JP3237027B2 - Multistage extraction separation method - Google Patents
Multistage extraction separation methodInfo
- Publication number
- JP3237027B2 JP3237027B2 JP26804292A JP26804292A JP3237027B2 JP 3237027 B2 JP3237027 B2 JP 3237027B2 JP 26804292 A JP26804292 A JP 26804292A JP 26804292 A JP26804292 A JP 26804292A JP 3237027 B2 JP3237027 B2 JP 3237027B2
- Authority
- JP
- Japan
- Prior art keywords
- extraction
- settler
- mixer settler
- rare earth
- organic phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000605 extraction Methods 0.000 title claims description 36
- 238000000926 separation method Methods 0.000 title claims description 29
- 239000012074 organic phase Substances 0.000 claims description 37
- 239000008346 aqueous phase Substances 0.000 claims description 36
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 36
- 239000003960 organic solvent Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 15
- 238000012546 transfer Methods 0.000 claims description 12
- 238000000638 solvent extraction Methods 0.000 claims description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 8
- 239000012071 phase Substances 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 15
- 239000003513 alkali Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910052771 Terbium Inorganic materials 0.000 description 4
- -1 ammonia organic compound Chemical class 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000010979 pH adjustment Methods 0.000 description 4
- LJKDOMVGKKPJBH-UHFFFAOYSA-N 2-ethylhexyl dihydrogen phosphate Chemical compound CCCCC(CC)COP(O)(O)=O LJKDOMVGKKPJBH-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 229910052688 Gadolinium Inorganic materials 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Extraction Or Liquid Replacement (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、化学的性質が近似する
元素群から目的の金属を効果的に分離することができる
溶媒抽出法に関し、より詳細には、希土類元素のように
化学的性質が近似するため従来は分離効果が低い元素群
を効果的に分離することができる多段抽出分離方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solvent extraction method capable of effectively separating a target metal from a group of elements having similar chemical properties, and more particularly, to a solvent extraction method such as a rare earth element. Conventionally, the present invention relates to a multi-stage extraction separation method capable of effectively separating an element group having a low separation effect.
【0002】[0002]
【技術背景】希土類元素は化学的性質が近似しており、
相互の分離が困難な元素群である。希土類元素の相互分
離には従来から種々の方法が知られているが、工業的に
実施されているのはイオン交換法と溶媒抽出法である。
なかでも溶媒抽出法はイオン交換法よりも濃厚な溶液を
処理することができ、また操作も簡単で連続処理ができ
るので現在はイオン交換法よりも多用されている。[Technical background] Rare earth elements have similar chemical properties,
These are elements that are difficult to separate from each other. Various methods have been conventionally known for the mutual separation of rare earth elements, but industrially practiced methods include an ion exchange method and a solvent extraction method.
Above all, the solvent extraction method is more frequently used than the ion exchange method because it can process a solution more concentrated than the ion exchange method, and the operation is simple and continuous treatment can be performed.
【0003】上記溶媒抽出法において、有機相への元素
の移行率がpHによって変動する有機溶媒を用いて複数の
元素を分離する場合、目的の元素の移行率に応じてpHを
制御することにより目的元素を他の元素群から分離す
る。例えば、希土類元素の分離においては、一般に主に
2-エチルヘキシルリン酸(D2EHPA)を溶媒として用い、希
土類元素のイオン群が溶解している水相のpHを目的の希
土類元素の移行率に応じて調整し、この希土類元素を有
機相に移行させる。具体的には、水相に溶解している各
希土類元素イオンが有機相に移行する割合、即ち、次式
で示される移行率(各元素の有機溶媒中の濃度に対する
水相中の濃度の対数値C)は図1に示すように水相のpH
によって変化するので、元素Aを有機相に移行させ、元
素Bを水相に残すには、元素Aの移行率が0より大き
く、かつ元素Bの移行率が0より小さいpH領域に水相の
pH値を設定する。 C=log([M]org /[M]aq) [M]org は有機相中の元素Mの濃度、[M]aqは水相
中の元素Mの濃度。In the above-mentioned solvent extraction method, when a plurality of elements are separated by using an organic solvent in which the transfer rate of an element to an organic phase varies depending on the pH, the pH is controlled in accordance with the transfer rate of the target element. The target element is separated from other elements. For example, in the separation of rare earth elements,
Using 2-ethylhexyl phosphoric acid (D2EHPA) as a solvent, adjust the pH of the aqueous phase in which the ions of the rare earth elements are dissolved according to the target rare earth transfer rate, and transfer this rare earth element to the organic phase. . Specifically, the rate at which each rare earth element ion dissolved in the aqueous phase is transferred to the organic phase, that is, the transfer rate represented by the following formula (the ratio of the concentration of each element in the aqueous phase to the concentration in the organic solvent) The value C) is the pH of the aqueous phase as shown in FIG.
In order to transfer the element A to the organic phase and leave the element B in the aqueous phase, the transfer rate of the element A is larger than 0 and the transfer rate of the element B is smaller than 0.
Set the pH value. C = log ([M] org / [M] aq) [M] org is the concentration of element M in the organic phase, and [M] aq is the concentration of element M in the aqueous phase.
【0004】[0004]
【従来技術の課題】図1に示すように、希土類元素は移
行率が近似しており、制御できるpH領域が狭い。例え
ば、EuとSmを分離するには、調整できるpH領域は1.
2 〜1.5 に限られ、またTbとEuを分離するには溶液
のpHを0.3 〜1.1 に調整する必要がある。従って、希土
類元素の抽出分離においては、溶液のpH調整を精度よく
行う必要がある。従来、ミキサセトラーを用いた希土類
元素の溶媒抽出分離においては、このpH調整は、pH調整
剤として主に苛性ソーダやアンモニア水を用い、ミキサ
セトラーのミキサー部にこれらのアルカリを直接に添加
することにより行われている。ところが、このアルカリ
の添加には注意が必要であり、急速にアルカリを加えた
り、濃度の高いアルカリを加えると局部的に高アルカリ
領域が出現し、水相に溶解している元素の水酸化物が発
生する。生成した水酸化物沈殿は簡単には消滅せず、ミ
キサセトラーの壁に沈積して流路の閉塞を招くなどの問
題を生じている。この問題を避けるため、アルカリを希
釈して用いたり、添加時間を長くしたり、あるいは攪拌
速度を高めるなどの工夫が試みられているが、何れの方
法でも現状では水酸化物の沈殿が生じるのを避けること
ができない。また希釈したアルカリを加えるとミキサセ
トラー全体の水バランスや抽出比率が崩れ、流量調整な
どの精密な分離制御が困難となる。前述のように希土類
元素の抽出分離には精密なpH調整等が必須であり、この
ため従来はミキサセトラーの処理系全体が制御不能にな
るなどの重大な障害の原因となっている。2. Description of the Related Art As shown in FIG. 1, rare earth elements have similar migration rates, and the controllable pH range is narrow. For example, to separate Eu and Sm, the pH range that can be adjusted is 1.
It is limited to 2 to 1.5, and it is necessary to adjust the pH of the solution to 0.3 to 1.1 in order to separate Tb and Eu. Therefore, in the extraction and separation of rare earth elements, it is necessary to accurately adjust the pH of the solution. Conventionally, in the solvent extraction separation of rare earth elements using a mixer settler, this pH adjustment is mainly performed by using caustic soda or aqueous ammonia as a pH adjuster and directly adding these alkalis to the mixer section of the mixer settler. Is being done. However, caution is required in the addition of this alkali, and when an alkali is added rapidly or an alkali having a high concentration is added, a locally high alkali region appears, and a hydroxide of an element dissolved in the aqueous phase is added. Occurs. The generated hydroxide precipitate does not easily disappear, but has a problem that it deposits on the wall of the mixer settler and causes blockage of the flow path. In order to avoid this problem, attempts have been made to dilute the alkali, use a longer addition time, or increase the stirring speed. Can not avoid. When a diluted alkali is added, the water balance and the extraction ratio of the entire mixer settler are disrupted, and precise separation control such as flow rate adjustment becomes difficult. As described above, the extraction and separation of rare earth elements requires precise pH adjustment and the like, and this has conventionally caused serious obstacles such as the inability to control the entire processing system of the mixer settler.
【0005】[0005]
【発明の目的】本発明は従来の上記課題を解決した抽出
分離方法を提供することを目的とし、pH調整を2段階に
分けることにより、抽出分離効果に優れ、しかも水酸化
物沈殿の問題を生じることがなく、処理操作の容易な抽
出分離方法を提供する。SUMMARY OF THE INVENTION An object of the present invention is to provide an extraction / separation method which solves the above-mentioned conventional problems. By dividing the pH adjustment into two stages, the extraction / separation effect is excellent and the problem of hydroxide precipitation is solved. Provided is an extraction separation method that does not occur and is easy to operate.
【0006】[0006]
【課題を解決する手段】本発明によれば以下の構成から
なる多段抽出分離方法が提供される。 (1)有機相への元素の移行率がpHによって変動する
有機溶媒を用いたミキサセトラーによる多段溶媒抽出に
おいて、セトラー部から有機相を抜き出してアンモニウ
ムイオン源を添加した後にミキサー部に戻すことによっ
てpHを調整し、水相中の複数の希土類元素を分離して
有機相に抽出することを特徴とする多段抽出分離方法。 (2)有機溶媒を抽出側ミキサセトラーから洗浄側ミキ
サセトラーに向かって流し、水相を抽出側ミキサセトラ
ーと洗浄側ミキサセトラーの間から導入して抽出側ミキ
サセトラーに流す多段溶媒抽出において、ミキサーセト
ラーを多段に設けた抽出側ミキサセトラーの複数のセト
ラー部から有機相を抜き出してアンモニウムイオン源を
添加した後に、隣接する次のミキサー部に戻すことによ
ってpHを調整し、水相中の複数の希土類元素を分離し
て有機相に抽出し、引き続きこの有機相を洗浄側ミキサ
セトラーに導入して洗浄し、目的外の希土類元素を洗浄
側の水相に押し戻す上記(1)の抽出分離方法。According to the present invention, there is provided a multistage extraction / separation method having the following constitution. (1) In a multi-stage solvent extraction using a mixer settler using an organic solvent in which the rate of element transfer to the organic phase varies depending on the pH, the organic phase is extracted from the settler part, an ammonium ion source is added, and the mixture is returned to the mixer part. A multistage extraction separation method comprising adjusting pH, separating a plurality of rare earth elements in an aqueous phase, and extracting the rare earth elements into an organic phase. (2) an organic solvent to flow from the extraction side Mikisasetora toward the cleaning side Mikisasetora, in a multistage solvent extraction flow in the extraction side Mikisasetora introduced from between the cleaning side Mikisasetora the extraction side Mikisasetora the aqueous phase, a mixer Seto
After extracting the organic phase from the plurality of settler sections of the extraction-side mixer settler provided in multiple stages and adding an ammonium ion source, the pH was adjusted by returning the mixture to the next mixer section adjacent thereto , and the plurality of The extraction / separation method according to the above (1), wherein the rare earth element is separated and extracted into an organic phase, and this organic phase is subsequently introduced into a washing-side mixer settler for washing, and undesired rare earth elements are pushed back to the washing-side aqueous phase.
【0007】 以下、本発明を図2に示すミキサセトラ
ーを多段に配列した抽出分離系を参照して説明すると、
抽出分離系は抽出側ミキサセトラー群20と洗浄側ミキ
サセトラー群21とを有し、洗浄側ミキサセトラー群2
1の出口には逆抽出を行うためのミキサセトラー22が
配設されている。2−エチルヘキシルリン酸(D2EH
PA)などの有機溶媒は抽出側ミキサセトラー群20か
ら洗浄側ミキサセトラー群21に向かって流れ、逆抽出
のミキサセトラー22を経て再び抽出側ミキサセトラー
群20に導入される。一方、希土類元素のイオン群を溶
解した水相は塩酸などにより弱酸性に調整され、抽出側
ミキサセトラー群20と洗浄側ミキサセトラー群21の
間から導入され、抽出側ミキサセトラー群20に向かっ
て流れる。また洗浄側ミキサセトラー群21には弱塩酸
水のスクラブ水が抽出側ミキサセトラー群20に向かっ
て導入される。Hereinafter, the present invention will be described with reference to an extraction separation system in which mixer setters shown in FIG. 2 are arranged in multiple stages.
The extraction separation system has an extraction-side mixer settler group 20 and a washing-side mixer settler group 21, and the washing-side mixer settler group 2
At the outlet of 1, a mixer settler 22 for performing back extraction is arranged. 2-ethylhexyl phosphoric acid (D2EH
An organic solvent such as PA) flows from the extraction-side mixer settler group 20 toward the washing-side mixer settler group 21, and is again introduced into the extraction-side mixer settler group 20 through the back-extraction mixer settler 22 . On the other hand, the aqueous phase in which the ions of the rare earth elements are dissolved is adjusted to be weakly acidic with hydrochloric acid or the like, introduced from between the extraction-side mixer settler group 20 and the washing-side mixer settler group 21, and directed toward the extraction-side mixer settler group 20. Flows. The scrubbing water of weak hydrochloric acid is introduced into the washing-side mixer settler group 21 toward the extraction-side mixer settler group 20.
【0008】本発明はpH調整を2段階に分け、先ず第一
段階として、セトラー部で分離した有機相にアンモニウ
ムイオン源を添加し、その後に第二段階として、該有機
相をミキサー部に導入し、有機相と水相とを混合して溶
液全体のpHを調節し、水相中の元素を有機相に抽出す
る。アンモニウムイオン源としてはアンモニアガスが好
ましい。アンモニアガスはマスフロー等によって添加流
量を高精度に制御できるので希土類元素の抽出分離に適
する。According to the present invention, the pH adjustment is divided into two stages. First, an ammonium ion source is added to the organic phase separated in the settler section, and then the organic phase is introduced into the mixer section as the second step. Then, the pH of the whole solution is adjusted by mixing the organic phase and the aqueous phase, and the elements in the aqueous phase are extracted into the organic phase. Ammonia gas is preferred as the ammonium ion source. Ammonia gas is suitable for extraction and separation of rare earth elements because its flow rate can be controlled with high precision by mass flow or the like.
【0009】有機溶媒相にアンモニアガスを添加するに
は、図2に示すように、多段に配設したミキサセトラー
の適当な位置に有機溶媒相を抜き出してアンモニアガス
を吹き込むロード槽23を設けるとよい。一般に図3に
示すように、抽出側ミキサセトラー群20と洗浄側ミキ
サセトラー群21からなる処理系については、通常、抽
出側セトラー群20にアンモニアガスを添加する。上記
添加位置の他に、有機溶媒が抽出側ミキサセトラー群2
0に導入される直前の位置にロード槽23を付設し、該
ロード槽23で有機溶媒相にアンモニアガスを吹き込ん
だ後に該有機相を抽出側ミキサセトラー群20に導入し
てもよい。この場合にはロード槽23で水を除去できる
のでアンモニア水を用いることができる。In order to add ammonia gas to the organic solvent phase, as shown in FIG. 2, a load tank 23 for extracting the organic solvent phase and blowing ammonia gas is provided at an appropriate position of a multi-stage mixer settler. Good. Generally, as shown in FIG. 3, for a processing system including the extraction-side mixer settler group 20 and the cleaning-side mixer settler group 21, usually, ammonia gas is added to the extraction-side settler group 20. In addition to the above addition position, the organic solvent is mixed on the extraction side mixer settler group 2
A load tank 23 may be provided at a position immediately before the gas is introduced into the tank 0, and ammonia gas may be blown into the organic solvent phase in the load tank 23, and then the organic phase may be introduced into the extraction-side mixer settler group 20. In this case, since the water can be removed in the load tank 23, ammonia water can be used.
【0010】第一段階として、有機相にアンモニアガス
を吹き込むことにより、有機溶媒中に次式のようにアン
モニア有機化合物が形成される。 3(HR)+3NH3 → 3(NH4 R) [R:有機分子] 第二段階として、上記有機相と水相とが混合されること
により、次式に示すように、水相中の希土類元素が有機
溶媒と反応し、希土類有機化合物を生成して有機相に移
行する。 3(NH4 R)+MCl3 → MR3 +3NH4 Cl [M:希土類元素] ここで、図1に示すように、アンモニウムイオンは希土
類元素に比べて有機相への移行率が格段に小さく、希土
類元素よりはるかに水相に移行し易いので、有機相に含
まれているアンモニア化合物は水相と接触することによ
り直ちに分解してアンモニウムイオンが水相に移行し、
これに伴い水相中に含まれている希土類元素イオンを有
機相に押し出す効果が得られる。In the first step, ammonia gas is blown into the organic phase to form an ammonia organic compound in the organic solvent as shown in the following formula. 3 (HR) + 3NH 3 → 3 (NH 4 R) [R: Organic Molecule] As a second step, the organic phase and the aqueous phase are mixed, and as shown in the following formula, rare earth elements in the aqueous phase are mixed. The element reacts with the organic solvent to generate a rare earth organic compound and transfer to the organic phase. 3 (NH 4 R) + MCl 3 → MR 3 + 3NH 4 Cl [M: rare earth element] Here, as shown in FIG. 1, the transfer rate of the ammonium ion to the organic phase is much smaller than that of the rare earth element. Since it is much easier to move to the aqueous phase than the element, the ammonia compound contained in the organic phase decomposes immediately upon contact with the aqueous phase and ammonium ions move to the aqueous phase,
Accordingly, an effect of pushing out rare earth element ions contained in the aqueous phase to the organic phase can be obtained.
【0011】このように抽出側ミキサセトラー群20に
おいて希土類元素がロードされた有機溶媒相は洗浄側ミ
キサセトラー群21に導入され、弱塩酸水と向流接触し
て洗浄される。有機相に抽出する希土類元素M1 に対
し、これと分離して水相に残る他の希土類元素M2 はラ
フィネートとして水相と共に抜き出されるが、若干の希
土類元素M2 が有機相に移行するので、洗浄用ミキサセ
トラー群21で弱塩酸水によって有機相を洗浄すること
により、有機相に移行した希土類元素M2 を水相に押し
戻す。洗浄用ミキサセトラー群21を経た有機相は逆抽
出用のミキサセトラー22に導入され、有機相に移行し
た希土類元素が再び水相に逆抽出され、有機相から除去
されて回収される。希土類元素が除去され再生された有
機相は再び抽出側ミキサセトラー群20に循環して使用
される。The organic solvent phase loaded with the rare earth element in the extraction-side mixer settler group 20 is introduced into the washing-side mixer settler group 21 and is washed in countercurrent contact with a weak hydrochloric acid solution. In contrast to the rare earth element M1 extracted into the organic phase, the other rare earth element M2 remaining in the aqueous phase after being separated is extracted together with the aqueous phase as a raffinate. However, since a small amount of the rare earth element M2 is transferred to the organic phase, washing is performed. By washing the organic phase with a weak hydrochloric acid solution in the mixer settler group 21, the rare earth element M2 transferred to the organic phase is pushed back to the aqueous phase. The organic phase that has passed through the washing mixer settler group 21 is introduced into the back extraction mixer settler 22, and the rare earth element that has migrated to the organic phase is back extracted again into the aqueous phase, and is removed from the organic phase and recovered. The organic phase from which the rare earth elements have been removed and regenerated is circulated again to the extraction-side mixer settler group 20 for use.
【0012】[0012]
【実施例1】図2に示すように、抽出側ミキサセトラー
6段と洗浄側ミキサセトラー5段を配設し、逆抽出用ミ
キサセトラー2段を付設した抽出分離系を用い、希土類
元素のNdとSmを含む水相(Nd濃度:12g/l 、Sm濃
度:100g/l)を0.2 lit/minの流量で抽出側ミキサセ
トラーと洗浄側ミキサセトラーとの間から抽出側ミキサ
セトラーに向かって流し、また洗浄側ミキサセトラーか
ら抽出側ミキサセトラーに向かって2N塩酸のスクラブ
水を0.5 lit/minの流量で流し、さらに逆抽出用ミキ
サセトラーに6N塩酸を1 lit/minの流量で流し、一
方、有機溶媒として酸性ホスホン酸モノエステル(商品
名:PC88A )を使用し、該有機溶媒を10 lit/minの流
量で上記水相と向流接触するように流し、さらに該有機
溶媒の導入側から第1段目と第5段目の有機相をセトラ
ー部から分離してアンモニアガスを吹き込み、この有機
相を第2段目と第6段目のミキサー部に戻すことにより
ミキサー部のpHを約1.5〜2.0に調節して有機溶媒
相にSmを抽出した。この結果、0.7 lit/minの流量
で抽出側ミキサセトラーから流出するラフィネート側水
相に含まれるNdとSmの濃度はNd:3.4 g/l、
Sm:1.4g/l であり、また逆抽出されたプレグナン
ト側水相に含まれるNdとSmの濃度はNdが0.0 g
/l、Smが19g/l であり、Ndが全く含まれず、極め
て高精度の分離効果を得た。EXAMPLE 1 As shown in FIG. 2, a 6-stage extraction mixer settler and a 5-stage washing-side mixer settler are provided, and an extraction / separation system provided with a 2 stage mixer settler for back extraction is used. And an aqueous phase containing Sm (Nd concentration: 12 g / l, Sm concentration: 100 g / l) at a flow rate of 0.2 lit / min from between the extraction-side mixer settler and the washing-side mixer settler toward the extraction-side mixer settler. Scrubbing water of 2N hydrochloric acid is flowed at a flow rate of 0.5 lit / min from the washing-side mixer settler to the extraction-side mixer settler, and 6N hydrochloric acid is flowed at a flow rate of 1 lit / min through the back-extraction mixer settler. On the other hand, an acidic phosphonic acid monoester (trade name: PC88A) is used as an organic solvent, and the organic solvent is allowed to flow at a flow rate of 10 lit / min so as to be in countercurrent contact with the aqueous phase. First and fifth stages from the introduction side The phase was separated from the settler section, ammonia gas was blown in, and the organic phase was returned to the second and sixth stage mixer sections to adjust the pH of the mixer section to about 1.5 to 2.0. Sm was extracted into the organic solvent phase. As a result, the concentration of Nd and Sm contained in the raffinate-side aqueous phase flowing out of the extraction-side mixer settler at a flow rate of 0.7 lit / min was Nd: 3.4 g / l,
Sm: 1.4 g / l, and the concentration of Nd and Sm contained in the back-extracted aqueous phase on the pregnant side was 0.0 g for Nd.
/ l and Sm were 19 g / l, and contained no Nd, and a very high-precision separation effect was obtained.
【0013】[0013]
【参考例】図3に示すように、抽出側ミキサセトラー2
0段と洗浄側ミキサセトラー15段を配設し、逆抽出用
ミキサセトラー3段を付設した抽出分離系を用い、希土
類元素のTbとGdを含む水相(Tb濃度:25g/l 、Gd濃
度:130g/l)を0.11 lit/minの流量で抽出側ミキサ
セトラーと洗浄側ミキサセトラーとの間から抽出側ミキ
サセトラーに向かって流し、また洗浄側ミキサセトラー
から抽出側ミキサセトラーに向かって4N塩酸のスクラ
ブ水を0.4 lit/minの流量で流し、さらに逆抽出用ミ
キサセトラーに6N塩酸を0.4 lit/minの流量で流
し、一方、有機溶媒として2−エチルヘキシルリン酸を
使用し、該有機溶媒を5 lit/minの流量で上記水相と向
流接触するように流し、さらに抽出側ミキサセトラーの
直前にアンモニガスのロード槽を付設し、該ロード槽で
上記有機溶媒にアンモニアガスを30 lit/minの割合で
吹き込み、このアンモニアガスを吹き込んだ有機溶媒を
抽出側ミキサセトラーに導入して水相と混合することに
よりミキサー部のpHを約0.40に調節して有機溶媒相
にGdを抽出した。この結果、0.51 lit/minの流量
で抽出側ミキサセトラーから流出するラフィネート側水
相に含まれるTbとGdの濃度はTb:0.0 g/l、 G
d:27g/l であり、また逆抽出されたプレグナント側
水相に含まれるTbとGdの濃度はTbが6.8 g/l、
Gdが1.7g/lであり、ラフィネート側水相にTbが全
く含まれず、極めて高精度の分離効果を得た。[Reference example] As shown in FIG. 3, extraction side mixer settler 2
An aqueous phase containing rare earth elements Tb and Gd (Tb concentration: 25 g / l, Gd concentration) using an extraction / separation system provided with 0 stages and 15 stages on the washing side mixer settler, and 3 stages of mixer settler for back extraction. : 130 g / l) at a flow rate of 0.11 lit / min from between the extraction-side mixer settler and the washing-side mixer settler toward the extraction-side mixer-settler, and from the washing-side mixer-settler to the extraction-side mixer-settler. Scrub water of 4N hydrochloric acid is flowed at a flow rate of 0.4 lit / min, and 6N hydrochloric acid is flowed at a flow rate of 0.4 lit / min to a mixer settler for back extraction, while using 2-ethylhexyl phosphoric acid as an organic solvent. The organic solvent was flowed at a flow rate of 5 lit / min so as to be in countercurrent contact with the aqueous phase, and a load tank for ammonia gas was provided immediately before the extraction-side mixer settler. 30 lit / mi gas The organic solvent into which the ammonia gas was blown was introduced into the extraction-side mixer settler and mixed with the aqueous phase to adjust the pH of the mixer to about 0.40 to extract Gd into the organic solvent phase. did. As a result, the concentration of Tb and Gd contained in the raffinate-side aqueous phase flowing out of the extraction-side mixer settler at a flow rate of 0.51 lit / min was Tb: 0.0 g / l, G
d: 27 g / l, and the concentration of Tb and Gd contained in the back-extracted aqueous phase on the pregnant side was 6.8 g / l for Tb,
Gd was 1.7 g / l, and Tb was not contained in the raffinate-side aqueous phase at all, and a very high-precision separation effect was obtained.
【0014】[0014]
【発明の効果】本発明の分離方法によれば、従来の溶媒
抽出法と異なり、局部的な高pH域が生じないので水酸化
物の沈殿が発生せず、ミキサセトラー等の配管閉塞など
の問題がなく、安定な分離操作を行うことができる。ま
たアンモニウムイオン源としてアンモニアガスを用いる
ことにより、流量の正確な制御ができるので高精度のpH
調整が可能であり、希土類元素の精度の高い抽出分離効
果が得られる。さらにアンモニア水よりも安価なアンモ
ニアガスを用いることができるので経済性にも優れる。According to the separation method of the present invention, unlike the conventional solvent extraction method, a local high pH region is not generated, so that precipitation of hydroxide does not occur, and a pipe such as a mixer settler is obstructed. A stable separation operation can be performed without any problem. In addition, by using ammonia gas as the ammonium ion source, accurate control of the flow rate enables highly accurate pH control.
Adjustment is possible, and a highly accurate extraction and separation effect of rare earth elements can be obtained. Further, since ammonia gas which is cheaper than ammonia water can be used, it is excellent in economy.
【図1】 希土類元素の移行率とpHとの関係を示すグラ
フFIG. 1 is a graph showing the relationship between the migration rate of rare earth elements and pH.
【図2】 本発明に係る方法を実施する抽出分離系の一
例を示す説明図FIG. 2 is an explanatory diagram showing an example of an extraction separation system for performing the method according to the present invention.
【図3】 本発明に係る方法を実施する抽出分離系の一
例を示す説明図FIG. 3 is an explanatory diagram showing an example of an extraction separation system for performing the method according to the present invention.
20−抽出側ミキサセトラー群 21−洗浄側ミキサセトラー群 22−逆抽出用ミキサセトラー 23−アンモニアガスのロード槽 20-Extraction Mixer Settler Group 21-Washing Mixer Settler Group 22-Back Extraction Mixer Settler 23-Ammonia Gas Loading Tank
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 悦治 埼玉県大宮市北袋町1丁目297番地 三 菱マテリアル株式会社 中央研究所内 (56)参考文献 特開 昭63−239127(JP,A) 特開 平4−36373(JP,A) 特開 平4−196427(JP,A) 特開 平4−209605(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 B01D 11/04 B01D 11/04 101 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Etsuji Kimura 1-297 Kitabukuro-cho, Omiya City, Saitama Prefecture Mitsubishi Materials Corporation Central Research Laboratory (56) References JP-A-63-239127 (JP, A) JP-A-4-36373 (JP, A) JP-A-4-196427 (JP, A) JP-A-4-209605 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22B 1 / 00-61/00 B01D 11/04 B01D 11/04 101
Claims (2)
変動する有機溶媒を用いたミキサセトラーによる多段溶
媒抽出において、セトラー部から有機相を抜き出してア
ンモニウムイオン源を添加した後にミキサー部に戻すこ
とによってpHを調整し、水相中の複数の希土類元素を
分離して有機相に抽出することを特徴とする多段抽出分
離方法。1. In a multi-stage solvent extraction by a mixer settler using an organic solvent in which a transfer rate of an element to an organic phase fluctuates depending on pH, an organic phase is extracted from a settler part, returned to an mixer after adding an ammonium ion source. A multistage extraction / separation method, wherein the pH is adjusted thereby, and a plurality of rare earth elements in an aqueous phase are separated and extracted into an organic phase.
浄側ミキサセトラーに向かって流し、水相を抽出側ミキ
サセトラーと洗浄側ミキサセトラーの間から導入して抽
出側ミキサセトラーに流す多段溶媒抽出において、ミキ
サーセトラーを多段に設けた抽出側ミキサセトラーの複
数のセトラー部から有機相を抜き出してアンモニウムイ
オン源を添加した後に、隣接する次のミキサー部に戻す
ことによってpHを調整し、水相中の複数の希土類元素
を分離して有機相に抽出し、引き続きこの有機相を洗浄
側ミキサセトラーに導入して洗浄し、目的外の希土類元
素を洗浄側の水相に押し戻す請求項1の抽出分離方法。2. In a multi-stage solvent extraction, an organic solvent is caused to flow from an extraction-side mixer settler to a washing-side mixer settler, and an aqueous phase is introduced from between the extraction-side mixer settler and the washing-side mixer settler and flows to the extraction-side mixer settler. , Miki
The pH was adjusted by extracting the organic phase from the plurality of settler sections of the extraction-side mixer settler provided with multiple stages of circulators, adding the ammonium ion source, and then returning the mixture to the next adjacent mixer section to adjust the pH. 2. The method according to claim 1, wherein a plurality of rare earth elements in the phase are separated and extracted into an organic phase, and the organic phase is subsequently introduced into a washing-side mixer settler for washing, and undesired rare earth elements are pushed back to an aqueous phase on the washing side. Extraction separation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26804292A JP3237027B2 (en) | 1992-09-10 | 1992-09-10 | Multistage extraction separation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26804292A JP3237027B2 (en) | 1992-09-10 | 1992-09-10 | Multistage extraction separation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0693353A JPH0693353A (en) | 1994-04-05 |
JP3237027B2 true JP3237027B2 (en) | 2001-12-10 |
Family
ID=17453075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26804292A Expired - Fee Related JP3237027B2 (en) | 1992-09-10 | 1992-09-10 | Multistage extraction separation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3237027B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE260287T1 (en) * | 1999-04-26 | 2004-03-15 | Rhodia Elect & Catalysis | STABLE SOLUTIONS OF RARE EARTHS TRIS (ORGANOPHOSPHORUS DERIVATIVES) |
CN105568008B (en) * | 2016-02-03 | 2017-08-11 | 江西农业大学 | Divide high-purity three outlet extraction in advance |
JP6938813B1 (en) * | 2021-04-05 | 2021-09-22 | 日本イットリウム株式会社 | A method for producing a gadolinium compound having a reduced content of radioactive elements, and a gadolinium compound. |
-
1992
- 1992-09-10 JP JP26804292A patent/JP3237027B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0693353A (en) | 1994-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4647438A (en) | Separation of rare earth values by liquid/liquid extraction | |
CN103468950B (en) | Method for removing metal ion purity of rare earth aqueous solution extraction | |
CN101787451B (en) | Method for improving efficiency of acidic organophosphorus extractant for extraction separation of rare-earth elements | |
Hirato et al. | Improvement of the stripping characteristics of Fe (III) utilizing a mixture of di (2-ethylhexyl) phosphoric acid and tri-n-butyl phosphate | |
JP2756794B2 (en) | Rare earth element separation method | |
Nakamura et al. | Separation and recovery process for rare earth metals from fluorescence material wastes using solvent extraction | |
CN103146938B (en) | Extraction and separation method of uranium | |
JPH09184028A (en) | Extraction of rare earth metal | |
US3575687A (en) | Process for the selective separation of rare earth metals from their aqueous solutions | |
JP3237027B2 (en) | Multistage extraction separation method | |
WO2015110702A1 (en) | Method for recovery of copper and zinc | |
Hirai et al. | Extraction and separation of rare-earth elements by tri-n-octylmethylammonium nitrate and β-diketone using water-soluble complexing agent | |
JPS6050128A (en) | Extracting method of iron (iii) from aqueous solution and reverse extracting method of iron (iii) from extracting solvent | |
EP3505645A1 (en) | Method for purifying scandium and scandium extractant | |
Goto et al. | Separation of yttrium in a hollow fiber membrane | |
US3702233A (en) | Yttrium purification | |
KR940000109B1 (en) | How to separate Yttrium | |
KR102529742B1 (en) | Method for solvent extraction of Mo(IV) and Re(VII) | |
RU2373155C2 (en) | Method of extractant purification of regenerated uranium | |
RU2490210C1 (en) | Method of processing nitrate solution of recovered uranium combined with removal of technetium | |
JPH01249623A (en) | Treatment of residue containing rare earth element and cobalt | |
RU2378402C2 (en) | Extraction method of germanium from sulfuric solutions | |
CN109097572A (en) | A kind of method of impurity antimony removal in tantalum and niobium hydrometallurgy | |
JPH06246104A (en) | Concentrating extraction method by mixer-settler | |
JP4315591B2 (en) | Method for separating trivalent actinides from at least trivalent lanthanides using (bis) aryl-dithiophosphinic acid as extractant and organophosphate as synergist |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010828 |
|
LAPS | Cancellation because of no payment of annual fees |