JP3237770B2 - Method for producing alumina / aluminum composite material - Google Patents
Method for producing alumina / aluminum composite materialInfo
- Publication number
- JP3237770B2 JP3237770B2 JP01024192A JP1024192A JP3237770B2 JP 3237770 B2 JP3237770 B2 JP 3237770B2 JP 01024192 A JP01024192 A JP 01024192A JP 1024192 A JP1024192 A JP 1024192A JP 3237770 B2 JP3237770 B2 JP 3237770B2
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- alumina
- hardness
- aluminum composite
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims description 38
- 229910052782 aluminium Inorganic materials 0.000 title claims description 37
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 37
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 230000007704 transition Effects 0.000 claims description 17
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 10
- 239000011777 magnesium Substances 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- QUQFTIVBFKLPCL-UHFFFAOYSA-L copper;2-amino-3-[(2-amino-2-carboxylatoethyl)disulfanyl]propanoate Chemical compound [Cu+2].[O-]C(=O)C(N)CSSCC(N)C([O-])=O QUQFTIVBFKLPCL-UHFFFAOYSA-L 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 description 17
- 229910045601 alloy Inorganic materials 0.000 description 15
- 239000000956 alloy Substances 0.000 description 15
- 239000007795 chemical reaction product Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 239000011572 manganese Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000010949 copper Substances 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 5
- 229910000861 Mg alloy Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 241001676573 Minium Species 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、アルミナ/アルミニウ
ム複合材料の製造方法に関する。The present invention relates to a method for producing an alumina / aluminum composite.
【0002】[0002]
【従来の技術】部品の軽量化、強度化の要請に同時に応
えるため、近年金属基複合材料(MMC)やセラミック
ス基複合材料(CMC)の開発が進められている。この
ような複合材料を製造するにあたり、コストパフォーマ
ンスを高めることが重要な課題となっている。これは、
複合材料の製造において、強化材コスト、複合プロセス
コスト、及び機械加工コストのいずれもが非常に高価な
ためである。2. Description of the Related Art Metal-based composite materials (MMC) and ceramic-based composite materials (CMC) have recently been developed in order to simultaneously respond to the demands for weight reduction and strength of components. In manufacturing such a composite material, it is important to improve cost performance. this is,
This is because in the manufacture of composite materials, the cost of the reinforcement, the cost of the composite process, and the cost of machining are all very high.
【0003】このため近年においては、軽金属199
0、Vol 40、No.12、P936〜943、
「最近の反応合成In−situ複合材料の製造技術」
にも記載されているように、素材同士や雰囲気との反応
を積極的に利用したin−situ法を用いて複合材料
を安価に製造しようとする傾向にある。上記in−si
tu法の代表として、ランクサイド・コーポレーション
が開発したDIMOX(Directed Metal
Oxidation)法がある(特開昭62−126
78号公報)。このDIMOX法は、雰囲気ガス−液体
金属間の反応を利用するもので、酸化反応促進材として
のマグネシウムやケイ素等を含有するアルミニウム母合
金を大気中で加熱酸化させることにより、アルミナ/ア
ルミニウム複合材料を製造することができる。このよう
にDIMOX法は、強化粒子や強化繊維を必ずしも添加
する必要はなく、また大気中で酸化させるという簡単な
方法で複合材料を製造することができ、コストパフォー
マンスに優れる。For this reason, in recent years, light metal 199
0, Vol 40, No. 12, P936-943,
"Recently Synthesized In-situ Composite Material Production Technology"
As described in U.S. Pat. No. 6,064,095, there is a tendency to manufacture inexpensively a composite material using an in-situ method that actively utilizes the reaction between materials and the atmosphere. The above in-si
As a representative of the tu method, DIMOX (Directed Metal) developed by Rankside Corporation
Oxidation) method (JP-A-62-126).
No. 78). The DIMOX method utilizes a reaction between an atmosphere gas and a liquid metal, and heats and oxidizes an aluminum mother alloy containing magnesium, silicon, or the like as an oxidation reaction accelerator in the atmosphere to form an alumina / aluminum composite material. Can be manufactured. As described above, the DIMOX method does not necessarily require the addition of reinforcing particles or reinforcing fibers, and can produce a composite material by a simple method of oxidizing in the atmosphere, and is excellent in cost performance.
【0004】[0004]
【発明が解決しようとする課題】ところが、上記DIM
OX法により製造したアルミナ/アルミニウム複合材料
は、強度や耐摩耗性などの機械的特性の点で十分ではな
く、本発明者がビッカース硬度計で硬度を測定した結
果、通常のアルミナセラミックスの硬度の1/10以下
であった。However, the above DIM
The alumina / aluminum composite material produced by the OX method is not sufficient in terms of mechanical properties such as strength and abrasion resistance. It was 1/10 or less.
【0005】本発明は上記実情に鑑みてなされたもので
あり、硬度を向上させたアルミナ/アルミニウム複合材
料をDIMOX法により製造することを目的とする。The present invention has been made in view of the above circumstances, and has as its object to produce an alumina / aluminum composite material having improved hardness by the DIMOX method.
【0006】[0006]
【課題を解決するための手段】本発明のアルミナ/アル
ミニウム複合材料の製造方法は、アルミニウム母材に少
なくとも1重量%以上のマグネシウム及び所定量の少な
くともマンガン、鉄、銅の一種以上からなる遷移元素を
添加したものを、酸化雰囲気で所定温度に加熱して酸化
させることを特徴とする。上記マグネシウムは酸化反応
促進材として添加され、その含有量が1重量%未満では
酸化反応がほとんど進行しない。またマグネシウムの添
加量が20重量%を越えると、生成されるアルミナ/ア
ルミニウム複合材料が極度に脆くなるので、マグネシウ
ムの添加量は20重量%以下とすることが好ましい。な
お、上記マグネシウムに加えて、他の酸化反応促進材と
してのケイ素、亜鉛、ゲルマニウム、スズ、鉛等を添加
することもできる。Method for producing alumina / aluminum composite material of the present invention According to an aspect of the at least 1% by weight or more of magnesium and a predetermined amount of the aluminum base metal small
At least, a material to which a transition element composed of at least one of manganese, iron, and copper is added is heated to a predetermined temperature in an oxidizing atmosphere to be oxidized. The magnesium is added as an oxidation reaction accelerator, and if its content is less than 1% by weight, the oxidation reaction hardly proceeds. If the amount of magnesium exceeds 20% by weight, the resulting alumina / aluminum composite material becomes extremely brittle. Therefore, the amount of magnesium is preferably 20% by weight or less. In addition, in addition to the above magnesium, silicon, zinc, germanium, tin, lead and the like as other oxidation reaction accelerators can be added.
【0007】上記遷移元素は、生成されるアルミナ/ア
ルミニウム複合材料の硬度増大のために添加され、マン
ガン、鉄、銅等の遷移元素群から選ばれた少なくとも1
種とすることができる。遷移元素は、生成物の硬度増大
の効果を達成するために少なくとも0.1重量%以上添
加することが好ましく、より好ましくは1重量%以上添
加することである。また遷移元素の添加量を多くするほ
ど生成物の硬度を増大させることができるが、その添加
量がある値以上になると生成反応を示さなくなり、遷移
元素の添加量の上限は遷移元素の種類に応じて適宜決定
される。The above-mentioned transition element is added for increasing the hardness of the alumina / aluminum composite material to be produced, and at least one selected from the group consisting of transition elements such as manganese, iron and copper.
Can be seed. The transition element is preferably added at least 0.1% by weight or more, more preferably 1% by weight or more, in order to achieve the effect of increasing the hardness of the product. The hardness of the product can be increased by increasing the amount of the transition element.However, when the amount of the transition element exceeds a certain value, no reaction occurs, and the upper limit of the amount of the transition element depends on the type of the transition element. It is determined appropriately depending on the situation.
【0008】なお、アルミニウム母材にマグネシウムや
遷移元素を添加するには、これらの元素をアルミニウム
母材と合金化することにより行うことができるし、また
アルミニウム母材の表面上に上記添加元素の層を外部的
に付与することにより行うこともできる。マグネシウム
及び遷移元素が添加されたアルミニウム母材は、その融
点よりも高く、かつ酸化反応生成物の融点よりも低い温
度に加熱されて、酸化される。この酸化は、気相酸化材
としての酸素を含有する酸化雰囲気の下で行われ、大気
中で行うことが好ましい。In addition, magnesium and transition elements can be added to the aluminum base material by alloying these elements with the aluminum base material, and the addition of the above-mentioned added elements on the surface of the aluminum base material. It can also be carried out by applying the layer externally. The aluminum base material to which magnesium and the transition element are added is oxidized by being heated to a temperature higher than its melting point and lower than the melting point of the oxidation reaction product. This oxidation is performed in an oxidizing atmosphere containing oxygen as a gas phase oxidizing material, and is preferably performed in the air.
【0009】なお、本発明のアルミナ/アルミニウム複
合材料の製造方法では、酸化処理時間や酸化反応促進材
の添加量などの酸化反応条件に応じて、残存アルミニウ
ム(Al)量を調整することができ、最終的な反応生成
物において、アルミナ(Al 2 O3 )と残存アルミニウ
ム(Al)との比率を、Al/(Al2 O3 +Al)=
0/10〜9/10とすることが好ましい。The alumina / aluminum composite of the present invention
In the production method of the composite material, the oxidation treatment time and the oxidation reaction accelerator
Depending on the oxidation reaction conditions such as the amount of
(Al) amount can be adjusted, and the final reaction
Alumina (Al TwoOThree) And residual aluminum
To the ratio of Al / (Al)TwoOThree+ Al) =
It is preferably 0/10 to 9/10.
【0010】また、本発明のアルミナ/アルミニウム複
合材料の製造方法において、マグネシウム及び遷移元素
が添加されたアルミニウム母材に充填材を隣接するとと
もに、両者を酸化反応生成物の成長が充填材に向かうよ
うに配置した状態で酸化反応させることにより、酸化反
応生成物が充填材に向かって成長、侵入するので、アル
ミナ/アルミニウム複合材料のマトリックス中に充填材
が埋め込まれた複合材料を得ることもできる。上記充填
材としては、アルミナ、炭化ケイ素、チタン酸バリウ
ム、又はこれらの混合物等からなる粒子、粉末、繊維、
ウィスカ等を好適に用いることができる。In the method for producing an alumina / aluminum composite material according to the present invention, a filler is adjacent to an aluminum base material to which magnesium and a transition element are added, and the growth of oxidation reaction products is directed toward the filler. The oxidation reaction product grows and penetrates toward the filler by the oxidation reaction in such a state that the filler is laid out, so that a composite material in which the filler is embedded in the matrix of the alumina / aluminum composite material can be obtained. . As the filler, particles composed of alumina, silicon carbide, barium titanate, or a mixture thereof, powder, fiber,
Whiskers and the like can be suitably used.
【0011】[0011]
【作用】本発明のアルミナ/アルミニウム複合材料の製
造方法では、アルミニウム母材に所定量の遷移元素を添
加することにより、アルミナ/アルミニウム複合材料の
硬度を増大させることができる。このように、遷移元素
の添加により複合材料の硬度が増大するのは、酸化反応
中に遷移元素の新たな酸化物や金属間化合物といった他
の化合物が同時に生成するためと推定される。According to the method for producing an alumina / aluminum composite material of the present invention, the hardness of the alumina / aluminum composite material can be increased by adding a predetermined amount of a transition element to the aluminum base material. As described above, the reason why the hardness of the composite material is increased by the addition of the transition element is presumably because another compound such as a new oxide of the transition element or an intermetallic compound is simultaneously generated during the oxidation reaction.
【0012】[0012]
【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例1)高周波溶解により作られた所定の成分組成
を有する溶融物から鋳造によりインゴットを作り、この
インゴットから切り出した母合金試料1を、図1に示す
ように大気雰囲気のるつぼ2内に入れ、1200℃で2
4時間加熱酸化し、反応生成物としてのアルミナ/アル
ミニウム複合材料3を製造した。The present invention will be described below in detail with reference to examples. (Example 1) An ingot was produced by casting from a melt having a predetermined component composition produced by high-frequency melting, and a mother alloy sample 1 cut out of the ingot was placed in a crucible 2 in an atmospheric atmosphere as shown in FIG. 2 at 1200 ° C
The mixture was heated and oxidized for 4 hours to produce an alumina / aluminum composite material 3 as a reaction product.
【0013】得られた各反応生成物を縦方向に切断し、
その断面の硬さをビッカース硬度計で測定した。なお、
試験荷重は10kgである。表1に、Al−5wt%S
i−1wt%Mg合金に3wt%のMn、Fe、Cuを
それぞれ単独で添加した母合金試料の反応前(アルミニ
ウム母合金状態)の硬度、及び反応後(アルミナ/アル
ミニウム複合化状態)の硬度の測定結果を示す。また、
反応生成物についてのポア率、次式に示す重量増加率、
及びAl/(Al2 O3 +Al)の測定結果も表1に併
せて示す。Each of the obtained reaction products is cut in the longitudinal direction,
The hardness of the cross section was measured with a Vickers hardness meter. In addition,
The test load is 10 kg. Table 1 shows that Al-5wt% S
The hardness of the mother alloy sample in which 3 wt% of Mn, Fe, and Cu were independently added to the i-1 wt% Mg alloy before the reaction (aluminum mother alloy state) and the hardness after the reaction (alumina / aluminum composite state). The measurement results are shown. Also,
Pore rate for the reaction product, weight increase rate shown in the following formula,
Table 1 also shows the measurement results of Al / (Al 2 O 3 + Al).
【0014】重量増加率={(反応生成物の重さ)−
(Al母合金の重さ)}/(Al母合金の重さ)Weight increase rate = {(weight of reaction product) −
(Weight of Al mother alloy)} / (weight of Al mother alloy)
【0015】[0015]
【表1】 表1からも明らかなように、Al母合金状態からアルミ
ナ/アルミニウム複合化状態にしたときの硬度向上は、
無添加の場合約2.1倍、Mn添加の場合約9.0倍で
あり、遷移元素が添加されていないものを生成反応させ
るよりもMn、Fe、Cu等の遷移元素を添加したもの
を生成反応させる方が、硬度の増大が認められる。[Table 1] As is clear from Table 1, the improvement in hardness when the Al master alloy state is changed to the alumina / aluminum composite state is as follows.
It is about 2.1 times in the case of no addition, and about 9.0 times in the case of Mn addition. When the formation reaction is performed, an increase in hardness is recognized.
【0016】また、反応前において、Mn添加のAl母
合金の硬度は無添加のAl母合金の硬度の約1.2倍で
あるのに対し、反応後においては、Mn添加のアルミナ
/アルミニウム複合材の硬度は無添加のアルミナ/アル
ミニウム複合材の硬度の約5.1倍である。このことか
ら、遷移元素の添加とDIMOX法との相互作用によ
り、反応生成物の硬度が急激に増大したものと考えられ
る。すなわち、酸化反応中に、遷移元素の新たな酸化物
や金属間化合物などの化合物が同時に生成され、これに
起因して硬度が増大したものと推定される。このこと
は、ポア率及びAl 2 O3 生成率について、Mnを添加
したものの反応生成物と無添加のものの反応生成物とを
比較しても両者にほとんど差はなく、またMnを添加し
たものの反応生成物をX線解析した結果、Al、Al2
O3 以外に他のピークが検出されたことからも理由付け
られる。 (実施例2)Al−5wt%Mg合金に、Mnを0〜5
wt%添加した各母合金試料を1400℃で15時間加
熱酸化して、アルミナ/アルミニウム複合材料を製造し
た。そして、実施例1と同様に切断面の硬度を測定し
た。その結果を表2に示す。Further, before the reaction, the Mn-added Al
The hardness of the alloy is about 1.2 times that of the unadded Al master alloy.
On the other hand, after the reaction, Mn-added alumina
/ Aluminum composite material has no added alumina / Al
It is about 5.1 times the hardness of the minium composite. This thing
Reported that the interaction between the addition of transition elements and the DIMOX method
It is considered that the hardness of the reaction product increased rapidly.
You. That is, during the oxidation reaction, a new oxide of the transition element
And other compounds such as intermetallic compounds are formed simultaneously,
It is presumed that the hardness increased due to this. this thing
Is the pore ratio and Al TwoOThreeMn added for generation rate
The reaction product of
Even when compared, there is almost no difference between them, and Mn is added.
As a result of X-ray analysis of the reaction product, Al, AlTwo
OThreeBesides other peaks were detected
Can be (Example 2) Mn was added to an Al-5 wt% Mg alloy in an amount of 0 to 5%.
Each master alloy sample to which wt% was added was added at 1400 ° C. for 15 hours.
Thermal oxidation to produce alumina / aluminum composite
Was. Then, the hardness of the cut surface was measured in the same manner as in Example 1.
Was. Table 2 shows the results.
【0017】[0017]
【表2】 表2からも明らかなように、Mn添加量が増えるに従っ
て反応生成物の硬度は増大するが、Mn添加量が5wt
%を越えると、生成反応を示さなかった。 (実施例3)Al−10wt%Mg−1wt%Si合金
に、Feを0〜5wt%添加した各母合金試料を100
0℃で48時間加熱酸化して、アルミナ/アルミニウム
複合材料を製造した。そして、実施例1と同様に切断面
の硬度を測定した。その結果を表3に示す。[Table 2] As is clear from Table 2, the hardness of the reaction product increases as the Mn addition amount increases, but the Mn addition amount is 5 wt.
%, No production reaction was shown. (Embodiment 3) 100% of each mother alloy sample obtained by adding 0 to 5% by weight of Fe to an Al-10% by weight Mg-1% by weight Si alloy.
Heating and oxidation at 0 ° C. for 48 hours produced an alumina / aluminum composite material. Then, the hardness of the cut surface was measured in the same manner as in Example 1. Table 3 shows the results.
【0018】[0018]
【表3】 表3からも明らかなように、Fe添加量が増えるに従っ
て反応生成物の硬度は増大するが、Fe添加量が5wt
%を越えると、生成反応を示さなかった。 (実施例4)Al−10wt%Si−3wt%Fe−1
wt%Mg合金に、Mnを0〜2wt%添加した各母合
金試料を1200℃で24時間加熱酸化して、アルミナ
/アルミニウム複合材料を製造した。そして、実施例1
と同様に切断面の硬度を測定した。その結果を表4に示
す。[Table 3] As is clear from Table 3, the hardness of the reaction product increases as the amount of Fe added increases.
%, No production reaction was shown. (Example 4) Al-10 wt% Si-3 wt% Fe-1
Each master alloy sample obtained by adding 0 to 2 wt% of Mn to a wt% Mg alloy was heated and oxidized at 1200 ° C. for 24 hours to produce an alumina / aluminum composite material. And Example 1
The hardness of the cut surface was measured in the same manner as described above. Table 4 shows the results.
【0019】[0019]
【表4】 表4からも明らかなように、Mn添加量が増えるに従っ
て反応生成物の硬度は増大するが、Mn添加量が2wt
%を越えると、生成反応を示さなかった。 (実施例5)図2に示すように、るつぼ2内に各母合金
試料1を入れた後、さらに平均粒径10μmのSiC粉
末4を入れ、1200℃で24時間加熱酸化して、アル
ミナ/アルミニウム複合材料をマトリックスとしたアル
ミナ/アルミニウム/SiC複合材料3’を製造した。
なお、上記母合金試料はAl−5wt%Si−1wt%
Mg合金に、Cuを0〜20wt%添加したものであ
る。そして、実施例1と同様に切断面の硬度を測定し
た。その結果を表5に示す。[Table 4] As is clear from Table 4, the hardness of the reaction product increases as the Mn addition amount increases, but the Mn addition amount is 2 wt.
%, No production reaction was shown. (Example 5) As shown in FIG. 2, after each master alloy sample 1 was put in a crucible 2, SiC powder 4 having an average particle diameter of 10 μm was further put therein, and heated and oxidized at 1200 ° C. for 24 hours to obtain alumina / An alumina / aluminum / SiC composite material 3 'using an aluminum composite material as a matrix was produced.
The above master alloy sample was composed of Al-5 wt% Si-1 wt%
It is obtained by adding 0 to 20 wt% of Cu to an Mg alloy. Then, the hardness of the cut surface was measured in the same manner as in Example 1. Table 5 shows the results.
【0020】[0020]
【表5】 表5からも明らかなように、Cu添加量が増えるに従っ
て反応生成物の硬度は増大するが、Cu添加量が20w
t%を越えると、生成反応を示さなかった。[Table 5] As is clear from Table 5, the hardness of the reaction product increases as the Cu addition amount increases, but the Cu addition amount is 20 watts.
Above t%, no production reaction was shown.
【0021】[0021]
【発明の効果】以上詳述したように本発明の製造方法に
よれば、アルミナ/アルミニウム複合材料の硬度を増大
させることができ、コストパフォーマンスに優れたDI
MOX法を用いて機械的性質に優れたアルミナ/アルミ
ニウム複合材料を得ることができる。As described above in detail, according to the manufacturing method of the present invention, the hardness of the alumina / aluminum composite material can be increased, and DI having excellent cost performance can be obtained.
An alumina / aluminum composite material having excellent mechanical properties can be obtained by using the MOX method.
【図1】本実施例の製造方法を概略的に説明する図であ
る。FIG. 1 is a diagram schematically illustrating a manufacturing method according to an embodiment.
【図2】他の実施例の製造方法を概略的に説明する図で
ある。FIG. 2 is a diagram schematically illustrating a manufacturing method according to another embodiment.
1は母合金試料、3、3’はアルミナ/アルミニウム複
合材料である。1 is a mother alloy sample, and 3 and 3 'are alumina / aluminum composite materials.
Claims (1)
以上のマグネシウム及び所定量の少なくともマンガン、
鉄、銅の一種以上からなる遷移元素を添加したものを、
酸化雰囲気で所定温度に加熱して酸化させることを特徴
とするアルミナ/アルミニウム複合材料の製造方法。At least 1% by weight in an aluminum matrix
The above magnesium and a predetermined amount of at least manganese,
What added a transition element consisting of one or more of iron and copper ,
A method for producing an alumina / aluminum composite material, comprising oxidizing by heating to a predetermined temperature in an oxidizing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01024192A JP3237770B2 (en) | 1992-01-23 | 1992-01-23 | Method for producing alumina / aluminum composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01024192A JP3237770B2 (en) | 1992-01-23 | 1992-01-23 | Method for producing alumina / aluminum composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05195112A JPH05195112A (en) | 1993-08-03 |
JP3237770B2 true JP3237770B2 (en) | 2001-12-10 |
Family
ID=11744813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01024192A Expired - Fee Related JP3237770B2 (en) | 1992-01-23 | 1992-01-23 | Method for producing alumina / aluminum composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3237770B2 (en) |
-
1992
- 1992-01-23 JP JP01024192A patent/JP3237770B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05195112A (en) | 1993-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100447576B1 (en) | Iron Aluminide Useful as Electrical Resistance Heating Element | |
JP3856338B2 (en) | Boron carbide cermet structural material with high bending strength at high temperature | |
IE58607B1 (en) | Method of making self-supporting ceramic materials | |
JP2635804B2 (en) | Gamma-titanium-aluminum alloy modified with carbon, chromium and niobium | |
JP2013011020A (en) | Wear resistant material | |
CA1313749C (en) | Method for producing self-supporting ceramic bodies with graded properties | |
GB2179369A (en) | Sintered aluminium alloy | |
Gui M.-C. et al. | Microstructure and mechanical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process | |
JP4193958B2 (en) | Molten metal member having excellent corrosion resistance against molten metal and method for producing the same | |
US4117565A (en) | Chromium base alloy composite materials reinforced with continuous silicon carbide fibers and a method for producing the same | |
JP3237770B2 (en) | Method for producing alumina / aluminum composite material | |
JPS6379768A (en) | Manufacture of self-supporting ceramic or ceramic composite structure | |
JP2868185B2 (en) | Al lower 3 Ti type low density heat resistant intermetallic alloy | |
EP0171798A1 (en) | High strength material produced by consolidation of rapidly solidified aluminum alloy particulates | |
JP3618106B2 (en) | Composite material and method for producing the same | |
Waku et al. | Future trends and recent developments of fabrication technology for advanced metal matrix composites | |
JPS63114930A (en) | Ti-al powder metallurgical alloy | |
JP2542603B2 (en) | Abrasion resistance Al-Si-Mn sintered alloy | |
US5697421A (en) | Infrared pressureless infiltration of composites | |
JPH02270931A (en) | Ceramic grains reinforced titanium composite material | |
JPS6140740B2 (en) | ||
JP2580689B2 (en) | Ti-Al alloy powder sintered body and method for producing the same | |
JPH03199358A (en) | Manufacture of high toughness ti-al intermetallic compound series ti alloy material | |
JPH0633172A (en) | Ti-al intermetallic compound | |
JP2936296B2 (en) | Corrosion and wear resistant alloy for non-ferrous molten metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081005 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081005 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091005 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091005 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |