JP3236796B2 - Non-aqueous electrolyte lithium secondary battery - Google Patents
Non-aqueous electrolyte lithium secondary batteryInfo
- Publication number
- JP3236796B2 JP3236796B2 JP12679497A JP12679497A JP3236796B2 JP 3236796 B2 JP3236796 B2 JP 3236796B2 JP 12679497 A JP12679497 A JP 12679497A JP 12679497 A JP12679497 A JP 12679497A JP 3236796 B2 JP3236796 B2 JP 3236796B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- lithium secondary
- electrode active
- negative electrode
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質リチウ
ム二次電池に関し、特に充放電サイクル特性に優れた高
電池容量の非水電解質リチウム二次電池に関する。The present invention relates to a non-aqueous electrolyte lithium secondary battery, and more particularly to a high-capacity non-aqueous electrolyte lithium secondary battery having excellent charge / discharge cycle characteristics.
【0002】[0002]
【従来の技術】非水電解質リチウム二次電池は、起電力
並びに電池容量の点で優れているので一般に益々注目さ
れており、斯界では一層実用性の高い製品を開発する目
的で各種の改善研究が鋭意なされている。正、負極活物
質の改善研究もその重要な一つである。本発明者らは、
製造が容易であって且つ高性能の非水電解質リチウム二
次電池を開発するための研究から、負極活物質として導
電性黒鉛繊維を、一方、正極活物質として特定のLi−
遷移金属系複合酸化物をそれぞれ採用して両者を組合わ
せた場合には高放電容量を有する電池が得られるもの
の、後記するように、製品の性能が不安定となる問題が
ある。2. Description of the Related Art Non-aqueous electrolyte lithium secondary batteries are gaining more and more attention because of their excellent electromotive force and battery capacity. In the art, various improvements and researches have been made to develop more practical products. Has been eager. Improvement research of positive and negative electrode active materials is also one of the important things. We have:
From research to develop a nonaqueous electrolyte lithium secondary battery that is easy to manufacture and has high performance, conductive graphite fibers are used as a negative electrode active material, while a specific Li-
When a transition metal-based composite oxide is adopted and both are combined, a battery having a high discharge capacity can be obtained, but there is a problem that the performance of the product becomes unstable as described later.
【0003】導電性黒鉛繊維を負極活物質として使用し
た場合、それは通常、フッ素樹脂などの有機高分子バイ
ンダーとの混合物として負極集電体上に塗布形成され
る。したがって負極集電体上の負極活物質層は、導電性
黒鉛繊維がフッ素樹脂などにてバインドされた状態で存
在する。ところで該導電性黒鉛繊維は、通常、長さが十
数〜数十μm程度の短繊維状で使用されるので、たとえ
フッ素樹脂などにてバインドされた状態で存在するとい
えども、一部の導電性黒鉛繊維が該負極活物質層の表面
から垂直方向に突出することがある。なお、通常の負極
の製造工程においては、負極集電体上に負極活物質入り
の混合物を塗布し乾燥した後に負極活物質層を圧延して
平坦化処理するが、この平坦化処理によっても、突出部
分の一部が突出のまま残存したり、平坦化処理により破
断した突出部分の破片が負極活物質層の表面に付着残存
することがある。さらに電池の充放電サイクルの過程に
おけるリチウムイオンの出入りにより一部の導電性黒鉛
繊維が新たに突出したり、その新たな突出部が破断した
りする。特に、正極活物質たるLi−遷移金属系複合酸
化物として、Li−Co系複合酸化物、Li−Ni系複
合酸化物、あるいはLi−Mn系複合酸化物を使用した
場合には、上記の現象は充放電サイクル特性に大きな影
響を及ぼす。When a conductive graphite fiber is used as a negative electrode active material, it is usually applied and formed on a negative electrode current collector as a mixture with an organic polymer binder such as a fluororesin. Therefore, the negative electrode active material layer on the negative electrode current collector exists in a state where the conductive graphite fibers are bound with a fluororesin or the like. By the way, the conductive graphite fiber is usually used in the form of a short fiber having a length of about several tens to several tens of μm. The graphite graphite may protrude vertically from the surface of the negative electrode active material layer. In the normal negative electrode manufacturing process, the negative electrode active material layer is rolled and flattened after applying and drying the mixture containing the negative electrode active material on the negative electrode current collector. A part of the protruding portion may remain as protruding, or a piece of the protruding portion broken by the planarization treatment may adhere to the surface of the negative electrode active material layer and remain. Further, a part of the conductive graphite fiber newly protrudes or breaks the new protruding portion due to the entrance and exit of lithium ions in the course of the charge and discharge cycle of the battery. In particular, when a Li-Co-based composite oxide, a Li-Ni-based composite oxide, or a Li-Mn-based composite oxide is used as the Li-transition metal-based composite oxide serving as the positive electrode active material, the above phenomenon occurs. Greatly affects the charge-discharge cycle characteristics.
【0004】非水電解質リチウム二次電池は、負極と正
極との間にセパレータを介して非水電解質が含浸された
構造を有する。一般に該セパレータは極めて薄い多孔性
の電気絶縁シートからなるので、上記の負極活物質層表
面の導電性黒鉛繊維の突出部分や付着残存する突出部分
の破片などがセパレータを突き破って正極に達して電池
を部分的に短絡し、電池を使用せずに放置しておいても
電池内部での自己放電にて短寿命化する。かかる電池は
不良品として処理されるので、結果的に導電性黒鉛繊維
を使用する際には、非水電解質リチウム二次電池を高歩
留りにて製造することが困難であった。さらに本発明者
らの研究から、ポリプロピレンなどの機械的強度の高い
有機高分子からなるセパレータを使用すれば、上記の問
題は解決するが、その場合にはポリプロピレンの高融点
のために電池に異常事態が生じてもポリプロピレンセパ
レータの溶融変形による正負極間の電気的遮断が生じ難
くくて危険である問題がある。[0004] A non-aqueous electrolyte lithium secondary battery has a structure in which a non-aqueous electrolyte is impregnated between a negative electrode and a positive electrode with a separator interposed therebetween. Generally, since the separator is formed of an extremely thin porous electric insulating sheet, the protruding portions of the conductive graphite fibers on the surface of the negative electrode active material layer or fragments of the remaining protruding portions adhere to the separator and reach the positive electrode to reach the battery. Is partially short-circuited, and the life is shortened by self-discharge inside the battery even if the battery is left unused. Since such a battery is treated as a defective product, it has been difficult to produce a nonaqueous electrolyte lithium secondary battery at a high yield when using conductive graphite fibers as a result. Furthermore, from the research of the present inventors, the above problem can be solved by using a separator made of an organic polymer having high mechanical strength such as polypropylene, but in that case, the battery has an abnormal abnormality due to the high melting point of polypropylene. Even if a situation occurs, there is a problem that it is difficult to cause electrical interruption between the positive and negative electrodes due to the melt deformation of the polypropylene separator, which is dangerous.
【0005】[0005]
【発明が解決しようとする課題】しかして本発明は、導
電性黒鉛繊維を負極活物質として使用する場合において
も、性能の安定した電池を製造し得、しかも安全で高放
電容量を有する非水電解質リチウム二次電池を提供する
ことを目的とする。SUMMARY OF THE INVENTION Accordingly, the present invention provides a non-aqueous battery having a stable performance and a high discharge capacity even when conductive graphite fibers are used as the negative electrode active material. It is an object to provide an electrolyte lithium secondary battery.
【0006】[0006]
【課題を解決するための手段】本発明は、つぎの特徴を
有する。 (1) 導電性黒鉛繊維を負極活物質とする負極と、Li−
Co系複合酸化物、Li−Ni系複合酸化物、およびL
i−Mn系複合酸化物からなる群から選ばれた少なくと
も1種を正極活物質とする正極との間にポリエチレン層
とポリプロピレン層とからなる複合セパレータを有する
ことを特徴とする非水電解質リチウム二次電池。 (2) 導電性黒鉛繊維が、平均外径2〜20μm、平均長
さ10〜200μmである上記(1) 記載の非水電解質リ
チウム二次電池。 (3) 複合セパレータのポリプロピレン層が、負極と対向
している上記(1) または(2) 記載の非水電解質リチウム
二次電池。The present invention has the following features. (1) a negative electrode using conductive graphite fibers as a negative electrode active material;
Co-based composite oxide, Li-Ni-based composite oxide, and L
A nonaqueous electrolyte lithium ion battery comprising a composite separator comprising a polyethylene layer and a polypropylene layer between a positive electrode having at least one selected from the group consisting of i-Mn-based composite oxides as a positive electrode active material. Next battery. (2) The nonaqueous electrolyte lithium secondary battery according to (1), wherein the conductive graphite fiber has an average outer diameter of 2 to 20 μm and an average length of 10 to 200 μm. (3) The nonaqueous electrolyte lithium secondary battery according to the above (1) or (2), wherein the polypropylene layer of the composite separator faces the negative electrode.
【0007】[0007]
【作用】本発明者らの新知見によれば、ポリエチレン層
とポリプロピレン層とからなる複合構造のセパレータ
は、導電性黒鉛繊維に対する耐刺通性に優れている。し
かして、たとえ負極活物質層の表面に導電性黒鉛繊維の
突出部分やその破断破片が存在していても、該複合セパ
レータはそれらによる突き破りに対して対抗性を有して
いるので、正負極間での短絡問題が改善され、この結果
性能の安定した電池を歩留りよく製造し得る。またセパ
レータはポリエチレン層を有するので、電池に異常事態
が生じても、ポリエチレン層の低融点による溶融変形に
て正負極間の電気的遮断が良好に行われて電池の安全性
も確保される。According to the present inventors' new findings, a separator having a composite structure comprising a polyethylene layer and a polypropylene layer has excellent penetration resistance to conductive graphite fibers. Thus, even if a protruding portion of the conductive graphite fiber or a broken fragment thereof exists on the surface of the negative electrode active material layer, the composite separator has resistance to piercing by the composite graphite fiber. The problem of short circuit between them is improved, and as a result, a battery with stable performance can be manufactured with high yield. In addition, since the separator has a polyethylene layer, even if an abnormal situation occurs in the battery, the electrical deformation between the positive and negative electrodes is satisfactorily performed by melting deformation due to the low melting point of the polyethylene layer, and the safety of the battery is also ensured.
【0008】[0008]
【発明の実施の形態】本発明において用いられる複合セ
パレータは、後記するようにポリエチレン層とポリプロ
ピレン層とからなるが、それらの層が複合した形態、即
ち複合セパレータ自体として、電池が正常作動している
状態にあってはリチウムイオンが移動し得る多孔性を有
する。その程度については非水電解質リチウム二次電池
の分野でよく知られている程度であってよく、例えばJ
IS−P8117により測定した気密度では100〜2
000ガーレー(秒/100cc)程度、孔径では0.
08〜0.25μm程度、開口率では30〜60%程度
である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The composite separator used in the present invention comprises a polyethylene layer and a polypropylene layer, as described later. The composite separator itself, that is, the composite separator itself, operates normally. In a state where it is present, it has porosity in which lithium ions can move. The degree may be a degree well-known in the field of non-aqueous electrolyte lithium secondary batteries.
The air tightness measured by IS-P8117 is 100 to 2
About 000 Gurley (sec / 100cc), with a pore size of 0.
It is about 08 to 0.25 μm, and the aperture ratio is about 30 to 60%.
【0009】複合セパレータは、共に多孔性であるポリ
エチレン層とポリプロピレン層とからなるが、その厚み
比率はポリエチレン層の厚み100に対してポリプロピ
レン層の厚みは10〜900程度、特に20〜800程
度である。複合セパレータの厚み、即ちポリエチレン層
とポリプロピレン層との合計厚みは通常のセパレータと
同じでよく、例えば10〜100μm程度である。しか
して複合セパレータは、上記の厚み比率であり且つ厚み
範囲内である限り、一層以上のポリエチレン層と一層以
上のポリプロピレン層とが種々に積層した構造であって
良い。例えば、一層のポリエチレン層と一層のポリプロ
ピレン層とからなる二層構造、一層のポリエチレン層を
二層のポリプロピレン層にてサンドイッチした三層構
造、一層のポリプロピレン層を二層のポリエチレン層に
てサンドイッチした3層構造などである。ポリエチレン
層とポリプロピレン層とは、例えばポリオレフィン系ホ
ットメルト樹脂などの接着剤による接着あるいは部分的
な熱溶着などの方法にて接合されてよい。The composite separator comprises a porous polyethylene layer and a polypropylene layer, and the thickness ratio is such that the thickness of the polypropylene layer is about 10 to 900, especially about 20 to 800, with respect to the thickness of the polyethylene layer of 100. is there. The thickness of the composite separator, that is, the total thickness of the polyethylene layer and the polypropylene layer may be the same as that of a normal separator, and is, for example, about 10 to 100 μm. Thus, the composite separator may have a structure in which one or more polyethylene layers and one or more polypropylene layers are variously laminated as long as the thickness ratio is within the above range and within the thickness range. For example, a two-layer structure consisting of one polyethylene layer and one polypropylene layer, a three-layer structure in which one polyethylene layer is sandwiched by two polypropylene layers, and one polypropylene layer is sandwiched by two polyethylene layers It has a three-layer structure or the like. The polyethylene layer and the polypropylene layer may be joined by a method such as adhesion with an adhesive such as a polyolefin-based hot melt resin or partial heat welding.
【0010】複合セパレータの構成材料たるポリエチレ
ンおよびポリプロピレンとも、機械的強度、特に引張強
度の高い程、導電性黒鉛繊維に対する耐刺通性に優れて
いる。よってJIS−K7113により測定した引張強
度が、少なくとも30MPa程度のもの、特に少なくと
も33MPa程度のものが好ましい。一般的に、ポリエ
チレンよりもポリプロピレンの方が機械的強度に優れて
いるので、複合セパレータの負極活物質と対向する片面
はポリエチレン層であるよりもポリプロピレン層である
と、導電性黒鉛繊維に対する耐刺通性が一層良好とな
る。したがってかかる耐刺通性の観点から、複合セパレ
ータとしては、その少なくとも片面の表面はポリプロピ
レン層であるものが好ましく、特に一層のポリエチレン
層を二層のポリプロピレン層にてサンドイッチした三層
構造、即ち両表面ともポリプロピレン層であるものが電
池製造時での取扱上から好ましい。さらにかかる三層構
造において、ポリエチレン層の厚みは3〜20μm程度
であり、両側の各ポリプロピレン層の厚みは5〜20μ
m程度であるものが好ましい。[0010] The higher the mechanical strength, particularly the tensile strength, of both polyethylene and polypropylene constituting the composite separator, the better the penetration resistance to the conductive graphite fiber. Therefore, it is preferable that the tensile strength measured according to JIS-K7113 is at least about 30 MPa, particularly at least about 33 MPa. In general, polypropylene has better mechanical strength than polyethylene, so if the composite separator has a polypropylene layer on one side facing the negative electrode active material, the composite separator has a puncture resistance to conductive graphite fibers. The permeability is further improved. Therefore, from the viewpoint of piercing resistance, the composite separator preferably has a polypropylene layer on at least one surface thereof, and particularly has a three-layer structure in which one polyethylene layer is sandwiched between two polypropylene layers, that is, a two-layer structure. Those having a polypropylene layer on both surfaces are preferable from the viewpoint of handling during battery production. Further, in such a three-layer structure, the thickness of the polyethylene layer is about 3 to 20 μm, and the thickness of each polypropylene layer on both sides is 5 to 20 μm.
m is preferable.
【0011】本発明において負極活物質として使用対象
とされる導電性黒鉛繊維は、各種の黒鉛繊維であってよ
く、例えば結晶格子の基底面間距離(D002 )が0.3
35〜0.400nm程度、特に0.335〜0.34
0nm程度、c軸方向の結晶子寸法(Lc)が1〜10
0nm程度、特に20〜100nm程度の高結晶性の黒
鉛からなるものが好ましい。導電性黒鉛繊維は、平均外
径が2〜20μm程度、特に5〜10μm程度であり、
平均長さが10〜200μm程度、特に20〜40μm
程度のものが適当である。The conductive graphite fibers used as the negative electrode active material in the present invention may be various types of graphite fibers. For example, the distance between the basal planes (D002) of the crystal lattice is 0.3.
About 35 to 0.400 nm, especially 0.335 to 0.34
About 0 nm, crystallite size (Lc) in the c-axis direction is 1 to 10
It is preferably made of graphite having a high crystallinity of about 0 nm, particularly about 20 to 100 nm. The conductive graphite fiber has an average outer diameter of about 2 to 20 μm, particularly about 5 to 10 μm,
Average length is about 10 to 200 μm, especially 20 to 40 μm
A degree is appropriate.
【0012】導電性黒鉛繊維は、ポリテトラフルオロエ
チレン、ポリビニリデンフルオリド、ポリエチレン、エ
チレン−プロピレン−ジエン系ポリマーなどの通常の結
着剤と混合されて用いられ、その際の導電性黒鉛繊維の
使用量は、該黒鉛繊維と結着剤との合計量100重量部
あたり80〜96重量部程度である。The conductive graphite fiber is used by being mixed with a usual binder such as polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, ethylene-propylene-diene-based polymer, and the like. The amount used is about 80 to 96 parts by weight per 100 parts by weight of the total amount of the graphite fiber and the binder.
【0013】負極シートは、負極集電体の片面または両
面に上記導電性黒鉛繊維と結着剤とからなる混合組成物
を塗布し、充分に乾燥後、圧延して負極活物質層を形成
して得られる。負極活物質層の厚さは、20〜200μ
m程度、特に50〜150μm程度が適当である。負極
集電体としては、銅、ニッケル、銀、SUSなどの導電
性金属の、厚さ5〜100μm程度、特に8〜50μm
程度の箔や穴あき箔、厚さ20〜300μm程度、特に
25〜100μm程度のエキスパンドメタルなどが好ま
しい。The negative electrode sheet is formed by applying a mixed composition comprising the above-mentioned conductive graphite fiber and a binder to one or both surfaces of a negative electrode current collector, drying it sufficiently, and rolling it to form a negative electrode active material layer. Obtained. The thickness of the negative electrode active material layer is 20 to 200 μ
m, especially about 50 to 150 μm. As the negative electrode current collector, a conductive metal such as copper, nickel, silver, and SUS may have a thickness of about 5 to 100 μm, particularly 8 to 50 μm.
The preferred thickness is about 20 to 300 [mu] m, particularly about 25 to 100 [mu] m of expanded metal.
【0014】本発明においては、正極活物質としてLi
−Co系複合酸化物、Li−Ni系複合酸化物、および
Li−Mn系複合酸化物からなる群から選ばれた少なく
とも1種が用いられるが、それらはいずれも斯界で周知
され、あるいは実用されているものであってよい。以下
には、それら各複合酸化物について代表的な若干の例を
示す。In the present invention, Li is used as the positive electrode active material.
At least one selected from the group consisting of -Co-based composite oxide, Li-Ni-based composite oxide, and Li-Mn-based composite oxide is used, all of which are well known in the art or are commercially available. It may be what is. The following are some typical examples of these composite oxides.
【0015】Li−Co系複合酸化物としては、例え
ば、Lix Coy Oz (0.3≦x≦1.0、0.8≦
y≦1.2、1.8≦z≦2.2)、Lix Coy Oz
(0.3≦x≦1.0、0.8≦y≦1.2、1.8≦
z≦2.2)におけるCoの一部をAl、B、Pなどの
元素にて置換したものなどが例示される。As the Li—Co-based composite oxide, for example, Li x Co y O z (0.3 ≦ x ≦ 1.0, 0.8 ≦
y ≦ 1.2, 1.8 ≦ z ≦ 2.2), Li x Co y O z
(0.3 ≦ x ≦ 1.0, 0.8 ≦ y ≦ 1.2, 1.8 ≦
In the case where z ≦ 2.2), a part of Co is replaced by an element such as Al, B, P or the like.
【0016】Li−Ni系複合酸化物としては、例え
ば、Lix Niy Oz (0.3≦x≦1.0、0.8≦
y≦1.2、1.8≦z≦2.2)、Lix Coy Oz
(0.3≦x≦1.0、0.8≦y≦1.2、1.8≦
z≦2.2)におけるNiの一部をAl、B、Pなどの
元素にて置換したものなどが例示される。Examples of the Li—Ni-based composite oxide include Li x Ni y O z (0.3 ≦ x ≦ 1.0, 0.8 ≦
y ≦ 1.2, 1.8 ≦ z ≦ 2.2), Li x Co y O z
(0.3 ≦ x ≦ 1.0, 0.8 ≦ y ≦ 1.2, 1.8 ≦
For example, those in which a part of Ni in z ≦ 2.2) is replaced with an element such as Al, B, or P are exemplified.
【0017】Li−Mn系複合酸化物としては、例え
ば、下記一般式(1)や(2)で示されるスピネル型結
晶構造や非スピネル型結晶構造を有するものが例示され
る。 Lix MnO2 (1) Lix M32 O4 (2) ここに、一般式(1)において0.05≦x≦1.2、
特に0.1≦x≦1.1であり、一般式(2)におい
て、0.01≦x≦1.5、特に0.05≦x≦1.1
の各範囲である。一般式(2)において、M3は少なく
ともMnである。即ち、M3はMn単独であってもよ
く、MnとMn以外の元素との複合であってもよい。M
n以外の該元素としては、Li、Mg、Al、Ni、S
nなどが好ましい。さらにLi−Mn系複合酸化物とし
ては、単一化合物であってもよく、あるいは2種以上の
混合物であってもよい。Examples of the Li—Mn-based composite oxide include those having a spinel crystal structure or a non-spinel crystal structure represented by the following general formulas (1) and (2). Li x MnO 2 (1) Li x M3 2 O 4 (2) Here, the general formula (1) in 0.05 ≦ x ≦ 1.2,
In particular, 0.1 ≦ x ≦ 1.1, and in general formula (2), 0.01 ≦ x ≦ 1.5, particularly 0.05 ≦ x ≦ 1.1.
Of each range. In the general formula (2), M3 is at least Mn. That is, M3 may be Mn alone or a composite of Mn and an element other than Mn. M
The elements other than n include Li, Mg, Al, Ni, S
n is preferred. Further, the Li-Mn-based composite oxide may be a single compound or a mixture of two or more.
【0018】正極活物質の結着剤としては、ポリテトラ
フルオロエチレン、ポリビニリデンフルオリド、ポリエ
チレン、エチレン−プロピレン−ジエン系ポリマーなど
である。導電剤としては、各種導電性黒鉛や導電性黒鉛
ブラックなどでよい。正極活物質の使用量は、正極活物
質、結着剤、および導電剤の合計量100重量部あたり
80〜95重量部程度であり、結着剤の使用量は正極活
物質100重量部あたり1〜10重量部程度であり、ま
た導電剤の使用量は正極活物質100重量部あたり3〜
15重量部程度である。Examples of the binder for the positive electrode active material include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, and ethylene-propylene-diene polymers. As the conductive agent, various types of conductive graphite, conductive graphite black, and the like may be used. The amount of the positive electrode active material used is about 80 to 95 parts by weight per 100 parts by weight of the total amount of the positive electrode active material, the binder, and the conductive agent, and the amount of the binder used is 1 to 100 parts by weight of the positive electrode active material. About 10 to 10 parts by weight, and the amount of the conductive agent used is 3 to 10 parts by weight per 100 parts by weight of the positive electrode active material.
It is about 15 parts by weight.
【0019】正極シートは、正極集電体の片面または両
面に正極活物質、結着剤、および導電剤からなる混合組
成物を塗布し、充分に乾燥後、圧延して形成することが
でき、片面または両面に厚さ20〜500μm程度、特
に50〜200μm程度の正極活物質層を有するものが
例示される。正極集電体としては、アルミニウム、アル
ミニウム合金、チタンなどの導電性金属の、厚さ10〜
100μm程度、特に15〜50μm程度の箔や穴あき
箔、厚さ25〜300μm程度、特に30〜150μm
程度のエキスパンドメタルなどが好ましい。The positive electrode sheet can be formed by applying a mixed composition comprising a positive electrode active material, a binder, and a conductive agent to one or both surfaces of a positive electrode current collector, sufficiently drying, and rolling. One having a positive electrode active material layer having a thickness of about 20 to 500 μm, particularly about 50 to 200 μm on one or both sides is exemplified. As the positive electrode current collector, a conductive metal such as aluminum, an aluminum alloy,
About 100 μm, especially about 15 to 50 μm foil or perforated foil, about 25 to 300 μm thickness, especially about 30 to 150 μm
A certain degree of expanded metal is preferred.
【0020】非水電解質としては、塩類を有機溶媒に溶
解させた電解液が例示される。該塩類としては、LiC
lO4 、LiBF4 、LiPF6 、LiAsF6 、Li
AlCl4 、Li(CF3 SO2 )2 Nなどが例示さ
れ、それらの一種または二種以上の混合物が使用され
る。有機溶媒としては、エチレンカーボネート、プロピ
レンカーボネート、ジメチルカーボネート、ジエチルカ
ーボネート、エチルメチルカーボネート、ジメチルスル
ホキシド、スルホラン、γ−ブチロラクトン、1,2−
ジメトキシエタン、N,N−ジメチルホルムアミド、テ
トラヒドロフラン、1,3−ジオキソラン、2−メチル
テトラヒドロフラン、ジエチルエーテルなどが例示さ
れ、それらの一種または二種以上の混合物が使用され
る。特に電池の充放電特性の点から、エチレンカーボネ
ート、プロピレンカーボネート、ジエチルカーボネート
の混合溶媒が好ましい。電解液中における上記塩類の濃
度は、0.1〜3モル/リットル程度が適当である。Examples of the non-aqueous electrolyte include an electrolyte in which salts are dissolved in an organic solvent. The salts include LiC
10 4 , LiBF 4 , LiPF 6 , LiAsF 6 , Li
Examples thereof include AlCl 4 and Li (CF 3 SO 2 ) 2 N, and one or a mixture of two or more thereof is used. Examples of the organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone, and 1,2-
Examples thereof include dimethoxyethane, N, N-dimethylformamide, tetrahydrofuran, 1,3-dioxolan, 2-methyltetrahydrofuran, diethyl ether, and the like, and one or a mixture of two or more thereof is used. In particular, a mixed solvent of ethylene carbonate, propylene carbonate, and diethyl carbonate is preferable from the viewpoint of the charge and discharge characteristics of the battery. The appropriate concentration of the salts in the electrolyte is about 0.1 to 3 mol / l.
【0021】[0021]
【実施例】以下、実施例により本発明を一層詳細に説明
するとともに、比較例をも挙げて本発明の顕著な効果を
示す。EXAMPLES The present invention will be described in more detail with reference to the following examples, and comparative examples will also be described to show the remarkable effects of the present invention.
【0022】実施例1 D002 が0.336nm、Lc が50nm、平均外径が
5.15μm、平均長さが30μmの黒鉛繊維からなる
負極活物質90重量部、ポリフッ化ビニリデン10重量
部、およびN−メチル2ピロリドン90重量部とを攪拌
混合してスラリーとした。ついで厚さ10μmの銅箔の
両面に該スラリーを塗布し乾燥し、その後、1トンf/
cmの線荷重でロール圧延し、かくして負極活物質量が
約20mg/cm2 の負極シートを得た。一方、正極活
物質として330メッシュのタイラー篩を通過した微粒
状のLiCoO2 用い、該正極活物質90重量部、アセ
チレンブラック5重量部、ポリフッ化ビニリデン5重量
部、およびN−メチル2ピロリドン40重量部とを混合
してスラリーとした。このスラリーを厚さ20μmのア
ルミニウム箔の両面に塗布し乾燥して、20mg/cm
2 正極活物質を有する正極シートを得た。さらにセパレ
ータとして、厚さ10μmの多孔性ポリエチレンシート
の両面に厚さ10μmの多孔性ポリプロピレンシートが
部分的な熱溶着にて接合した三層構造であり、気密度が
600ガーレー(秒/100cc)であるものを用意し
た。上記の正負極シートをその間にセパレータを介して
密着対向させ、エチレンカーボネート、プロピレンカー
ボネート、およびジエチルカーボネートの混合溶媒(混
合体積比率は3:2:5)1リットルあたり1モルのL
iPF6 を溶解してなる溶液を電解液として使用して、
これを上記正負極シートとセパレータとの間に含浸して
密閉式の単3型リチウム二次電池を作製した。Example 1 90 parts by weight of a negative electrode active material made of graphite fiber having a D002 of 0.336 nm, an Lc of 50 nm, an average outer diameter of 5.15 μm, and an average length of 30 μm, 10 parts by weight of polyvinylidene fluoride, and N -Methyl 2-pyrrolidone (90 parts by weight) was mixed with stirring to form a slurry. Then, the slurry was applied to both sides of a copper foil having a thickness of 10 μm and dried, and then 1 ton f /
Rolling was performed with a linear load of cm, thus obtaining a negative electrode sheet having a negative electrode active material amount of about 20 mg / cm 2 . On the other hand, finely divided LiCoO 2 passed through a 330 mesh Tyler sieve was used as a positive electrode active material, 90 parts by weight of the positive electrode active material, 5 parts by weight of acetylene black, 5 parts by weight of polyvinylidene fluoride, and 40 parts by weight of N-methyl-2-pyrrolidone And the mixture was mixed to form a slurry. This slurry was applied to both sides of a 20 μm-thick aluminum foil, dried, and dried at 20 mg / cm.
2 A positive electrode sheet having a positive electrode active material was obtained. Further, the separator has a three-layer structure in which a 10-μm-thick porous polyethylene sheet is joined to both surfaces of a 10-μm-thick porous polyethylene sheet by partial heat welding, and has an air density of 600 Gurley (sec / 100 cc). I prepared something. The above positive and negative electrode sheets are closely opposed to each other with a separator therebetween, and 1 mol of L per liter of a mixed solvent of ethylene carbonate, propylene carbonate and diethyl carbonate (mixing volume ratio is 3: 2: 5).
Using a solution obtained by dissolving iPF 6 as an electrolyte,
This was impregnated between the positive and negative electrode sheets and the separator to produce a sealed AA lithium secondary battery.
【0023】実施例2 セパレータとして、厚さ10μmの多孔性ポリエチレン
シートの両面に厚さ20μmの多孔性ポリプロピレンシ
ートが部分的な熱溶着にて接合した三層構造であり、気
密度が300ガーレー(秒/100cc)であるものを
用いた以外は実施例1と同様にして密閉式の単3型リチ
ウム二次電池を作製した。Example 2 As a separator, a 20 μm-thick porous polypropylene sheet was joined to both sides of a 10 μm-thick porous polyethylene sheet by partial heat welding, and the airtightness was 300 Gurley ( Sec / 100 cc), and a sealed AA lithium secondary battery was produced in the same manner as in Example 1 except that the battery used was a battery of 1 sec / 100 cc).
【0024】実施例3 セパレータとして、厚さ10μmの多孔性ポリエチレン
シートの片面のみに厚さ15μmの多孔性ポリプロピレ
ンシートが部分的な熱溶着にて接合した二層構造であ
り、気密度が200ガーレー(秒/100cc)である
ものを用い、該多孔性ポリプロピレンシート層が負極活
物質層に対向するようにした以外は実施例1と同様にし
て密閉式の単3型リチウム二次電池を作製した。Example 3 As a separator, a 15-μm-thick porous polypropylene sheet was joined to only one side of a 10-μm-thick porous polyethylene sheet by partial thermal welding, and the air density was 200 Gurley. (Sec / 100 cc), and a sealed AA lithium secondary battery was produced in the same manner as in Example 1 except that the porous polypropylene sheet layer was opposed to the negative electrode active material layer. .
【0025】実施例4 セパレータとして、厚さ3μmの多孔性ポリエチレンシ
ートの両面に厚さ8μmの多孔性ポリプロピレンシート
が部分的な熱溶着にて接合した三層構造であり、気密度
が1000ガーレー(秒/100cc)であるものを用
いた以外は実施例1と同様にして密閉式の単3型リチウ
ム二次電池を作製した。Example 4 As a separator, a porous polyethylene sheet having a thickness of 3 μm was formed into a three-layer structure in which a porous polypropylene sheet having a thickness of 8 μm was joined to both sides by partial heat welding, and the air density was 1000 Gurley ( Sec / 100 cc), and a sealed AA lithium secondary battery was produced in the same manner as in Example 1 except that the battery used was a battery of 1 sec / 100 cc).
【0026】実施例5 負極活物質として、D002 が0.336nm、Lc が5
0nm、平均外径が10.2μm、平均長さが30μm
の黒鉛繊維を用いた以外は実施例1と同様にして密閉式
の単3型リチウム二次電池を作製した。Example 5 As the negative electrode active material, D002 was 0.336 nm and Lc was 5
0 nm, average outer diameter 10.2 μm, average length 30 μm
A sealed AA lithium secondary battery was produced in the same manner as in Example 1 except that the graphite fiber was used.
【0027】実施例6 負極活物質として、D002 が0.336nm、Lc が5
0nm、平均外径が10.2μm、平均長さが50μm
の黒鉛繊維を用いた以外は実施例1と同様にして密閉式
の単3型リチウム二次電池を作製した。Example 6 As the negative electrode active material, D002 was 0.336 nm and Lc was 5
0 nm, average outer diameter 10.2 μm, average length 50 μm
A sealed AA lithium secondary battery was produced in the same manner as in Example 1 except that the graphite fiber was used.
【0028】実施例7 正極活物質として330メッシュのタイラー篩を通過し
た微粒状のLiNiO 2 用いた以外は実施例1と同様に
して密閉式の単3型リチウム二次電池を作製した。Example 7 As a positive electrode active material, it passed through a 330 mesh Tyler sieve.
Fine-grained LiNiO TwoSame as Example 1 except for using
Thus, a sealed AA type lithium secondary battery was produced.
【0029】実施例8 正極活物質として330メッシュのタイラー篩を通過し
た微粒状のLiMnO 2 用いた以外は実施例1と同様に
して密閉式の単3型リチウム二次電池を作製した。Example 8 As a positive electrode active material, it was passed through a 330 mesh Tyler sieve.
Fine LiMnO TwoSame as Example 1 except for using
Thus, a sealed AA type lithium secondary battery was produced.
【0030】実施例9 電解液としてエチレンカーボネートとエチルメチルカー
ボネートの混合溶媒(混合体積比率は1:1)を用いた
以外は実施例1と同様にして密閉式の単3型リチウム二
次電池を作製した。Example 9 A sealed AA lithium secondary battery was prepared in the same manner as in Example 1 except that a mixed solvent of ethylene carbonate and ethyl methyl carbonate (mixing volume ratio was 1: 1) was used as an electrolytic solution. Produced.
【0031】比較例1 セパレータとして、厚さ25μmの多孔性ポリエチレン
シートを用いた以外は実施例1と同様にして密閉式の単
3型リチウム二次電池を作製した。Comparative Example 1 A sealed AA lithium secondary battery was produced in the same manner as in Example 1, except that a porous polyethylene sheet having a thickness of 25 μm was used as a separator.
【0032】比較例2 セパレータとして、厚さ25μmの多孔性ポリプロピレ
ンシートを用いた以外は実施例1と同様にして密閉式の
単3型リチウム二次電池を作製した。Comparative Example 2 A sealed AA type lithium secondary battery was produced in the same manner as in Example 1 except that a porous polypropylene sheet having a thickness of 25 μm was used as a separator.
【0033】比較例3 負極活物質として、D002 が0.335nmである燐片
状の天然黒鉛を用いた以外は実施例1と同様にして密閉
式の単3型リチウム二次電池を作製した。Comparative Example 3 A sealed AA lithium secondary battery was produced in the same manner as in Example 1 except that flaky natural graphite having a D002 of 0.335 nm was used as the negative electrode active material.
【0034】比較例4 負極活物質として、D002 が0.336nmである燐片
状の人造黒鉛を用いた以外は実施例1と同様にして密閉
式の単3型リチウム二次電池を作製した。Comparative Example 4 A sealed AA lithium secondary battery was produced in the same manner as in Example 1 except that flaky artificial graphite having a D002 of 0.336 nm was used as the negative electrode active material.
【0035】比較例5 負極活物質として、D002 が0.340nmであるソフ
トカーボン(非黒鉛)を用いた以外は実施例1と同様に
して密閉式の単3型リチウム二次電池を作製した。Comparative Example 5 A sealed AA type lithium secondary battery was produced in the same manner as in Example 1 except that soft carbon (non-graphite) having D002 of 0.340 nm was used as the negative electrode active material.
【0036】比較例6 負極活物質として、D002 が0.345nmであるハー
ドカーボン(非黒鉛)を用いた以外は実施例1と同様に
して密閉式の単3型リチウム二次電池を作製した。Comparative Example 6 A sealed AA lithium secondary battery was produced in the same manner as in Example 1 except that hard carbon (non-graphite) having D002 of 0.345 nm was used as the negative electrode active material.
【0037】実施例1〜9、比較例1〜6の各密閉式の
単3型リチウム二次電池について、下記に示す方法によ
り放電容量、自己放電特性、シャットダウン温度、およ
び発火温度をそれぞれ測定した。 放電容量の測定方法:充電電流250mAにて5時間か
けて放電電圧が4.2Vとなる満充電状態とし、その後
放電電流250mAにて放電せしめ、放電電圧が3.0
Vに低下するまでの放電時間を測定する。この放電時間
から放電容量(mA・H/g)を算出する。 自己放電特性の測定方法:充電電流250mAにて5時
間かけて放電電圧が4.2Vとなる満充電状態とし、そ
の状態にて自然放置し、二週間放置後における放電電圧
を測定し、その放電電圧をもって自己放電特性とする。 シャットダウン温度の測定方法:充電電流250mAに
て5時間かけて放電電圧が4.2Vとなる満充電状態と
し、その後、オーブン内に設置して5℃/分の速度でオ
ーブン内の温度を上昇せしめ、同時に電池の正負極間の
電気抵抗、即ち電池の内部抵抗を測定し、該内部抵抗が
100Ωとなるときのオーブン内の温度を測定する。そ
の温度をもってシャットダウン温度とする。 発火温度の測定方法:上記シャットダウン温度の測定の
場合と同様にしてオーブン内の温度を上昇せしめ、肉眼
観察により電池に発火が認められたときのオーブン内の
温度測定する。その温度をもって電池の発火温度とす
る。With respect to the sealed AA lithium secondary batteries of Examples 1 to 9 and Comparative Examples 1 to 6, the discharge capacity, self-discharge characteristics, shutdown temperature, and ignition temperature were measured by the following methods. . Measuring method of discharge capacity: Full charge state where discharge voltage becomes 4.2 V over 5 hours at charge current of 250 mA, then discharge at discharge current of 250 mA, discharge voltage of 3.0
The discharge time until the voltage drops to V is measured. The discharge capacity (mA · H / g) is calculated from the discharge time. Method for measuring self-discharge characteristics: A full charge state in which the discharge voltage reaches 4.2 V over a period of 5 hours at a charging current of 250 mA, allowed to stand naturally in that state, measured the discharge voltage after standing for two weeks, and discharged The voltage is used as the self-discharge characteristic. Measurement method of shutdown temperature: Charged current is 250 mA, and the discharge voltage is 4.2 V over 5 hours to make the battery fully charged, and then placed in an oven to increase the temperature in the oven at a rate of 5 ° C./min. At the same time, the electric resistance between the positive and negative electrodes of the battery, that is, the internal resistance of the battery is measured, and the temperature in the oven when the internal resistance becomes 100Ω is measured. This temperature is used as the shutdown temperature. Measuring method of ignition temperature: Increase the temperature in the oven in the same manner as in the measurement of the shutdown temperature, and measure the temperature in the oven when ignition of the battery is recognized by visual observation. This temperature is defined as the ignition temperature of the battery.
【0038】表1に上記の測定結果を示すが、多孔性ポ
リエチレンシートのみからなるセパレータを用いた比較
例1では、黒鉛繊維に対する耐穿刺性が乏しいために正
負極間で部分的導通が生じ、このために自然放置中に初
期の4.2Vから自己放電にて二週間放置後は4.02
Vまで、即ち約4.3%の低下が生じている。多孔性ポ
リプロピレンシートのみからなるセパレータを用いた比
較例2では、シャットダウン温度が高く電池の安全使用
上から危険であることがわかる。また負極活物質として
黒鉛繊維を使用しない比較例3〜6は、いずれも放電容
量の点で不備である。これに対して、実施例1〜9の電
池は、いずれの面においても良好な成績を有している。The results of the above measurements are shown in Table 1. In Comparative Example 1 using a separator consisting of only a porous polyethylene sheet, partial conduction between the positive and negative electrodes occurred due to poor puncture resistance to graphite fibers. For this reason, after leaving for 4.2 weeks by self-discharge from the initial 4.2 V during natural standing, it is 4.02 after leaving for two weeks.
V, or about 4.3%. In Comparative Example 2 using the separator composed of only the porous polypropylene sheet, the shutdown temperature is high, which is dangerous from the viewpoint of safe use of the battery. Comparative Examples 3 to 6, in which no graphite fiber was used as the negative electrode active material, were all inadequate in terms of discharge capacity. On the other hand, the batteries of Examples 1 to 9 have good results in all aspects.
【0039】[0039]
【表1】 [Table 1]
【0040】[0040]
【発明の効果】本発明の非水電解質リチウム二次電池
は、導電性黒鉛繊維を負極活物質として使用た場合に生
じる問題、即ち導電性黒鉛繊維によるセパレータの突き
破り並びに該突き破りに帰因する正負極間の短絡問題が
改善されるので、高放電容量や充放電サイクル特性な
ど、導電性黒鉛繊維負極活物質についてよく知られた長
所を活かしつつ、高歩留りにて工業的に製造することが
できる。さらに、本発明の電池は、使用上の安全性の面
でも優れている。The nonaqueous electrolyte lithium secondary battery of the present invention has a problem that occurs when conductive graphite fibers are used as a negative electrode active material, that is, the separator breaks through the conductive graphite fibers and the positive electrode caused by the breakthrough. Since the problem of short circuit between the negative electrodes is improved, it is possible to industrially manufacture the conductive graphite fiber negative electrode active material at a high yield while utilizing well-known advantages such as a high discharge capacity and charge / discharge cycle characteristics. . Further, the battery of the present invention is excellent in safety in use.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 10/40 H01M 10/40 A (56)参考文献 特開 平8−83609(JP,A) 特開 平8−250097(JP,A) 特開 平4−162370(JP,A) 特開 平5−13088(JP,A) 特表 平7−506699(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 2/14 - 2/18 H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI H01M 10/40 H01M 10/40 A (56) References JP-A-8-83609 (JP, A) JP-A-8-250097 ( JP, A) JP-A-4-162370 (JP, A) JP-A-5-13088 (JP, A) JP-A-7-506699 (JP, A) (58) Fields investigated (Int. Cl. 7 , (DB name) H01M 2/14-2/18 H01M 4/02-4/04 H01M 4/58 H01M 10/40
Claims (3)
と、Li−Co系複合酸化物、Li−Ni系複合酸化
物、およびLi−Mn系複合酸化物からなる群から選ば
れた少なくとも1種を正極活物質とする正極との間にポ
リエチレン層とポリプロピレン層とからなる複合セパレ
ータを有し、該複合セパレータはポリプロピレン層を負
極と対向させたものであり、電解液の溶媒がエチレンカ
ーボネートとプロピレンカーボネートとジエチルカーボ
ネートの混合溶媒であることを特徴とする非水電解質リ
チウム二次電池。At least one selected from the group consisting of a negative electrode using conductive graphite fibers as a negative electrode active material, a Li-Co-based composite oxide, a Li-Ni-based composite oxide, and a Li-Mn-based composite oxide. one to have a composite separator comprising a polyethylene layer and a polypropylene layer between the positive electrode to the positive electrode active material, the composite separator negative polypropylene layer
Electrolyte solvent is ethylene carbonate
-Carbonate, propylene carbonate and diethyl carbonate
A non-aqueous electrolyte lithium secondary battery, characterized mixed solvent der Rukoto Nate.
m、平均長さ10〜200μmである請求項1記載の非
水電解質リチウム二次電池。2. The conductive graphite fiber has an average outer diameter of 2 to 20 μm.
The non-aqueous electrolyte lithium secondary battery according to claim 1, wherein the average length is 10 to 200 μm.
径が0.08〜0.25μmである請求項1または2記
載の非水電解質リチウム二次電池。3. The composite separator is porous;
The non-aqueous electrolyte lithium secondary battery according to claim 1 , wherein the diameter is 0.08 to 0.25 μm .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12679497A JP3236796B2 (en) | 1997-05-16 | 1997-05-16 | Non-aqueous electrolyte lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12679497A JP3236796B2 (en) | 1997-05-16 | 1997-05-16 | Non-aqueous electrolyte lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10321211A JPH10321211A (en) | 1998-12-04 |
JP3236796B2 true JP3236796B2 (en) | 2001-12-10 |
Family
ID=14944120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12679497A Expired - Fee Related JP3236796B2 (en) | 1997-05-16 | 1997-05-16 | Non-aqueous electrolyte lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3236796B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040115523A1 (en) * | 2001-02-14 | 2004-06-17 | Hayato Hommura | Non-aqueous electrolyte battery |
-
1997
- 1997-05-16 JP JP12679497A patent/JP3236796B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10321211A (en) | 1998-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101373850B (en) | Non-aqueous secondary battery | |
KR101455663B1 (en) | Lithium-ion secondary battery | |
JP4213687B2 (en) | Nonaqueous electrolyte battery and battery pack | |
JP4927064B2 (en) | Secondary battery | |
JP6305263B2 (en) | Non-aqueous electrolyte battery, battery pack, battery pack and car | |
EP2525427A2 (en) | Electric storage device and positive electrode | |
JP3492173B2 (en) | Non-aqueous battery | |
WO2014010526A1 (en) | Non-aqueous electrolyte secondary battery | |
US8431267B2 (en) | Nonaqueous secondary battery | |
EP3322024B1 (en) | Nonaqueous electrolyte battery and battery pack | |
JP6656370B2 (en) | Lithium ion secondary battery and battery pack | |
JP2021123517A (en) | Method for manufacturing porous silicon particles, method for manufacturing electrodes for power storage devices, method for manufacturing all-solid-state lithium-ion secondary batteries, porous silicon particles, electrodes for power storage devices and all-solid-state lithium-ion secondary batteries | |
KR20080107047A (en) | Electrode assembly with excellent weldability of electrode lead and electrode tab and secondary battery containing same | |
JPH11204145A (en) | Lithium secondary battery | |
JP2002279956A (en) | Nonaqueous electrolyte battery | |
JPWO2015046394A1 (en) | Negative electrode active material, negative electrode using the same, and lithium ion secondary battery | |
JP6643174B2 (en) | Manufacturing method of lithium ion secondary battery | |
EP3883049A1 (en) | Battery | |
JP5213003B2 (en) | Nonaqueous electrolyte secondary battery | |
JP7136347B2 (en) | secondary battery | |
JP2002015720A (en) | Nonaqueous electrolyte secondary battery | |
JP3236796B2 (en) | Non-aqueous electrolyte lithium secondary battery | |
JP2019169346A (en) | Lithium ion secondary battery | |
CN115504475A (en) | Porous silicon material manufacturing method, porous silicon material, and electricity storage device | |
JP2002260603A (en) | Laminated outer package sealed battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |