the active layer, (6)
07-608).
【0004】[0004]
【発明が解決しようとする課題】しかし、このp−n接
合では十分な電流狭窄を得ることは難しく、完全には無
効電流を抑制できない。このため、従来技術では素子の
発熱に起因して、室温での連続発振駆動することが困難
であり、実用性に欠けている。。従って、無効電流の抑
制は、面発光型半導体レーザにおいて重要な課題であ
る。However, it is difficult to obtain a sufficient current confinement with this pn junction, and the reactive current cannot be completely suppressed. For this reason, in the prior art, it is difficult to perform continuous oscillation driving at room temperature due to the heat generation of the element, and is not practical. . Therefore, suppression of the reactive current is an important issue in the surface emitting semiconductor laser.
【0005】また埋込み層を、従来のようにp−n接合
を形成するための多層構造にした場合、埋込み層のp−
n界面の位置は、円柱状に残した各成長層の界面位置を
考慮する必要がある。従って、多層構造の各埋込み成長
層の膜厚制御が難しく、再現性良く面発光型半導体レー
ザを製造することは極めて困難である。When the buried layer has a conventional multilayer structure for forming a pn junction, the buried layer has a p-type structure.
As for the position of the n interface, it is necessary to consider the interface position of each growth layer left in a columnar shape. Therefore, it is difficult to control the thickness of each buried growth layer having a multilayer structure, and it is extremely difficult to manufacture a surface-emitting type semiconductor laser with good reproducibility.
【0006】また、従来技術のように液相成長により円
柱の周囲に埋込み層を形成すると円柱部分が折れてしま
う危険性が高く、歩留まりが悪く、特性の改善が構造上
の原因から制約されてしまう。Further, when a buried layer is formed around a cylinder by liquid phase growth as in the prior art, there is a high risk that the cylinder portion is broken, the yield is poor, and the improvement of characteristics is restricted by structural reasons. I will.
【0007】さらに従来技術では、レーザプリンタなど
のディバイスに応用する場合にも種々の課題を有する。Further, the prior art has various problems when applied to devices such as laser printers.
【0008】レーザプリンタなどでは、光源に使用する
発光源(半導体レーザなど)の発光スポットサイズが数
10μmと大きく、かつ発光強度が強い発光素子を使用
すると、光学系の簡素化や光路長を短くできることなど
設計に自由度が増える。In a laser printer or the like, if a light emitting source (a semiconductor laser or the like) used as a light source has a large light emitting spot size of several tens of μm and a light emitting element having a strong light emitting intensity, the optical system can be simplified and the optical path length can be shortened. Increases the degree of freedom in designing what can be done.
【0009】従来技術を用いた面発光型半導体レーザ1
素子の場合には、光共振器全体を共振器よりも低屈折率
の材料で回りを埋め込んでいるため、光はおもに垂直方
向に導波され、基本発振モードでの発光スポットは水平
方向の共振器形状を変化させても直径2μm程度の点発
光となってしまう。Surface emitting semiconductor laser 1 using the prior art
In the case of the element, the entire optical resonator is buried with a material having a lower refractive index than that of the resonator, so that light is mainly guided in the vertical direction, and the light emission spot in the fundamental oscillation mode has a horizontal resonance. Even if the shape of the container is changed, point emission having a diameter of about 2 μm results.
【0010】そこで、これらの各発光点を2μm程度ま
で接近させ、複数の光源でスポットサイズを大きくしよ
うと試みるが、従来技術では数μm間隔の共振器をLP
E成長で埋め込むことは、再現性、歩留まりなどの点か
ら非常に難しく、作成は困難である。また、数μm程度
まで接近させ共振器を埋め込んだとしても光の横方向の
漏れが少ないため、スポットを1つにすることはできな
い。Therefore, it is attempted to increase the spot size with a plurality of light sources by approaching each of these light emitting points to about 2 μm.
Embedding by E growth is very difficult in terms of reproducibility, yield, etc., and is difficult to create. Further, even if the resonator is buried close to a few μm and the cavity is buried, the number of spots cannot be reduced to one because the leakage of light in the horizontal direction is small.
【0011】また、複数の発光スポットにより1つの光
束をもったビームにし、発光強度を強くするには複数ス
ポットの各々のレーザ光の位相を同期させなければなら
ない。従来技術では複数のレーザ光の位相を同期させる
ためにレーザ光を互いに影響させる距離まで接近させて
作成するのは困難である。Further, in order to form a beam having one light beam by a plurality of light emitting spots and to increase the light emission intensity, it is necessary to synchronize the phases of the laser beams in the plurality of spots. In the prior art, in order to synchronize the phases of a plurality of laser lights, it is difficult to make the laser lights close to a distance at which the laser lights influence each other.
【0012】本発明はこのような課題を解決するもの
で、その目的とするところは、埋込み層の材質を改善す
ることで、完全な電流狭窄が可能な構造を有し、極めて
簡単に製造でき、しかも光出射側電極の開口部の形状,
面積を変えることで発光スポットの大きさを変えること
のできる面発光半導体レーザを提供するところにある。The present invention solves such a problem, and an object of the present invention is to improve the material of the buried layer so as to have a structure capable of complete current confinement, and to manufacture it extremely easily. Moreover, the shape of the opening of the light emitting side electrode,
It is an object of the present invention to provide a surface emitting semiconductor laser in which the size of a light emitting spot can be changed by changing the area.
【0013】本発明の更に他の目的は、複数の発光部か
らの位相同期したレーザ光を一つの光束を持った光と
し、その発光スポットが大きく、レーザ光の放射角が狭
い面発光型半導体レーザを提供するところにある。Still another object of the present invention is to convert a phase-locked laser beam from a plurality of light-emitting portions into a light beam having a single light beam, a large light-emitting spot, and a narrow laser beam emission angle. Where lasers are provided.
【0014】[0014]
【課題を解決するための手段】本発明の第1の面発光型
半導体レーザーは、半導体基板に対して実質的に垂直な
方向に光を出射部から出射する面発光型半導体レーザー
であって、反射率の互いに異なる一対の反射鏡と、前記
一対の反射鏡との間に配置された、クラッド層、活性
層、及びコンタクト層を含む多層の半導体層と、を有す
る光共振器と、を含み、前記多層の半導体層には、前記
クラッド層の少なくとも一部とコンタクト層とを含む柱
状部が形成され、前記柱状部の周囲には、前記多層の半
導体層を構成する材料より高抵抗な材料により構成され
る埋め込み層が形成され、前記一対の反射鏡のうちの一
つの反射鏡が、前記コンタクト層の幾何学的中心と、前
記コンタクト層の表面積の10%以上90%以下の領域
を覆うように、前記コンタクト層上に形成され、前記一
つの反射鏡の周囲には、前記コンタクト層と接続される
ように光出射側の電極が配置されていること、を特徴と
する。本発明の第2の面発光型半導体レーザーは、請求
項1に記載の面発光型半導体レーザーにおいて、前記柱
状部の前記半導体基板と平行な断面の形状が、円または
正多角形のいずれかであること、を特徴とする。本発明
の第3の面発光型半導体レーザーは、請求項1または2
に記載の面発光型半導体レーザーにおいて、 前記多層
の半導体層には、前記クラッド層の少なくとも一部とコ
ンタクト層とを含む複数の柱状部が形成されているこ
と、を特徴とする。本発明の第4の面発光型半導体レー
ザーは、請求項3に記載の面発光型半導体レーザーにお
いて、前記埋込み層はII−VI族化合物半導体エピタキシ
ャル層により構成されていること、を特徴とする。本発
明の第5の面発光型半導体レーザーは、請求項3または
4に記載の面発光型半導体レーザーにおいて、前記コン
タクト層上の前記一つ反射鏡が、前記複数の柱状部で共
通であること、を特徴とする。本発明の第6の面発光型
半導体レーザーは、請求項5に記載の面発光型半導体レ
ーザーにおいて、前記一つの反射鏡の形状が円形または
正多角形のいずれかであること、を特徴とする。本発明
の面発光型半導体レーザーにおいて、前記クラッド層の
少なくとも一部とコンタクト層とを含む柱状部の周囲に
は、前記多層の半導体層を構成する材料より高抵抗な材
料により構成される埋め込み層が形成されているが、例
えば、活性層やクラッド層がGaAsから構成されている場
合は、埋め込み層に用いられる高抵抗の材料としては、
例えば、II−VI族化合物半導体を用いることができる。A first surface-emitting type semiconductor laser of the present invention is a surface-emitting type semiconductor laser which emits light from an emission part in a direction substantially perpendicular to a semiconductor substrate, An optical resonator having a pair of reflectors having different reflectivities, and a multilayer semiconductor layer including a cladding layer, an active layer, and a contact layer, disposed between the pair of reflectors. In the multilayer semiconductor layer, a columnar portion including at least a part of the cladding layer and a contact layer is formed, and around the columnar portion, a material having a higher resistance than a material forming the multilayer semiconductor layer. Is formed, and one of the pair of reflectors covers the geometric center of the contact layer and a region of 10% or more and 90% or less of the surface area of the contact layer. As above Formed on the Ntakuto layer, around said one reflecting mirror, the light emission side electrode is arranged to be connected to the contact layer, characterized by. A second surface-emitting type semiconductor laser according to the present invention is the surface-emitting type semiconductor laser according to claim 1, wherein a cross section of the columnar portion parallel to the semiconductor substrate is any one of a circle and a regular polygon. There is a feature. A third surface emitting semiconductor laser according to the present invention is described in claim 1 or 2.
3. The surface emitting semiconductor laser according to item 1, wherein a plurality of columnar portions including at least a part of the cladding layer and a contact layer are formed in the multilayer semiconductor layer. A fourth surface-emitting type semiconductor laser according to the present invention is the surface-emitting type semiconductor laser according to claim 3, wherein the buried layer is constituted by a II-VI group compound semiconductor epitaxial layer. A fifth surface emitting semiconductor laser according to the present invention is the surface emitting semiconductor laser according to claim 3 or 4, wherein the one reflecting mirror on the contact layer is common to the plurality of columnar portions. , Is characterized. A sixth surface emitting semiconductor laser according to the present invention is the surface emitting semiconductor laser according to claim 5, wherein the shape of the one reflecting mirror is any one of a circle and a regular polygon. . In the surface-emitting type semiconductor laser of the present invention, a buried layer formed of a material having a higher resistance than the material forming the multilayer semiconductor layer is provided around the columnar portion including at least a part of the cladding layer and the contact layer. Is formed, for example, when the active layer and the cladding layer are made of GaAs, as a high-resistance material used for the buried layer,
For example, a II-VI group compound semiconductor can be used.
【0015】II−VI族化合物半導体エピタキシャル層
は、II族元素であるZn,Cd,Hgと、VI族元素であ
るO,S,Se,Teとを、2元素,3元素又は4元素
組み合わせた半導体エピタキシャル層を用いることがで
きる。また、II−VI族化合物半導体エピタキシャル層の
格子定数が、柱状の半導体層の格子定数と一致している
ことが望ましい。なお、共振器を構成する半導体層とし
てはIII −V 族化合物半導体エピタキシャル層が好まし
く、GaAs系、GaAlAs系、GaAsP系、In
GaP系、InGaAsP系、InGaAs系、AlG
aAsSb系等を好適に採用できる。The II-VI compound semiconductor epitaxial layer is formed by combining two, three or four elements of group II elements Zn, Cd and Hg and group VI elements O, S, Se and Te. Semiconductor epitaxial layers can be used. In addition, it is desirable that the lattice constant of the II-VI compound semiconductor epitaxial layer matches the lattice constant of the columnar semiconductor layer. The semiconductor layer constituting the resonator is preferably a group III-V compound semiconductor epitaxial layer, and is preferably made of GaAs, GaAlAs, GaAsP or InP.
GaP system, InGaAsP system, InGaAs system, AlG
An aAsSb type or the like can be suitably used.
【0016】II−VI族化合物半導体エピタキシャル層は
高抵抗であるため、この高抵抗層で形成された埋込み層
への注入電流のもれは生じず、極めて有効な電流狭窄が
達成される。そして、無効電流を低減できるので、しき
い値電流を下げることが可能となる。結果として、発熱
の少ない面発光型半導体レーザを実現でき、常温にて連
続発振が可能となる実用性の高い面発光型半導体レーザ
を提供できる。また、この埋込み層は多層構造でないの
で容易に形成でき、再現性も良好となる。さらに、II−
VI族化合物半導体エピタキシャル層は液相成長以外の方
法例えば気相成長にて形成でき、柱状半導体層を歩留ま
り良く形成できる。しかも、気相成長等を用いれば、埋
込み幅が狭くても確実に埋込み層を形成できるため、複
数本の柱状半導体層を近接配置できる効果がある。Since the II-VI compound semiconductor epitaxial layer has a high resistance, no leakage of the injection current into the buried layer formed by the high resistance layer occurs, and an extremely effective current confinement is achieved. Since the reactive current can be reduced, the threshold current can be reduced. As a result, a surface emitting semiconductor laser that generates less heat can be realized, and a highly practical surface emitting semiconductor laser capable of continuous oscillation at room temperature can be provided. In addition, since the buried layer has no multilayer structure, it can be easily formed, and the reproducibility is good. Further, II-
The group VI compound semiconductor epitaxial layer can be formed by a method other than liquid phase growth, for example, vapor phase growth, and a columnar semiconductor layer can be formed with a high yield. In addition, since the buried layer can be surely formed even if the buried width is small by using vapor phase growth or the like, there is an effect that a plurality of columnar semiconductor layers can be arranged close to each other.
【0017】光出射側の反射鏡を配置するための光出射
側の電極の開口は、最も発光効率の高い領域、すなわ
ち、コンタクト層の幾何学的中心を含む範囲に形成され
る。そして、開口の面積が、コンタクト層の表面積の9
0%より大きいと、コンタクト抵抗が増加して室温連続
発振が困難となる。一方、開口の面積が、コンタクト層
の表面積の10%未満であると、開口面積が狭すぎて必
要な光出力は得られない。従って、開口面積はコンタク
ト層の表面積の10%以上90%以下の範囲の面積とす
べきであり、この範囲で所望の開口形状及び開口面積を
設定することで、柱状半導体層の半導体基板と平行な断
面形状を変えることなく、開口形状,面積に応じて発光
スポットの形状,大きさを変えることができる。The opening of the light emitting side electrode for arranging the light emitting side reflecting mirror is formed in a region having the highest luminous efficiency, that is, a range including the geometric center of the contact layer. The area of the opening is 9% of the surface area of the contact layer.
If it is larger than 0%, contact resistance increases and continuous oscillation at room temperature becomes difficult. On the other hand, if the area of the opening is less than 10% of the surface area of the contact layer, the necessary light output cannot be obtained because the opening area is too small. Therefore, the opening area should be in the range of 10% or more and 90% or less of the surface area of the contact layer. By setting a desired opening shape and opening area in this range, the opening area can be set in parallel with the semiconductor substrate of the columnar semiconductor layer. The shape and size of the light emitting spot can be changed in accordance with the opening shape and area without changing the cross-sectional shape.
【0018】本発明を実施する場合には、下記の態様に
て行うものが好ましい。When carrying out the present invention, it is preferable to carry out the method in the following mode.
【0019】光出射側の電極の開口の輪郭形状として
は、円形であるときれいな円形のスポットビームが得ら
れ、正多角形でも疑似的な円形ビームが得られる。さら
に、柱状の半導体層の半導体基板と平行な断面を、円、
正多角形のいずれかとし、その直径、対角線の長さのい
ずれかが10μm以下であると、NFPのモードは0次
基本モードとなる。As for the contour of the opening of the electrode on the light emitting side, a circular spot beam can be obtained if it is circular, and a pseudo circular beam can be obtained even if it is a regular polygon. Furthermore, the cross section of the columnar semiconductor layer parallel to the semiconductor substrate is represented by a circle,
If any one of a regular polygon and any of its diameter and diagonal length is 10 μm or less, the mode of the NFP becomes the zero-order basic mode.
【0020】コンタクト層の膜厚が、3.0μm以下で
あると、コンタクト層での光吸収を低減できる。When the thickness of the contact layer is 3.0 μm or less, light absorption in the contact layer can be reduced.
【0021】光共振器が1本の柱状の半導体層を有する
場合には、光出射側の電極は1本の柱状半導体層と対向
する位置に一つの開口を有することになる。この場合の
屈折率導波路構造としては、リブ導波路型、埋込み型の
いずれであっても良い。When the optical resonator has one pillar-shaped semiconductor layer, the electrode on the light emission side has one opening at a position facing one pillar-shaped semiconductor layer. In this case, the refractive index waveguide structure may be either a rib waveguide type or a buried type.
【0022】位相同期した面発光型半導体レーザは、光
共振器が、複数本の柱状の半導体層に分離するための分
離溝を有する。この分離溝にII−VI族化合物半導体エピ
タキシャル層が埋め込まれ、各柱状の半導体層にそれぞ
れ発光部が形成される。光共振器を構成する半導体層の
うちの活性層に分離溝が到達しないようにする。こうす
ると、活性層を介して各発光部が影響し合い、各発光部
での光の位相は同期する。この場合、分離溝を、半導体
基板に対して垂直な溝とすると、屈折率段差を利用し
て、分離溝に斜めに入射する光を全反射でき、光の閉じ
込め効果が大きくなる。そして、光出射側の電極を各柱
状半導体層毎に独立して設ければ、各発光部からのレー
ザビームを独立してON,OFF,変調制御できる。The phase-locked surface-emitting type semiconductor laser has a separation groove for separating the optical resonator into a plurality of columnar semiconductor layers. A II-VI compound semiconductor epitaxial layer is buried in the separation groove, and a light emitting portion is formed in each columnar semiconductor layer. The separation groove is prevented from reaching the active layer of the semiconductor layers constituting the optical resonator. In this case, the respective light emitting units influence each other via the active layer, and the phases of light in the respective light emitting units are synchronized. In this case, if the separation groove is a groove perpendicular to the semiconductor substrate, the light obliquely incident on the separation groove can be totally reflected by using the refractive index step, and the light confinement effect is increased. If the light emitting side electrode is provided independently for each columnar semiconductor layer, the ON / OFF and modulation control of the laser beam from each light emitting unit can be performed independently.
【0023】発光スポットを大きくする場合には、分離
溝に、出射するレーザ光の波長に対して透明なII−VI族
化合物半導体エピタキシャル層を埋め込む。さらに、光
出射側の電極は、複数本の前記柱状半導体層の各光出射
側端面及び前記分離溝に埋め込まれたII−VI族化合物半
導体エピタキシャル層と対向する領域に亘って一つの開
口を有するように形成する。こうすると、柱状の各発光
部に挾まれた領域も垂直共振器構造となり、その領域に
もれた光も有効にレーザ発振に寄与して発光スポットが
広がる。さらに、位相同期したレーザ光が重ね合わされ
るため、光出力が増加し、放射角も小さくなる。このよ
うに複数本の柱状半導体層から一つの光束をもつビーム
を発振する場合にも、光出射側電極の開口の形状,面積
を変えることで、所望の発光スポットを得ることができ
る。この場合特に、複数本の柱状半導体層の断面形状,
配置間隔などの変更を要せずに、発光スポットの形状,
大きさを変えられる効果がある。共振器の半導体層とし
て一般に用いられているGaAsレーザの場合、そのレ
ーザ光の波長に対して透明なII−VI族化合物半導体エピ
タキシャル層としては、ZnSe、ZnS、ZnSS
e、ZnCdS、CdSSeのいずれかで構成できる。
また、分離溝の半導体基板と平行な断面の幅を、0.5
μm以上で10μm未満とすると、NFPから測定され
る発振横モードの次数は、0次基本モードとなる。In order to increase the light emission spot, a II-VI compound semiconductor epitaxial layer transparent to the wavelength of the emitted laser light is embedded in the separation groove. Further, the light emitting side electrode has one opening over a region facing each of the light emitting side end faces of the plurality of columnar semiconductor layers and the II-VI compound semiconductor epitaxial layer embedded in the separation groove. It is formed as follows. In this case, the region sandwiched between the columnar light-emitting portions also has a vertical resonator structure, and the light leaking into that region effectively contributes to laser oscillation and the light-emitting spot spreads. Further, since the phase-locked laser beams are superimposed, the light output increases and the radiation angle decreases. Thus, even when a beam having one light beam is oscillated from a plurality of columnar semiconductor layers, a desired light emitting spot can be obtained by changing the shape and area of the opening of the light emitting side electrode. In this case, in particular, the sectional shape of the plurality of columnar semiconductor layers,
The shape of the light-emitting spot,
There is an effect that the size can be changed. In the case of a GaAs laser generally used as a semiconductor layer of a resonator, a group II-VI compound semiconductor epitaxial layer transparent to the wavelength of the laser light is made of ZnSe, ZnS, ZnSS.
e, ZnCdS, or CdSSe.
Further, the width of the cross section of the separation groove parallel to the semiconductor substrate is set to 0.5
If the length is equal to or more than μm and less than 10 μm, the order of the oscillation transverse mode measured from the NFP becomes the zero-order fundamental mode.
【0024】複数の柱状半導体層から構成される光共振
器を半導体基板上に複数形成し、各共振器毎に独立し
て、一つの開口をそれぞれ有する複数の光出射側電極を
形成すれば、発光スポットの大きい複数のビームを独立
してON,OFF,変調制御することができる。If a plurality of optical resonators composed of a plurality of columnar semiconductor layers are formed on a semiconductor substrate, and a plurality of light emitting side electrodes each having one opening are formed independently for each resonator, ON, OFF, and modulation control of a plurality of beams having large emission spots can be independently performed.
【0025】[0025]
【実施例】図1は本発明の実施例における半導体レーザ
(100)の発光部の断面を示す斜視図で、図2は本発
明の実施例における半導体レーザの製造工程を示す断面
図である。FIG. 1 is a perspective view showing a cross section of a light emitting portion of a semiconductor laser (100) according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a manufacturing process of the semiconductor laser according to the embodiment of the present invention.
【0026】(102)n型GaAs基板に、(10
3)n型GaAsバッファ層を形成し、n型Al0.7 G
a0.3 As層とn型Al0.1 Ga0.9 As層からなり波
長870nm付近の光に対し98%以上の反射率を持つ
30ペアの(104)分布反射型多層膜ミラーを形成す
る。さらに、(105)n型Al0.4 Ga0.6 Asクラ
ッド層、(106)p型GaAs活性層、(107)p
型Al0.4 Ga0.6 Asクラッド層、(108)p型A
l0.1 Ga0.9 Asコンタクト層を順次MOCVD法で
エピタキシャル成長する(図2(a))。この時例え
ば、成長温度は700℃、成長圧力は150Torr
で、III 族原料にTMGa(トリメチルガリウム)、T
MAl(トリメチルアルミニウム)の有機金属を用い、
V族原料にAsH3 、n型ドーパントにH2 Se、p型
ドーパントにDEZn(ジエチルジンク)を用いた。(102) On an n-type GaAs substrate, (10)
3) An n-type GaAs buffer layer is formed and n-type Al 0.7 G
A 30-pair (104) distributed reflection type multilayer mirror having an a 0.3 As layer and an n-type Al 0.1 Ga 0.9 As layer and having a reflectance of 98% or more with respect to light near a wavelength of 870 nm is formed. Further, (105) n-type Al 0.4 Ga 0.6 As clad layer, (106) p-type GaAs active layer, (107) p-type GaAs active layer
Type Al 0.4 Ga 0.6 As cladding layer, (108) p-type A
A l 0.1 Ga 0.9 As contact layer is sequentially epitaxially grown by MOCVD (FIG. 2A). At this time, for example, the growth temperature is 700 ° C. and the growth pressure is 150 Torr.
In the group III raw materials, TMGa (trimethylgallium), T
Using an organic metal of MAl (trimethylaluminum),
AsH 3 was used as a group V raw material, H 2 Se was used as an n-type dopant, and DEZn (diethyl zinc) was used as a p-type dopant.
【0027】成長後、表面に熱CVD法により(11
2)SiO2 層を形成した後、反応性イオンビームエッ
チング法(以下、RIBE法と記す)により、(11
3)ハードベイクレジストで覆われた円柱状の発光部を
残して、(107)p型Al0.4 Ga0.6 Asクラッド
層の途中までエッチングする(図2(b))。この際、
エッチングガスには塩素とアルゴンの混合ガスを用い、
ガス圧1×10-3Torr、引出し電圧400Vで行っ
た。ここで、(107)p型Al0.4 Ga0.6 Asクラ
ッド層の途中までしかエッチングしないのは、活性層の
水平方向の注入キャリアと光の閉じ込めを、リブ導波路
型の屈折率導波構造にするためである。After the growth, the surface was formed by thermal CVD (11
2) After forming the SiO 2 layer, the reactive ion beam etching (hereinafter referred to as RIBE) is used to form (11)
3) Etching is performed to the middle of the (107) p-type Al 0.4 Ga 0.6 As cladding layer, leaving the columnar light emitting portion covered with the hard bake resist (FIG. 2B). On this occasion,
Use a mixed gas of chlorine and argon as the etching gas,
The test was performed at a gas pressure of 1 × 10 −3 Torr and an extraction voltage of 400 V. Here, the reason why the etching is performed only in the middle of the (107) p-type Al 0.4 Ga 0.6 As cladding layer is that the horizontal injection carriers and light confinement of the active layer are made a rib waveguide type refractive index waveguide structure. That's why.
【0028】次に(113)レジストを取り除いた後、
MBE法あるいはMOCVD法などで、GaAsと格子
整合する(109)ZnS0.06Se0.94層を埋込み成長
する(図2(c))。(113) After removing the resist,
A (109) ZnS 0.06 Se 0.94 layer lattice-matched to GaAs is buried and grown by MBE or MOCVD (FIG. 2C).
【0029】さらに、表面に4ペアの(111)SiO
2 /α−Si誘電体多層膜ミラーを電子ビーム蒸着によ
り形成し、ウエットエッチングで、発光部の径よりやや
小さい領域を残して取り去る(図2(d))。この(1
11)光出射側ミラーは、(108)コンタクト層の表
面積の10%以上90%以下の面積で形成できる。波長
870nmでの(111)誘電体多層膜ミラーの反射率
は94%である。Further, four pairs of (111) SiO
A 2 / α-Si dielectric multilayer mirror is formed by electron beam evaporation, and is removed by wet etching except for a region slightly smaller than the diameter of the light emitting portion (FIG. 2D). This (1
11) The light exit side mirror can be formed with an area of 10% to 90% of the surface area of the (108) contact layer. The reflectance of the (111) dielectric multilayer mirror at a wavelength of 870 nm is 94%.
【0030】しかる後、(111)誘電体多層膜ミラー
の輪郭に沿って(115)開口を形成するようにして、
(111)ミラー以外の表面に(110)p型オーミッ
ク電極を蒸着する。さらに基板側に(101)n型オー
ミック電極を蒸着し、N2 雰囲気中で420℃でアロイ
ングし、(100)面発光半導体レーザを完成する(図
2(e))。Thereafter, an opening (115) is formed along the contour of the (111) dielectric multilayer mirror,
A (110) p-type ohmic electrode is deposited on the surface other than the (111) mirror. Further, a (101) n-type ohmic electrode is deposited on the substrate side and alloyed at 420 ° C. in an N 2 atmosphere to complete a (100) surface emitting semiconductor laser (FIG. 2E).
【0031】このように作成した本実施例の面発光半導
体レーザは、埋込みに用いたZnS0.06Se0.94層が1
GΩ以上の抵抗を有し、埋込み層への注入電流のもれが
起こらないため、極めて有効な電流狭窄が達成される。
また埋込み層は多層構造にする必要がないため容易に成
長でき、バッチ間の再現性も高い。さらにGaAsに比
べ屈折率が十分小さいZnS0.06Se0.94層を用いたリ
ブ導波路構造により、より効果的な光の閉じ込めが実現
される。The surface emitting semiconductor laser of the present embodiment fabricated as described above has one ZnS 0.06 Se 0.94 layer used for embedding.
Since it has a resistance of GΩ or more and does not cause leakage of the injection current into the buried layer, extremely effective current confinement is achieved.
The buried layer does not need to have a multilayer structure, so that it can be easily grown and has high reproducibility between batches. Furthermore, a more effective light confinement is realized by the rib waveguide structure using the ZnS 0.06 Se 0.94 layer having a sufficiently smaller refractive index than GaAs.
【0032】図3は本発明の実施例の面発光半導体レー
ザの駆動電流と発振光出力の関係を示す図である。室温
において連続発振が達成され、しきい値1mAと極めて
低い値を得た。また外部微分量子効率も高く、無効電流
の抑制がレーザの特性向上に貢献している。FIG. 3 is a diagram showing the relationship between the driving current of the surface emitting semiconductor laser according to the embodiment of the present invention and the oscillation light output. Continuous oscillation was achieved at room temperature, and an extremely low threshold value of 1 mA was obtained. In addition, the external differential quantum efficiency is high, and the suppression of the reactive current contributes to the improvement of the characteristics of the laser.
【0033】次に、発振されるレーザビームの形状につ
いて考察すると、本実施例では(110)p型オーミッ
ク電極の(115)開口の形状、すなわちこの(11
5)開口に形成される(111)誘電体多層膜ミラーの
形状によりビーム形状およびその大きさが定められ、発
光部の断面形状には依存しない。図4(a),(b)に
示すように円形の(115)開口であると、きれいな円
形ビームが得られ、そのビーム径も図4(a)の方が図
4(b)より大きくなる。すなわち、(115)開口の
形状,面積を変化させれば、所望の形状及びビーム径の
ビームが得られる。なお、図4(c),(d)のように
(115)を正多角形としても、疑似的な円形ビームが
得られる。Next, considering the shape of the laser beam to be oscillated, in this embodiment, the shape of the (115) opening of the (110) p-type ohmic electrode, that is, the shape of (11)
5) The beam shape and its size are determined by the shape of the (111) dielectric multilayer mirror formed in the aperture, and do not depend on the cross-sectional shape of the light emitting section. As shown in FIGS. 4 (a) and 4 (b), a circular (115) aperture provides a clear circular beam, and the beam diameter of FIG. 4 (a) is larger than that of FIG. 4 (b). . That is, by changing the shape and area of the opening (115), a beam having a desired shape and beam diameter can be obtained. Note that a pseudo circular beam can be obtained even if (115) is a regular polygon as shown in FIGS.
【0034】次に、実施例の面発光半導体レーザの柱状
部分の断面形状について考察する。Next, the sectional shape of the columnar portion of the surface emitting semiconductor laser of the embodiment will be considered.
【0035】[0035]
【表1】 表1に本発明の実施例の面発光半導体レーザの円柱部分
の断面の直径の長さに対する近視野像の関係を示す。1
0μm以下で基本モードで発振するが、それ以上では、
1次以上のモードで発振した。なお、柱状部分の断面を
正多角形とした場合は、その対角線長さを表1の直径と
対応させれば、同じ結果が得られる。[Table 1] Table 1 shows the relationship of the near-field image to the length of the diameter of the cross section of the cylindrical portion of the surface emitting semiconductor laser according to the example of the present invention. 1
Oscillates in the basic mode at 0 μm or less,
Oscillated in the first or higher mode. When the cross section of the columnar portion is a regular polygon, the same result can be obtained by making the diagonal length correspond to the diameter in Table 1.
【0036】本発明の実施例の面発光半導体レーザのコ
ンタクト層の膜厚に関しては、3.0μm以下とするも
のが良い。コンタクト層での光吸収を低減できるからで
ある。より好ましくは0.3μm以下が最適で、素子抵
抗が低く、外部微分量子効率も高い。The thickness of the contact layer of the surface emitting semiconductor laser according to the embodiment of the present invention is preferably 3.0 μm or less. This is because light absorption in the contact layer can be reduced. More preferably, the thickness is 0.3 μm or less, the element resistance is low, and the external differential quantum efficiency is high.
【0037】図5は本発明の別の実施例における半導体
レーザ(200)の発光部の断面を示す斜視図で、図6
は本発明の別の実施例における半導体レーザ(200)
の製造工程を示す断面図である。FIG. 5 is a perspective view showing a cross section of a light emitting portion of a semiconductor laser (200) according to another embodiment of the present invention.
Is a semiconductor laser (200) according to another embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a manufacturing process of the second embodiment.
【0038】(202)n型GaAs基板に、(20
3)n型GaAsバッファ層を形成し、n型AlAs層
とn型Al0.1 Ga0.9 As層からなり波長870nm
付近の光に対し98%以上の反射率を持つ30ペアの
(204)分布反射型多層膜ミラーを形成する。さら
に、(205)n型Al0.4 Ga0.6 Asクラッド層、
(206)p型GaAs活性層、(207)p型Al
0.4 Ga0.6 Asクラッド層、(208)p型Al0.1
Ga0.9 Asコンタクト層を順次MOCVD法でエピタ
キシャル成長させる(図6(a))。この時例えば、成
長温度は700℃、成長圧力は150Torrで、III
族原料にTMGa(トリメチルガリウム),TMAl
(トリメチルアルミニウム)の有機金属を用い、V族原
料にAsH3 、n型ドーパントにH2Se、p型ドーパ
ントにDEZn(ジエチルジンク)を用いた。(202) On an n-type GaAs substrate, (20)
3) An n-type GaAs buffer layer is formed, and is composed of an n-type AlAs layer and an n-type Al 0.1 Ga 0.9 As layer, and has a wavelength of 870 nm.
30 pairs of (204) distributed reflection type multilayer mirrors having a reflectance of 98% or more with respect to nearby light are formed. Further, a (205) n-type Al 0.4 Ga 0.6 As clad layer,
(206) p-type GaAs active layer, (207) p-type Al
0.4 Ga 0.6 As clad layer, (208) p-type Al 0.1
Ga 0.9 As contact layers are sequentially epitaxially grown by MOCVD (FIG. 6A). At this time, for example, the growth temperature is 700 ° C., the growth pressure is 150 Torr, and III
Group material TMGa (trimethylgallium), TMAl
An organic metal (trimethylaluminum) was used, AsH 3 was used as a group V raw material, H 2 Se was used as an n-type dopant, and DEZn (diethyl zinc) was used as a p-type dopant.
【0039】成長後、表面に熱CVD法により(21
2)SiO2 を形成した後、反応性イオンビームエッチ
ング法(以下、RIBE法と記す)により、(213)
ハードベイクレジストで覆われた円柱状の発光部を残し
て(205)p型Al0.4 Ga0.6 Asクラッド層の途
中までエッチングする(図6(b))。この際、エッチ
ングガスには塩素とアルゴンの混合ガスを用い、ガス圧
1×10-3Torr、引出し電圧400Vで行った。After the growth, the surface was formed by thermal CVD (21
2) After forming SiO 2 , reactive ion beam etching (hereinafter referred to as RIBE) is used to form (213)
The (205) p-type Al 0.4 Ga 0.6 As clad layer is etched halfway, leaving a columnar light-emitting portion covered with the hard bake resist (FIG. 6B). At this time, a mixed gas of chlorine and argon was used as an etching gas, and the etching was performed at a gas pressure of 1 × 10 −3 Torr and an extraction voltage of 400V.
【0040】次に(213)レジストを取り除いた後、
MBE法あるいはMOCVD法などで、(209)Zn
S0.06Se0.94層を埋込み成長する(図6(c))。(213) After removing the resist,
(209) Zn by MBE or MOCVD, etc.
An S 0.06 Se 0.94 layer is buried and grown (FIG. 6C).
【0041】さらに、表面に4ペアの(211)SiO
2 /α−Si誘電体多層膜ミラーを電子ビーム蒸着によ
り形成し、ウェットエッチングで、発光部の径よりやや
小さい領域を残して取り去る(図6(d))。この(2
11)光出射側ミラーは、(208)コンタクト層の表
面積の10%以上90%以下の面積で形成できる。波長
870nmでの誘電体多層膜の反射率は94%である。Further, four pairs of (211) SiO 2 are formed on the surface.
A 2 / α-Si dielectric multilayer mirror is formed by electron beam evaporation, and is removed by wet etching except for a region slightly smaller than the diameter of the light emitting portion (FIG. 6D). This (2
11) The light exit side mirror can be formed with an area of 10% or more and 90% or less of the surface area of the (208) contact layer. The reflectance of the dielectric multilayer at a wavelength of 870 nm is 94%.
【0042】しかる後(211)誘電体多層膜ミラーの
輪郭に沿って開口(215)を形成するようにして、
(211)ミラー以外の表面に(210)p型オーミッ
ク電極を蒸着する。さらに基板側に(201)n型オー
ミック電極を蒸着し、N2 雰囲気中で420℃でアロイ
ングし、面発光半導体レーザを完成する(図6
(e))。 このように作成した本実施例の面発光半導
体レーザは、埋込みに用いたZnS0.06Se0.94層が1
GΩ以上の抵抗を有し、埋込み層への注入電流のもれが
起こらないため、極めて有効な電流狭窄が達成される。
また埋込み層は多層構造にする必要がないため容易に成
長でき、バッチ間の再現性も高い。さらにGaAsに比
べ屈折率が十分小さいZnS0.06Se0.94層を用い、活
性層を埋め込んだ埋込み型の屈折率導波路構造により、
より効果的な光の閉じ込めが実現される。ビーム形状に
関しても、上記実施例と同様に(215)開口の形状,
面積に応じて変化させることができる。Thereafter, (211) an opening (215) is formed along the contour of the dielectric multilayer mirror,
(211) A p-type ohmic electrode is deposited on the surface other than the mirror. Further, a (201) n-type ohmic electrode is deposited on the substrate side and alloyed at 420 ° C. in an N 2 atmosphere to complete a surface emitting semiconductor laser (FIG. 6).
(E)). The surface-emitting semiconductor laser of this example thus fabricated has one ZnS 0.06 Se 0.94 layer used for embedding.
Since it has a resistance of GΩ or more and does not cause leakage of the injection current into the buried layer, extremely effective current confinement is achieved.
The buried layer does not need to have a multilayer structure, so that it can be easily grown and has high reproducibility between batches. Furthermore, using a ZnS 0.06 Se 0.94 layer having a refractive index sufficiently smaller than that of GaAs and an embedded refractive index waveguide structure in which an active layer is embedded,
More effective light confinement is realized. As for the beam shape, (215) the shape of the aperture,
It can be changed according to the area.
【0043】また、活性層をその他のIII −V族化合物
半導体を柱状部に用いた場合でも、適当なII−VI族化合
物半導体を埋込み層に選ぶことにより同様の効果が得ら
れる。Even when another III-V compound semiconductor is used for the columnar portion as the active layer, the same effect can be obtained by selecting an appropriate II-VI compound semiconductor for the buried layer.
【0044】図7,図8は本発明の他の実施例を示し、
図7は発光スポットを拡大できる位相同期型半導体レー
ザ(300)の発光部の断面を示す概略図であり、図8
はその製造工程を示す断面図である。FIGS. 7 and 8 show another embodiment of the present invention.
FIG. 7 is a schematic view showing a cross section of a light emitting portion of a phase-locked semiconductor laser (300) capable of expanding a light emitting spot.
FIG. 4 is a cross-sectional view showing the manufacturing process.
【0045】(302)n型GaAs基板に、(30
3)n型GaAsバッファ層を形成し、n型Al0.9 G
a0.1 As層とn型Al0.2 Ga0.8 As層からなり波
長780nmを中心に±30nmの光に対して98%以
上の反射率を持つ25ペアの(304)半導体多層膜ミ
ラーを形成する。さらに、(305)n型Al0.5 Ga
0.5 Asクラッド層、(306)p型Al0.1 3Ga
0.87As活性層、(307)p型Al0.5 Ga0.5 As
クラッド層、(308)p型Al0.15Ga0.85Asコン
タクト層を順次MOCVD法でエピタキシャル成長する
(図8(a))。この時の成長条件は、例えば成長温度
は720℃、成長圧力は150Torrで行い、III 族
原料にTMGa(トリメチルガリウム)、TMAl(ト
リメチルアルミニウム)の有機金属を用い、V族原料に
はAsH3 、n型ドーパントにH2 Se、p型ドーパン
トにDEZn(ジエチルジンク)を用いた。(302) An (30) n-type GaAs substrate is
3) An n-type GaAs buffer layer is formed and n-type Al 0.9 G
25 pairs of (304) semiconductor multilayer mirrors comprising an a 0.1 As layer and an n-type Al 0.2 Ga 0.8 As layer and having a reflectance of 98% or more with respect to light of ± 30 nm centering on a wavelength of 780 nm are formed. Further, (305) n-type Al 0.5 Ga
0.5 As clad layer, (306) p-type Al 0.1 3 Ga
0.87 As active layer, (307) p-type Al 0.5 Ga 0.5 As
A clad layer and a (308) p-type Al 0.15 Ga 0.85 As contact layer are sequentially epitaxially grown by MOCVD (FIG. 8A). The growth conditions at this time are, for example, a growth temperature of 720 ° C. and a growth pressure of 150 Torr, using an organic metal such as TMGa (trimethylgallium) and TMAl (trimethylaluminum) as a group III raw material and using AsH 3 as a group V raw material. H 2 Se was used as the n-type dopant, and DEZn (diethyl zinc) was used as the p-type dopant.
【0046】成長後、表面に常圧熱CVD法により(3
12)SiO2 層を形成し、さらにその上にフォトレジ
ストを塗布し、高温で焼きしめて(313)ハードベー
クレジストを形成する。さらにこのハードベークレジス
ト上にEB蒸着法によりSiO2 層を形成する。After the growth, the surface was subjected to normal pressure thermal CVD (3.
12) Form a SiO 2 layer, apply a photoresist thereon, and bake at high temperature (313) to form a hard bake resist. Further, an SiO 2 layer is formed on the hard bake resist by EB evaporation.
【0047】次に反応性イオンエッチング法(以下、R
IE法と記す)を用いて、基板上に形成した各層をエッ
チングする。初めに(313)ハードベークレジスト上
に形成したSiO2 層上に通常用いられるフォトリソグ
ラフィー工程を施し、必要なレジストパターンを形成
し、このパターンをマスクとしてRIE法によりSiO
2 層をエッチングする。例えば、CF4 ガスを用いて、
ガス圧4.5Pa、入力RFパワー150W、サンプル
ホルダーを20℃にコントロールしてRIEを実施す
る。次にこのSiO2 層をマスクにして、RIE法によ
り(313)ハードベークレジストをエッチングする。
例えば、O2 ガスを用いて、ガス圧4.5Pa、入力パ
ワー150W、サンプルホルダーを20℃にコントロー
ルしてRIEを実施する。この時SiO2 層上に初めに
形成したレジストパターンも同時にエッチングされる。
次にパターン状に残っているSiO2 層とエピタキシャ
ル層上に形成した(312)SiO2 層を同時にエッチ
ングするために再びCF4 ガスを用いてエッチングを行
う。以上のように薄いSiO2 層をマスクにして、ドラ
イエッチングの1方法であるRIE法を(313)ハー
ドベークレジストに用いることにより、必要なパターン
形状を持ちながら、さらに基板に対して垂直な側面を持
った(313)ハードベークレジストが作成できる(図
8(b))。Next, a reactive ion etching method (hereinafter referred to as R
Each layer formed on the substrate is etched using an IE method). First, (313) a commonly used photolithography process is performed on the SiO 2 layer formed on the hard bake resist to form a necessary resist pattern, and this pattern is used as a mask to form a SiO 2 layer by RIE.
Etch the two layers. For example, using CF 4 gas,
RIE is performed by controlling the gas pressure to 4.5 Pa, the input RF power to 150 W, and the sample holder to 20 ° C. Next, using this SiO 2 layer as a mask, the hard bake resist (313) is etched by RIE.
For example, RIE is performed using O 2 gas while controlling the gas pressure to 4.5 Pa, the input power to 150 W, and the sample holder to 20 ° C. At this time, the resist pattern initially formed on the SiO2 layer is simultaneously etched.
Next, in order to simultaneously etch the SiO 2 layer remaining in the pattern and the (312) SiO 2 layer formed on the epitaxial layer, etching is performed again using CF 4 gas. By using the RIE method, which is one method of dry etching, as a hard bake resist using the thin SiO 2 layer as a mask as described above, a side surface perpendicular to the substrate while having a required pattern shape is obtained. (313) A hard bake resist having the following can be prepared (FIG. 8B).
【0048】この垂直な側面を持った(313)ハード
ベークレジストをマスクにして、反応性イオンビームエ
ッチング法(以下、RIBE法と記す)を用いて、柱状
の発光部を残して(307)p型Al0.5 Ga0.5 As
クラッド層の途中までエッチングを行う(図8
(c))。この際、エッチングガスには例えば塩素とア
ルゴンの混合ガスを用い、ガス圧力5×10-4Tor
r、プラズマ引出し電圧400V、エッチング試料上で
のイオン電流密度400μA/cm2 、サンプルホルダ
ーを20℃に保って行った。ここで、(307)p型A
l0.5 Ga0.5 Asクラッド層の途中までしかエッチン
グしないのは、活性層の水平方向の注入キャリアと光の
閉じ込めを、屈折率導波型のリブ導波路構造にして、活
性層内の光の一部を活性層水平方向に伝達できるように
するためである。Using the (313) hard bake resist having the vertical side surface as a mask, a reactive ion beam etching method (hereinafter, referred to as RIBE method) is used to leave a columnar light emitting portion (307) p. Type Al 0.5 Ga 0.5 As
Etching is performed halfway through the cladding layer (FIG. 8)
(C)). At this time, for example, a mixed gas of chlorine and argon is used as the etching gas, and the gas pressure is 5 × 10 −4 Torr.
r, the plasma extraction voltage was 400 V, the ion current density on the etched sample was 400 μA / cm 2 , and the sample holder was kept at 20 ° C. Here, (307) p-type A
The reason for etching only halfway through the l 0.5 Ga 0.5 As cladding layer is that the horizontal injection of carriers and the confinement of light in the active layer are performed by using a refractive index guided rib waveguide structure to reduce the light in the active layer. This is because the portion can be transmitted in the horizontal direction of the active layer.
【0049】また、垂直な側面を持った(313)ハー
ドベークレジストとエッチング試料に対して垂直にイオ
ンをビーム状に照射してエッチングを行うRIBE法を
用いることにより、近接した(320)発光部を基板に
垂直な(314)分離溝で分離できると共に、面発光型
半導体レーザの特性向上に必要な垂直光共振器の作成が
可能となっている。Further, by using the RIBE method of irradiating ions by beam irradiation perpendicularly to the (313) hard bake resist having the vertical side surface and the etching sample, the (320) light emitting portion adjacent to the hard bake resist is etched. Can be separated by a (314) separation groove perpendicular to the substrate, and a vertical optical resonator required for improving the characteristics of the surface emitting semiconductor laser can be formed.
【0050】次に(313)ハードベークレジストを取
り除いた後、MBE法あるいはMOCVD法などで、A
l0.5 Ga0.5 Asに格子整合するII−VI族化合物半導
体エピタキシャル層としての(309)ZnS0.06Se
0.94層を埋込み成長する(図8(d))。この(30
9)層は、(300)面発光型半導体レーザの発振波長
に対して透明である。(313) After the hard bake resist is removed, A is removed by MBE or MOCVD.
(309) ZnS 0.06 Se as a II-VI compound semiconductor epitaxial layer lattice-matched to l 0.5 Ga 0.5 As
A 0.94 layer is buried and grown (FIG. 8D). This (30
9) The layer is transparent to the oscillation wavelength of the (300) surface emitting semiconductor laser.
【0051】さらに、(312)SiO2 層とその上に
できた多結晶状のZnSSeを取り除いた後、表面に4
ペアの(311)SiO2 /a−Si誘電体多層膜反射
鏡を電子ビーム蒸着により形成し、ドライエッチングを
用いて分離した(320)発光部の一部と、(320)
発光部で挟まれた埋込み層を残して取り去る(図8
(e))。この際、複数の(320)発光部の各(30
8)コンタクト層の幾何学的中心を含みかつ、(30
8)コンタクト層の表面積の10%以上90%以下の範
囲で(311)誘電体多層膜反射鏡を形成する。波長7
80nmでの(311)誘電体多層膜反射鏡の反射率
は、95%以上である。ZnSSeで埋め込んだ(31
4)分離溝上にも(311)誘電体多層膜反射鏡を作成
することにより複数の(320)発光部に挟まれた領域
も垂直共振器構造が形成され、(314)分離溝にもれ
た光も有効にレーザ発振に寄与し、また漏れた光を利用
するため、(320)発光部の位相に同期した発光とな
る。Further, after removing the (312) SiO 2 layer and the polycrystalline ZnSSe formed thereon, 4
A pair of (311) SiO 2 / a- Si dielectric multilayer film reflective mirror is formed by electron beam evaporation, and some were separated using dry etching (320) the light emitting portion, (320)
The buried layer sandwiched between the light emitting parts is removed (FIG. 8)
(E)). At this time, each (30) of the plurality of (320) light emitting units
8) include the geometric center of the contact layer and (30)
8) Form a (311) dielectric multilayer mirror in the range of 10% to 90% of the surface area of the contact layer. Wavelength 7
The reflectance of the (311) dielectric multilayer mirror at 80 nm is 95% or more. Embedded with ZnSSe (31
4) By forming a (311) dielectric multilayer film reflecting mirror also on the separation groove, a region sandwiched by a plurality of (320) light-emitting portions also forms a vertical resonator structure, and (314) leaks into the separation groove. The light also effectively contributes to laser oscillation and uses the leaked light, so that light emission is synchronized with the phase of the (320) light emitting unit.
【0052】しかる後に(311)誘電体多層膜反射鏡
の輪郭に沿って(315)開口を形成するようにして、
(311)誘電体多層膜反射鏡以外の表面に(310)
p型オーミック電極を蒸着する。さらに基板側に(30
1)n型オーミック電極を蒸着し、N2 雰囲気中で42
0℃でアロイングを行い、(300)面発光半導体レー
ザを完成する(図8(f))。ここで、出射側の(31
0)n型オーミック電極は、各(320)発光部の各
(308)コンタクト層に導通するように形成される。Thereafter, (311) an opening is formed (315) along the contour of the dielectric multilayer mirror,
(311) On the surface other than the dielectric multilayer mirror (310)
A p-type ohmic electrode is deposited. Further, on the substrate side (30
1) An n-type ohmic electrode is deposited and placed in an N 2 atmosphere at 42
Alloying is performed at 0 ° C. to complete a (300) surface emitting semiconductor laser (FIG. 8F). Here, (31) on the emission side
0) The n-type ohmic electrode is formed so as to be electrically connected to each (308) contact layer of each (320) light emitting unit.
【0053】このように作製した本実施例の面発光型半
導体レーザは、(309)埋込み層にZnSSeエピタ
キシャル層を用いることにより、従来使用していたAl
GaAs層のp−nジャンクションの逆バイアスを使用
する電流ブロック構造よりも高抵抗である1GΩ以上の
抵抗を有し、最適な電流ブロック構造を持つとともに、
埋込み層が発振波長780nmに対して吸収を持たない
透過材料であることから(320)発光部からの漏れ光
を有効に利用できるものとなっている。The surface-emitting type semiconductor laser of this embodiment fabricated as described above uses the ZnSSe epitaxial layer as the buried layer (309) to obtain the conventionally used Al
It has a resistance of 1 GΩ or more, which is higher than a current block structure using a reverse bias of a pn junction of a GaAs layer, and has an optimal current block structure.
Since the buried layer is a transmission material having no absorption at an oscillation wavelength of 780 nm, (320) the light leaked from the light emitting portion can be effectively used.
【0054】図9は、従来の面発光型半導体レーザと本
実施例の面発光型半導体レーザの光が出射される側の形
状とレーザ発振時のNFPの強度分布を示したものであ
る。図9(a)は、図11に示す従来の面発光型半導体
レーザ(600)の共振器(620)をn−P接合の
(607−608)GaAlAsエピタキシャル層で埋
め込むことが可能な距離である5μm程度まで接近させ
た場合を示している。レーザの出射面には、誘電体多層
膜反射鏡とp型オーミック電極があるが、共振器の形状
を比較するために図では削除している。図9(b)は図
9(a)a−b間のNFP強度分布を示している。従来
の面発光型半導体レーザの発光部(620)を複数個、
埋め込み可能な距離まで接近させても発光スポットが複
数個現れるだけで、横方向の光の漏れが無いため、多峰
性のNFPとなり、1つの発光スポットにならない。FIG. 9 shows the shapes of the conventional surface-emitting type semiconductor laser and the surface-emitting type semiconductor laser of the present embodiment on the side from which light is emitted, and the NFP intensity distribution during laser oscillation. FIG. 9 (a) shows the distance at which the cavity (620) of the conventional surface-emitting type semiconductor laser (600) shown in FIG. 11 can be embedded with an n-P junction (607-608) GaAlAs epitaxial layer. This shows a case where the distance is approached to about 5 μm. On the laser emission surface, there are a dielectric multilayer film reflecting mirror and a p-type ohmic electrode, but they are omitted in the figure to compare the shapes of the resonators. FIG. 9B shows an NFP intensity distribution between FIGS. 9A and 9A. A plurality of light emitting portions (620) of a conventional surface emitting semiconductor laser
Even when approaching to a embeddable distance, only a plurality of light-emitting spots appear, and there is no light leakage in the lateral direction. Therefore, the multi-modal NFP is not formed as one light-emitting spot.
【0055】図9(c)は本実施例の面発光型半導体レ
ーザの形状であり、分離溝を(309)ZnS0.06Se
0.94層で埋め込んでおり、気相成長で埋めこむので分離
溝の最小幅は1μmである。図9(d)は図9(c)c
−d間のNFPである。(314)分離溝の上からも光
が出射されるので、発光点が広がることがNFPからわ
かる。さらに近接したレーザ光の位相が同期するので、
光出力が増加し、放射角も1°以下の円形ビームが得ら
れる。FIG. 9C shows the shape of the surface-emitting type semiconductor laser of the present embodiment, in which the separation groove is formed of (309) ZnS 0.06 Se.
The minimum width of the separation groove is 1 μm because the semiconductor device is embedded with a 0.94 layer and is embedded by vapor phase growth. FIG. 9 (d) shows FIG. 9 (c) c
NFP between -d. (314) Since the light is also emitted from above the separation groove, the NFP knows that the light emitting point is widened. Since the phases of the closer laser beams are synchronized,
The light output is increased, and a circular beam having a radiation angle of 1 ° or less is obtained.
【0056】表2に実施例の(300)面発光型半導体
レーザの(314)分離溝の幅とNFPから測定される
発振横モード次数の関係を示す。Table 2 shows the relationship between the width of the (314) separation groove of the (300) surface-emitting type semiconductor laser of the embodiment and the oscillation transverse mode order measured from the NFP.
【0057】[0057]
【表2】 10μmより幅が狭いと位相同期したレーザの発振横モ
ードは基本モードで発振するが、それ以上では1次以上
の高次モードでレーザ発振し、放射角が広がったり、ビ
ーム形状が楕円形になるので、応用上好ましくない。ま
た、0.5μmより狭い分離溝では円形ビームが得られ
にくい傾向がある。[Table 2] If the width is smaller than 10 μm, the oscillation mode of the phase-locked laser oscillates in the fundamental mode, but above that, the laser oscillates in the first-order or higher-order mode, and the radiation angle becomes wider or the beam shape becomes elliptical. Therefore, it is not preferable in application. Also, a separation groove narrower than 0.5 μm tends to make it difficult to obtain a circular beam.
【0058】上述の実施例では、複数の発光部を分離し
て設けた一つの光共振器を有する半導体レーザについて
説明したが、このような光共振器を同一半導体基板上に
複数形成することもできる。そして、各光共振器毎に光
出射側のp型オーミック電極をそれぞれ独立して設けれ
ば、各光共振器からのレーザビームを、それぞれ独立し
てON,OFF,変調可能となる。In the above embodiment, a semiconductor laser having one optical resonator provided with a plurality of light emitting portions separated from each other has been described. However, a plurality of such optical resonators may be formed on the same semiconductor substrate. it can. If the p-type ohmic electrode on the light emitting side is provided independently for each optical resonator, the laser beam from each optical resonator can be independently turned on, off, and modulated.
【0059】なお、上記実施例では、GaAlAs系面
発光型半導体レーザについて説明したが、上述したよう
に、その他のIII −V 族系の面発光型半導体レーザにも
好適に適用でき、特に活性層はGa0.87Al0.13Asだ
けでなく、Alの組成を変えることで発振波長を変更す
ることもできる。In the above embodiment, a GaAlAs-based surface emitting semiconductor laser has been described. However, as described above, the present invention can be suitably applied to other III-V group-based surface emitting semiconductor lasers. The oscillation wavelength can be changed not only by Ga 0.87 Al 0.13 As but also by changing the composition of Al.
【0060】次に、複数の(320)発光部及びその間
の(309)埋込み層分離上に形成される(315)開
口の形状について説明する。図10(a)〜(d)は例
えば4つの(320)発光部及びその間の(309)埋
込み層と対向する位置に形成される(315)開口の形
状の例を示している。同図(a),(b)は円形の(3
15)開口を示し、同図(a)の方が同図(b)により
もビーム径の大きな円形ビームが得られる。同図(c)
は正方形の(315)開口を示し、この場合も疑似的な
円形ビームが得られ、その(315)開口の大きさを変
えれば所望のビーム径のレーザビームを発振できる。正
方形以外の正多角形の(315)開口としても良い。同
図(d)は、円形断面の4つの(320)発光部及びそ
の間の(309)埋込み層上に形成される(315)開
口の例を示したものである。同図(a)〜(d)いずれ
の場合も、(315)開口は、4つの(320)発光部
の幾何学的中心を含む範囲であって、各発光部(32
0)の光出射端面の表面積の10%以上90以下の範囲
で形成している。Next, a description will be given of the shapes of the (315) openings formed on the plurality of (320) light emitting portions and the (309) buried layer separation therebetween. FIGS. 10A to 10D show examples of the shape of an opening (315) formed at a position opposed to, for example, four (320) light-emitting portions and a (309) buried layer therebetween. FIGS. 6A and 6B show circular (3).
15) An aperture is shown, and a circular beam having a larger beam diameter is obtained in FIG. Figure (c)
Indicates a square (315) aperture. In this case, a pseudo circular beam is obtained. By changing the size of the (315) aperture, a laser beam having a desired beam diameter can be oscillated. The opening may be a regular polygonal (315) opening other than a square. FIG. 3D shows an example of four (320) light emitting portions having a circular cross section and (315) openings formed on the (309) buried layer therebetween. In each of FIGS. 7A to 7D, the (315) aperture is a range including the geometric center of the four (320) light emitting units, and each light emitting unit (32)
It is formed in the range of 10% to 90% of the surface area of the light emitting end face of 0).
【0061】なお、(320)発光部の数及び配列は上
記実施例以外のものであっても良く、例えば(320)
発光部を横列及び/又は縦列にて等間隔に配列し、各
(320)発光部及びその間の(309)埋込み層と対
向して(315)開口を形成すれば、ラインビームを得
ることができる。The number and arrangement of the light emitting portions (320) may be other than those in the above embodiment. For example, (320)
If the light-emitting portions are arranged at equal intervals in rows and / or columns, and ( 315 ) openings are formed facing each (320) light-emitting portion and the (309) buried layer therebetween, a line beam can be obtained. .
【0062】なお、図7に示す実施例において、(31
0)p型オーミック電極を各(320)発光部の数だけ
分離して設け、それぞれが(308)コンタクト層に接
続された半導体レーザを製造することもできる。この場
合、それぞれが円形ビームを独立してON,OFF,変
調制御可能な複数の発光部を同一基板上に複数形成した
ものとなり、しかも各ビームの波長は同期している。In the embodiment shown in FIG. 7, (31
0) It is also possible to manufacture a semiconductor laser in which p-type ohmic electrodes are provided separately from each other by the number of (320) light emitting portions and each is connected to the (308) contact layer. In this case, a plurality of light-emitting portions each capable of independently controlling ON, OFF, and modulation of a circular beam are formed on the same substrate, and the wavelengths of the beams are synchronized.
【0063】なお、本発明の面発光型半導体レーザは、
プリンタ、複写機等の印刷装置のみならず、ファクシミ
リ、ディスプレイ等に応用することができる。The surface emitting semiconductor laser of the present invention
The present invention can be applied to not only printing devices such as printers and copiers but also facsimile machines and displays.
【0064】[0064]
【発明の効果】以上説明したように本発明によれば、柱
状半導体層の周囲の埋込み層を、高抵抗のII−VI族化合
物半導体エピタキシャル層とすることで、この埋込み層
への注入電流のもれは生じず、極めて有効な電流狭窄が
達成される。そして、無効電流を低減できるので、しき
い値電流を下げることが可能となる。結果として、発熱
の少ない面発光型半導体レーザを実現でき、常温にて連
続発振が可能となる実用性の高い面発光型半導体レーザ
を提供できる。さらに、光出射側電極の開口面積をコン
タクト層の表面積の10%以上90%以下の範囲の面積
とすることで、コンタクト抵抗を押さえかつ必要な光出
力を確保でき、しかもこの範囲で所望の開口形状及び開
口面積を設定することで、柱状半導体層の半導体基板と
平行な断面形状を変えることなく、開口形状,面積に応
じた所望の発光スポットの形状,大きさを確保できる効
果がある。As described above, according to the present invention, the buried layer around the columnar semiconductor layer is made of a high-resistance II-VI compound semiconductor epitaxial layer, so that the injection current into this buried layer can be reduced. No leakage occurs and a very effective current confinement is achieved. Since the reactive current can be reduced, the threshold current can be reduced. As a result, a surface emitting semiconductor laser that generates less heat can be realized, and a highly practical surface emitting semiconductor laser capable of continuous oscillation at room temperature can be provided. Further, by setting the opening area of the light emitting side electrode to an area in the range of 10% to 90% of the surface area of the contact layer, the contact resistance can be suppressed and the required light output can be ensured. By setting the shape and the opening area, there is an effect that a desired shape and size of a light emitting spot corresponding to the opening shape and the area can be secured without changing the cross-sectional shape of the columnar semiconductor layer parallel to the semiconductor substrate.
【図1】本発明の一実施例における半導体レーザの発光
部の断面を示す斜視図である。FIG. 1 is a perspective view showing a cross section of a light emitting portion of a semiconductor laser according to an embodiment of the present invention.
【図2】(a)〜(e)は図1の半導体レーザの製造工
程を示す断面図である。2 (a) to 2 (e) are cross-sectional views showing steps of manufacturing the semiconductor laser of FIG.
【図3】図1の半導体レーザの駆動電流と発振光出力の
関係を示す図である。FIG. 3 is a diagram showing a relationship between a drive current and an oscillation light output of the semiconductor laser of FIG. 1;
【図4】(a)〜(d)は図1に示す半導体レーザの光
出射側の電極の開口の形状を示す概略説明図である。FIGS. 4A to 4D are schematic explanatory views showing the shape of an opening of an electrode on the light emission side of the semiconductor laser shown in FIG.
【図5】本発明の他の実施例における半導体レーザの発
光部の断面を示す斜視図である。FIG. 5 is a perspective view showing a cross section of a light emitting section of a semiconductor laser according to another embodiment of the present invention.
【図6】(a)〜(e)は図5の半導体レーザの製造工
程を示す断面図である。6 (a) to 6 (e) are cross-sectional views showing steps of manufacturing the semiconductor laser of FIG.
【図7】本発明の実施例における位相同期型の面発光型
半導体レーザの発光部の断面を示す概略図である。FIG. 7 is a schematic diagram showing a cross section of a light emitting portion of a phase-locked surface emitting semiconductor laser according to an example of the present invention.
【図8】(a)〜(f)は図7の半導体レーザの製造工
程を示す断面図である。8 (a) to 8 (f) are cross-sectional views showing steps of manufacturing the semiconductor laser of FIG. 7;
【図9】従来の面発光型半導体レーザと図7半導体レー
ザの形状の違いと発光近視野像の違いを示した図であ
り、同図(a)は従来の面発光型半導体レーザの光が出
射される側の形状を示しており、同図(b)は同図
(a)に示した半導体レーザの発光遠視野像の強度分布
を示す。同図(c)は本実施例に於ける半導体レーザの
光が出射される側の形状の一例を示しており、同図
(d)は同図(c)に示した半導体レーザの発光遠視野
像の強度分布を示すである。9A and 9B are diagrams showing a difference in shape and a difference in light emission near-field pattern between the conventional surface emitting semiconductor laser and the semiconductor laser shown in FIG. 7, and FIG. FIG. 3B shows the intensity distribution of the emission far-field image of the semiconductor laser shown in FIG. FIG. 3C shows an example of the shape of the side from which the light of the semiconductor laser is emitted in the present embodiment, and FIG. 4D shows the far-field of light emission of the semiconductor laser shown in FIG. 6 is a diagram illustrating an intensity distribution of an image.
【図10】(a)〜(d)は、図9の半導体レーザの光
出射側電極の開口の形状を示す概略説明図である。10 (a) to 10 (d) are schematic explanatory views showing the shape of an opening of a light emitting side electrode of the semiconductor laser of FIG. 9;
【図11】従来の面発光型半導体レーザの発光部を示す
斜視図である。FIG. 11 is a perspective view showing a light emitting unit of a conventional surface emitting semiconductor laser.
102,202,302 半導体基板 107,207,307 クラッド層 108,208,308 コンタクト層 109,209,309 II−VI族化合物半導体エピタ
キシャル層 110,210,310 光出射側電極 111,211,311 光出射側反射鏡 115,215,315 電極の開口102, 202, 302 Semiconductor substrate 107, 207, 307 Cladding layer 108, 208, 308 Contact layer 109, 209, 309 II-VI group compound semiconductor epitaxial layer 110, 210, 310 Light emission side electrode 111, 211, 311 Light emission Side reflector 115,215,315 Electrode opening
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−7692(JP,A) 特開 昭64−50431(JP,A) 特開 昭64−66988(JP,A) 特開 平1−289291(JP,A) 特開 平2−54981(JP,A) 特開 平2−198184(JP,A) 特開 平1−264285(JP,A) 特開 昭62−86883(JP,A) Electron.Lett.Vo l.26 No.1(1990)p.18−19 (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-7692 (JP, A) JP-A-64-50431 (JP, A) JP-A-64-66988 (JP, A) JP-A-1- 289291 (JP, A) JP-A-2-54981 (JP, A) JP-A-2-198184 (JP, A) JP-A-1-264285 (JP, A) JP-A-62-86883 (JP, A) Electron. Lett. Vol. 26 No. 1 (1990) p. 18-19 (58) Field surveyed (Int. Cl. 7 , DB name) H01S 5/00-5/50
Claims (6)
光を出射部から出射する面発光型半導体レーザーであっ
て、 反射率の互いに異なる一対の反射鏡と、前記一対の反射
鏡との間に配置された、クラッド層、活性層、及びコン
タクト層を含む多層の半導体層と、を有する光共振器
と、を含み、 前記多層の半導体層には、前記クラッド層の少なくとも
一部とコンタクト層とを含む柱状部が形成され、 前記柱状部の周囲には、前記多層の半導体層を構成する
材料より高抵抗な材料により構成される埋め込み層が形
成され、 前記一対の反射鏡のうちの一つの反射鏡が、前記コンタ
クト層の幾何学的中心と、前記コンタクト層の表面積の
10%以上90%以下の領域を覆うように、前記コンタ
クト層上に形成され、 前記一つの反射鏡の周囲には、前記コンタクト層と接続
されるように光出射側の電極が配置されていること、 を特徴とする面発光型半導体レーザー。1. A surface-emitting type semiconductor laser that emits light from an emission part in a direction substantially perpendicular to a semiconductor substrate, comprising: a pair of reflecting mirrors having different reflectivities; An optical resonator having a multi-layer semiconductor layer including a cladding layer, an active layer, and a contact layer disposed between the cladding layer, an active layer, and a contact layer. A pillar portion including a contact layer is formed, and a buried layer made of a material having a higher resistance than a material forming the multilayer semiconductor layer is formed around the pillar portion. Is formed on the contact layer so as to cover a geometric center of the contact layer and a region of 10% or more and 90% or less of a surface area of the contact layer. Around The light emission side electrode is arranged to be connected to the contact layer, characterized that the surface-emitting type semiconductor laser to.
において、 前記柱状部の前記半導体基板と平行な断面の形状が、円
または正多角形のいずれかであること、 を特徴とする面発光型半導体レーザー。2. The surface emitting semiconductor laser according to claim 1, wherein a cross section of the columnar portion parallel to the semiconductor substrate has a shape of a circle or a regular polygon. Emitting semiconductor laser.
レーザーにおいて、 前記多層の半導体層には、前記クラッド層の少なくとも
一部とコンタクト層とを含む複数の柱状部が形成されて
いること、 を特徴とする面発光型半導体レーザー。3. The surface emitting semiconductor laser according to claim 1, wherein a plurality of columnar portions including at least a part of the cladding layer and a contact layer are formed in the multilayer semiconductor layer. A surface-emitting type semiconductor laser, characterized in that:
において、 前記埋込み層はII−VI族化合物半導体エピタキシャル層
により構成されていること、 を特徴とする面発光型半導体レーザー。4. The surface emitting semiconductor laser according to claim 3, wherein said buried layer is constituted by a II-VI compound semiconductor epitaxial layer.
レーザーにおいて、 前記コンタクト層上の前記一つ反射鏡が、前記複数の柱
状部で共通であること、を特徴とする面発光型半導体レ
ーザー。5. A surface-emitting type semiconductor laser according to claim 3, wherein said one reflecting mirror on said contact layer is common to said plurality of columnar portions. Semiconductor laser.
において、 前記一つの反射鏡の形状が円形または正多角形のいずれ
かであること、 を特徴とする面発光型半導体レーザー。6. The surface emitting semiconductor laser according to claim 5, wherein the shape of the one reflecting mirror is one of a circle and a regular polygon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23340991A JP3240636B2 (en) | 1990-09-12 | 1991-09-12 | Surface emitting semiconductor laser |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-242000 | 1990-09-12 | ||
JP24200090 | 1990-09-12 | ||
JP23340991A JP3240636B2 (en) | 1990-09-12 | 1991-09-12 | Surface emitting semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04363083A JPH04363083A (en) | 1992-12-15 |
JP3240636B2 true JP3240636B2 (en) | 2001-12-17 |
Family
ID=26531030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23340991A Expired - Lifetime JP3240636B2 (en) | 1990-09-12 | 1991-09-12 | Surface emitting semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3240636B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3818388B1 (en) * | 1994-01-20 | 2006-09-06 | セイコーエプソン株式会社 | Surface emitting semiconductor laser device and manufacturing method thereof |
DE69523100T2 (en) * | 1994-01-20 | 2002-06-06 | Seiko Epson Corp., Tokio/Tokyo | SURFACE-EMITTING LASER AND MANUFACTURING METHOD |
JP4581635B2 (en) * | 2004-11-10 | 2010-11-17 | セイコーエプソン株式会社 | Optical element |
-
1991
- 1991-09-12 JP JP23340991A patent/JP3240636B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
Electron.Lett.Vol.26 No.1(1990)p.18−19 |
Also Published As
Publication number | Publication date |
---|---|
JPH04363083A (en) | 1992-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5182757A (en) | Surface emission type semiconductor laser | |
US8331412B2 (en) | Vertical-cavity surface-emitting semiconductor laser diode and method for the manufacture thereof | |
JP3395194B2 (en) | Surface emitting semiconductor laser | |
US5587335A (en) | Method of making surface emission type semiconductor laser | |
US5295148A (en) | Surface emission type semiconductor laser | |
JPH0653619A (en) | Compound semiconductor device and its manufacture | |
US5317584A (en) | Surface emission type semiconductor laser | |
JP3206097B2 (en) | Surface emitting semiconductor laser | |
US5404369A (en) | Surface emission type semiconductor laser | |
JP3448939B2 (en) | Surface emitting semiconductor laser | |
US6208680B1 (en) | Optical devices having ZNS/CA-MG-fluoride multi-layered mirrors | |
JP3206080B2 (en) | Semiconductor laser | |
JP3240636B2 (en) | Surface emitting semiconductor laser | |
US5356832A (en) | Method of making surface emission type semiconductor laser | |
US5436922A (en) | Surface emission type semiconductor laser | |
JPH08181384A (en) | Surface emitting laser and its forming method | |
JP3467593B2 (en) | Surface emitting semiconductor laser | |
JP3293221B2 (en) | Surface emitting semiconductor laser and method of manufacturing the same | |
JP2002204027A (en) | Surface emitting semiconductor laser and method of manufacturing the same | |
JP3245960B2 (en) | Surface emitting semiconductor laser and method of manufacturing the same | |
JP3358197B2 (en) | Semiconductor laser | |
JP2751699B2 (en) | Semiconductor laser | |
JP3468236B2 (en) | Semiconductor laser | |
KR100239767B1 (en) | Method for manufacturing semiconductor laser diode | |
JPH04245494A (en) | Multiwavelength semiconductor laser element and driving method of that element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081019 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091019 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |