JP3233433B2 - Solar power output control method - Google Patents
Solar power output control methodInfo
- Publication number
- JP3233433B2 JP3233433B2 JP07815492A JP7815492A JP3233433B2 JP 3233433 B2 JP3233433 B2 JP 3233433B2 JP 07815492 A JP07815492 A JP 07815492A JP 7815492 A JP7815492 A JP 7815492A JP 3233433 B2 JP3233433 B2 JP 3233433B2
- Authority
- JP
- Japan
- Prior art keywords
- output
- power generation
- photovoltaic power
- generation system
- solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Control Of Electrical Variables (AREA)
- Photovoltaic Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は商用電力系統と連系して
運転する太陽光発電システムの出力制御方法に関する。
更に詳述すると、本発明は太陽光発電システムの商用電
力系統への電力出力を電力需要のピーク時に一致させる
ために個々の太陽光発電システムに適用される出力制御
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the output of a photovoltaic power generation system operated in connection with a commercial power system.
More specifically, the present invention provides power control applied to individual photovoltaic systems to match the power output to the commercial power system of the photovoltaic system at peak power demand.
About the method .
【0002】[0002]
【従来の技術】近年、夏期の冷房需要の増加に伴い電力
需要のピークが増加し、例えば電力不足による停電等の
虞が考えられ問題となっている。2. Description of the Related Art In recent years, the peak of power demand has increased with an increase in cooling demand in the summer season.
【0003】また、わが国では近い将来、個人住宅やビ
ルの屋上などに太陽電池を設置し、商用電力系統と連系
して運転する太陽光発電システムが広く普及するものと
予想される。In the near future, it is expected that a solar power generation system in which a solar cell is installed in a private house or a building rooftop and operated in connection with a commercial power system will be widely used in Japan in the near future.
【0004】このような太陽光発電システムは、余剰電
力を商用電力系統に逆潮流させるもので、全国的規模で
みると特に日射強度と負荷量との間に比較的良い相関が
みられる夏期においてピーク時の電力需要を抑制する効
果があるものと期待される。この太陽光発電システムに
使用される太陽電池は、近年、変換効率が非常に高く、
出力も大きなものが開発されている。[0004] Such a photovoltaic power generation system causes surplus power to flow backward to the commercial power system, and in the summer, when a relatively good correlation is observed between the solar radiation intensity and the load on a nationwide scale. It is expected to have the effect of suppressing power demand during peak hours. In recent years, solar cells used in this solar power generation system have extremely high conversion efficiency,
Large output has been developed.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、夏期の
電力需要のピークは日射強度のピーク時間より2〜3時
間程度遅れて発生する傾向にあり、単純に日射量強度に
追従するように太陽光発電システムの出力電力を制御し
た場合には、最大でも定格の50%程度しかピーク需要
の削減に寄与できない。However, the peak of the power demand in summer tends to occur about two to three hours later than the peak time of the solar radiation intensity, and the solar power generation simply follows the solar radiation intensity. When the output power of the system is controlled, only about 50% of the rated power can contribute to the reduction of the peak demand at the maximum.
【0006】夏期のピーク需用発生日における典型的な
日射強度および全国総合電力需用の各経時変化を図3に
示す。ここで、日射強度は全国の平均値である。FIG. 3 shows the typical solar radiation intensity and the time-dependent changes in the nationwide total power demand on the day of peak demand in summer. Here, the solar radiation intensity is an average value of the whole country.
【0007】これらの比較からわかるように、電力需用
のピークは日射強度のピーク時刻より、2〜3時間程度
遅れて発生する。また、太陽電池出力は日射強度に比例
する。したがって、太陽光発電システムの総合発電出力
の経時特性は日射強度の経時特性に一致するものとな
り、この結果、システム総合でピーク削減への寄与分は
定格の50%程度にとどまり、効率よくピーク需用を削
減することができない。As can be seen from these comparisons, the peak for power demand occurs about two to three hours later than the peak time of the solar radiation intensity. Further, the solar cell output is proportional to the solar radiation intensity. Therefore, the temporal characteristics of the total power output of the photovoltaic power generation system match the temporal characteristics of the solar radiation intensity. As a result, the contribution to the peak reduction in the overall system is only about 50% of the rated value, and the peak demand is efficiently increased. Use cannot be reduced.
【0008】そこで、本発明者等は太陽光発電システム
を利用し、その定格容量相当のピーク需用削減を行うた
めに、個々の太陽光発電システムに蓄電池を併置して、
太陽光発電システムの出力電力の経時変化を需用の経時
変化に一致するように制御することを考えた。Therefore, the present inventors utilize a photovoltaic power generation system and, in order to reduce the peak demand corresponding to the rated capacity of the photovoltaic power generation system, attach a storage battery to each photovoltaic power generation system.
We considered controlling the change over time of the output power of the photovoltaic power generation system to match the change over time for demand.
【0009】このような制御を実用化するには以下の事
項が要求される。 a)個々の太陽光発電システムの出力を制御するために
は、通信線を別途布設して電力会社から一括集中制御す
る方式が最も適確であるが、対象が個人住宅を中心に広
く分散普及する太陽光発電システムであるため、コスト
的にみて現実的ではない。このため、これらの制御はシ
ステム個々で独立して自動的に行われる必要がある。 b)一日の日射量が大きくピーク需用が発生するような
日には、太陽光発電システムの出力ピーク時刻を需用ピ
ーク時刻に一致するように日射強度のピーク時刻より2
〜3時間程度遅らせ、かつ需用ピーク時刻には極力太陽
光発電システムの定格に近い電力を出力するように制御
することが望ましい。 c)ピーク電力が発生しないような日射量が小さい日に
は、充電不足による急激なシステムの停止や、蓄電池の
過放電を避けるために、一日の商用電力系統への供給電
力量を抑える必要がある。このため、太陽光発電システ
ムから商用電力系統へ供給される一日の電力量は一日で
得られる日射量に比例するように制御することが望まれ
る。To make such control practical, the following items are required. a) In order to control the output of individual photovoltaic power generation systems, the most appropriate method is to separately lay out communication lines and collectively control power from a power company. Because it is a photovoltaic power generation system, it is not realistic in terms of cost. For this reason, these controls need to be performed automatically and independently in each system. b) On a day when the amount of solar radiation in a day is large and peak demand occurs, the peak output time of the photovoltaic power generation system is set to be two times smaller than the peak time of solar radiation intensity so as to coincide with the peak demand.
It is desirable to control the power so as to output the power as close as possible to the rating of the photovoltaic power generation system as much as possible at the peak demand time by about 3 hours. c) On days when the amount of solar radiation is small such that peak power does not occur, it is necessary to suppress the amount of power supplied to the commercial power system per day in order to avoid sudden stop of the system due to insufficient charging or overdischarge of the storage battery. There is. For this reason, it is desired to control the amount of electric power supplied from the solar power generation system to the commercial power system in a day so as to be proportional to the amount of solar radiation obtained in one day.
【0010】しかしながら、以上の3点を満足しかつ太
陽光発電システム個々に適用される制御方式はこれまで
確立されていない。[0010] However, a control method that satisfies the above three points and is applied to each photovoltaic power generation system has not been established so far.
【0011】本発明は、上記の3つの要求事項の全てを
満足する一般需要家設置の太陽光発電システムの出力制
御方法を提供すること、即ち太陽光発電システム設備容
量相当の夏期ピーク電力需要削減を簡易かつ確実に実施
でき、しかもその出力制御のための複雑な操作を必要と
せず、更に一般需要家設置のシステムにも適用できる太
陽光発電出力制御方法を提供することを目的とするもの
である。The present invention provides a method for controlling the output of a photovoltaic power generation system installed in a general customer, which satisfies all of the above three requirements, that is, a reduction in summer peak power demand corresponding to the capacity of the photovoltaic power generation system. It is an object of the present invention to provide a photovoltaic power output control method which can easily and reliably perform the above, does not require a complicated operation for its output control, and can be applied to a system installed by general consumers. is there.
【0012】[0012]
【課題を解決するための手段】かかる目的を達成するた
め、本発明の太陽光発電出力制御方法は、商用電力系統
に連系して運転する太陽光発電システムにおいて、太陽
光発電システムに太陽電池からの出力を蓄電する蓄電池
を併置するとともに、太陽電池の出力あるいは日射強度
計からの出力に比例しかつ所定の遅れを与えて太陽光発
電システムの出力制御を行なう遅延回路を設け、商用電
力系統に太陽光発電システムの出力を太陽電池出力ある
いは日射強度に比例させつつ太陽光発電システムの出力
の経時変化が、商用電力系統の夏期ピーク時間帯の需要
の経時変化に一致するように所定時間遅延して重畳する
ようにしている。In order to achieve the above object, a photovoltaic power generation output control method according to the present invention relates to a photovoltaic power generation system that is operated in connection with a commercial power system. And a delay circuit that controls the output of the photovoltaic power generation system by providing a predetermined delay in proportion to the output of the solar cell or the output from the insolation meter, together with a storage battery for storing the output from the commercial power system. The output of the photovoltaic power generation system is proportional to the output of the photovoltaic power generation or the intensity of solar radiation.
Over time is the demand for commercial power grid during peak summer season
Is superimposed with a delay of a predetermined time so as to coincide with the change with time .
【0013】また、本発明の太陽光発電出力制御方法
は、商用電力系統に連系して運転する太陽光発電システ
ムにおいて、太陽光発電システムに太陽電池からの出力
を蓄電する蓄電池を併置すると共に、太陽光発電システ
ムの出力の経時変化が、商用電力系統の夏期ピーク時間
帯の需要の経時変化に一致するように、太陽電池の出力
に比例した信号値または太陽光発電システムと併置した
日射強度計からの出力を一次遅れ系の積分回路で積分
し、その積分回路の出力に比例するように太陽光発電シ
ステムからの出力を制御して商用電力系統に重畳するよ
うにしている。Further, the photovoltaic power generation output control of the present inventionMethod
Is a photovoltaic power generation system
Output from the solar cell to the solar power generation system
And a storage battery for storingSolar power system
Changes in the output of the power system over time
To match the aging of the belt demand, Solar cell output
Signal value proportional to
Integrate the output from the solar irradiance meter with the first-order lag system integration circuit
And the solar power generation system is proportional to the output of the integration circuit.
The output from the system is controlled and superimposed on the commercial power system.
I'm trying.
【0014】[0014]
【作用】したがって、日射強度値または日射強度に比例
する太陽電池の出力信号値に日射強度のピーク時刻と商
用電力需要のピーク時刻との差に相当する分の遅れを与
え、かつこの遅れ信号値に比例するようにインバータ出
力電力を逐次制御する。これによって太陽光発電システ
ムの出力電力の経時変化を電力需要の経時変化に自動的
に一致させる。Therefore, a delay corresponding to the difference between the peak time of the solar radiation intensity and the peak time of the commercial power demand is given to the solar radiation intensity value or the output signal value of the solar cell proportional to the solar radiation intensity, and the delay signal value The inverter output power is sequentially controlled so as to be proportional to. As a result, the change over time in the output power of the photovoltaic power generation system automatically matches the change over time in the power demand.
【0015】この場合、午前中の太陽電池の余剰電力が
蓄電池に充電される一方、午後のピーク需要時にはそれ
が放電され、日射強度のピークを過ぎたことによる太陽
電池不足分が自動的に補われ、太陽光発電システムの定
格に相当する分の電力需要が削減される。In this case, the surplus power of the solar cell is charged to the storage battery in the morning, and is discharged at the peak demand in the afternoon, and the shortage of the solar cell due to passing the peak of the solar radiation intensity is automatically compensated. Therefore, the power demand corresponding to the rating of the photovoltaic power generation system is reduced.
【0016】また、日射量の低い日には自動的にインバ
ータの出力電力量そのものが抑えられることに伴って蓄
電池からの放電量も抑えられ、蓄電池の残存容量不足に
よる太陽光発電システムの急激な停止や蓄電池の過放電
を避ける。On the day when the amount of solar radiation is low, the output power of the inverter is automatically suppressed and the amount of discharge from the storage battery is also reduced. Avoid shutdowns and over-discharge of storage batteries.
【0017】[0017]
【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of the present invention will be described below in detail with reference to the embodiments shown in the drawings.
【0018】図1に本発明の太陽光発電出力制御方法の
一実施例を示す。この太陽光発電出力制御方法は、基本
的には太陽電池1から直流電力を得て、これをインバー
タ2により交流電力に変換してから、連系点3にて接続
された商用配電線4に供給するように、即ち商用電力に
重畳するように構成されている。そして、太陽電池1と
インバータ2との間に、太陽電池1の出力あるいは図示
していない日射強度計からの出力即ち日射強度に比例し
かつ所定の遅れを与えて太陽光発電システムの出力制御
を行う遅延回路を構成する積分器5と増幅器6とが接続
されている。積分器5には太陽電池1からの出力電流が
入力されて一次遅れの積分値が計算され、その積分値に
比例した値の信号が出力される。この積分器5の出力は
増幅器6に入力されて増幅されてからインバータ2に送
られ、このインバータ2の出力電力を決定している。蓄
電池7はインバータ2の出力電力が太陽電池1の出力よ
り小さい場合には余剰電力を充電し、逆にインバータ2
の出力電力が太陽電池1の出力より大きい場合には放電
により不足電力を補う。蓄電池7は太陽光発電システム
に定格出力の2時間分程度の小容量のもので十分であ
り、経済的で据付け場所もとらない。勿論、ピーク電力
需要時間が情勢の変化によって長くなればそれに応じて
2時間以上の蓄電容量を有するものが必要とされる場合
もある。FIG. 1 shows an embodiment of a photovoltaic power generation output control method according to the present invention. This solar power output control method basically obtains DC power from the solar cell 1, converts the DC power into AC power by the inverter 2, and then converts the DC power to the commercial distribution line 4 connected at the interconnection point 3. It is configured to supply, that is, superimpose on commercial power. Then, between the solar cell 1 and the inverter 2, an output of the solar cell 1 or an output from an insolation meter (not shown), that is, an insolation intensity, that is, a predetermined delay is given to control the output of the solar power generation system. An integrator 5 and an amplifier 6 that constitute a delay circuit for performing the operation are connected. The output current from the solar cell 1 is input to the integrator 5, an integrated value of the first-order lag is calculated, and a signal having a value proportional to the integrated value is output. The output of the integrator 5 is input to the amplifier 6, amplified, and then sent to the inverter 2 to determine the output power of the inverter 2. The storage battery 7 charges the surplus power when the output power of the inverter 2 is smaller than the output of the solar cell 1,
When the output power of the solar cell 1 is larger than the output of the solar cell 1, the insufficient power is compensated by discharging. The storage battery 7 having a small capacity of about 2 hours of the rated output for the photovoltaic power generation system is sufficient, and is economical and can be installed anywhere. Of course, if the peak power demand time is prolonged due to a change in circumstances, a power storage capacity of two hours or more may be required accordingly.
【0019】積分器5は図2に示すように、抵抗Rとコ
ンデンサCとによって構成され、抵抗RとコンデンサC
の時定数によって一次遅れの時間が決定される。一次遅
れの時間は電力需要のピーク時刻と日射強度のピーク時
刻の差に相当するように設定される。即ち、図3より明
らかなように、ピーク電力需用の発生は日射強度のピー
ク時刻より2〜3時間程度遅れる一方、各特性はいずれ
もほぼ概ね上に凸である。したがって、日射強度の特性
を時間軸方向に2〜3時間程度平行移動させることでこ
れらの経時特性をほぼ一致させることができる。The integrator 5 comprises a resistor R and a capacitor C as shown in FIG.
The time delay of the first order is determined by the time constant of The first-order lag time is set to correspond to the difference between the peak time of the power demand and the peak time of the solar radiation intensity. That is, as is apparent from FIG. 3 , the occurrence of the peak power demand is delayed by about 2 to 3 hours from the peak time of the insolation intensity, while each characteristic is almost upwardly convex. Therefore, by parallelly moving the characteristics of the solar radiation intensity in the direction of the time axis by about 2 to 3 hours, these temporal characteristics can be substantially matched.
【0020】以上のように構成された太陽光発電出力制
御方法によると、次のようにして日射強度の特性を時間
軸方向に2〜3時間程度平行移動させ、電力需要の経時
特性とほぼ一致させることができ、太陽光発電システム
の出力が商用電力8に重畳され負荷9の電力消費を補
う。いま、時刻tにおける増幅器6の出力値y(t)
は、積分器5への入力値をi(h)(h≦t)を用い
て、According to the photovoltaic power generation output control method configured as described above, the characteristic of the solar radiation intensity is translated in the time axis direction for about 2 to 3 hours as follows, and almost coincides with the temporal characteristic of the power demand. The output of the photovoltaic power generation system is superimposed on the commercial power 8 to supplement the power consumption of the load 9. Now, the output value y (t) of the amplifier 6 at time t
Expresses the input value to the integrator 5 by using i (h) (h ≦ t).
【0021】[0021]
【数1】 であらわされる。ここでτは積分回路の時定数、Aは増
幅器6の増幅率である。ここにインバータ2の出力ピー
ク時刻が電力需用のピーク時刻と一致するようにτ、ま
た、インバータ2の出力ピーク時刻に出力電力が定格に
なるようにAを定めることにより、夏期のピーク需用発
生日において、太陽光発電システムの出力経時特性は電
力需要の経時特性とほぼ一致し、太陽光発電システム定
格出力相当のピーク電力需要削減ができる。また、ピー
ク需要の発生しないような日射量の低い日には、太陽光
発電システム出力も自動的に抑えられ、蓄電池の過放電
を招くようなことはない。即ち、本実施例においては図
4の(A)及び(B)に示すように、太陽電池出力を時
間軸方向に平行移動させた特性と一致するように太陽光
発電システムを制御する構成となっている。したがっ
て、本実施例においては、一日に得られる太陽電池出力
電力量と太陽光発電システムの出力電力量は常時一致し
ている。換言すれば、天候が悪く一日を通じて太陽電池
出力が小さい時には自動的に太陽光発電システムの出力
電力量も同様に小さなものとなり、電池の過放電を防
ぐ。(Equation 1) It is represented by Here, τ is the time constant of the integration circuit, and A is the amplification factor of the amplifier 6. Here, τ is set so that the output peak time of the inverter 2 coincides with the peak time for power demand, and A is determined so that the output power becomes rated at the output peak time of the inverter 2, so that the peak demand for summer season is obtained. On the day of occurrence, the output aging characteristics of the photovoltaic power generation system substantially match the aging characteristics of power demand, and peak power demand corresponding to the rated output of the photovoltaic power generation system can be reduced. In addition, on a day with a low solar radiation when peak demand does not occur, the output of the photovoltaic power generation system is automatically suppressed, and the storage battery is not over-discharged. That is, in the present embodiment, as shown in FIGS. 4A and 4B, the configuration is such that the solar power generation system is controlled so as to match the characteristic obtained by translating the solar cell output in the time axis direction. ing. Therefore, in the present embodiment, the output power of the solar cell and the output power of the photovoltaic power generation system always coincide with each other. In other words, when the weather is bad and the solar cell output is small throughout the day, the output power of the photovoltaic power generation system automatically becomes similarly small to prevent overdischarge of the battery.
【0022】尚、上述の実施例は本発明の好適な実施の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能であ
る。例えば、本実施例では太陽電池1の出力電流を積分
回路5で一次積分するようにしているが、これに特に限
定されるものではなく、太陽電池1に併置された日射強
度計(図示省略)からの出力を積分回路5で一次積分
し、その出力信号にしたがってインバータ出力を制御す
るようにしても良い。The above embodiment is a preferred embodiment of the present invention, but the present invention is not limited to this embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, the output current of the solar cell 1 is first-order integrated by the integration circuit 5, but the present invention is not particularly limited to this, and a solar radiation intensity meter (not shown) provided in parallel with the solar cell 1 May be linearly integrated by the integration circuit 5 and the output of the inverter may be controlled according to the output signal.
【0023】[0023]
【発明の効果】以上の説明より明らかなように、本発明
の太陽光発電出力制御方法は、商用電力系統に連系して
運転する太陽光発電システムにおいて、前記太陽光発電
システムに太陽電池からの出力を蓄電する蓄電池を併置
すると共に、前記太陽電池の出力に比例した信号値また
は太陽光発電システムと併置した日射強度計からの出力
を太陽光発電システムの出力の経時変化が、商用電力系
統の夏期ピーク時間帯の需要の経時変化に一致するよう
に遅延回路で遅延し、その遅延回路の出力に比例するよ
うに前記太陽光発電システムからの出力を制御して前記
商用電力系統に重畳するようにしているので、太陽光発
電システム設備容量相当の夏期ピーク電力需要削減を簡
易に確実に実施できる。しかも、本発明の出力制御方法
によると、出力制御のための複雑な操作が必要なく、一
般需要家設置のシステムにも適用できる。As is apparent from the above description, the method for controlling the output of a photovoltaic power generation according to the present invention relates to a photovoltaic power generation system operated in connection with a commercial power system. Along with a storage battery for storing the output of the solar cell, a signal value proportional to the output of the solar cell or an output from a solar radiation intensity meter provided in parallel with the solar power generation system changes over time of the output of the solar power generation system,
The demand over time during the peak summer season
Delayed by the delay circuit, so by controlling the output from the photovoltaic system in proportion to the output of the delay circuits so as to overlap the commercial power system, solar power generation system installed capacity equivalent The peak power demand in summer can be easily and reliably reduced. Moreover, according to the output control method of the present invention, a complicated operation for output control is not required, and the present invention can be applied to a system installed in general consumers.
【図1】本発明の太陽光発電システムの一実施例を示す
概念図である。FIG. 1 is a conceptual diagram showing one embodiment of a solar power generation system of the present invention.
【図2】図1の実施例を構成する積分器と増幅器のブロ
ック図である。FIG. 2 is a block diagram of an integrator and an amplifier constituting the embodiment of FIG. 1;
【図3】夏期ピーク電力需要発生日における典型的な日
射強度の経時特性(全国平均値)、および全国総合電力
需要のピーク部分の経時特性を示したグラフである。FIG. 3 is a graph showing a time characteristic of a typical solar radiation intensity (nationwide average value) on a day when a summer peak power demand occurs, and a time characteristic of a peak portion of a nationwide total power demand.
【図4】本発明の太陽光発電出力制御方法の遅延制御を
説明するグラフであり、(A)は日射強度の強いとき、
(B)は日射強度の弱いときである。FIG. 4 is a graph for explaining delay control of the photovoltaic power generation output control method of the present invention.
(B) is when the solar radiation intensity is weak.
1 太陽電池 2 インバータ 3 連系点 4 配電線(商用電力系統) 5 積分器 6 増幅器 7 蓄電池 DESCRIPTION OF SYMBOLS 1 Solar cell 2 Inverter 3 Interconnection point 4 Distribution line (commercial power system) 5 Integrator 6 Amplifier 7 Storage battery
フロントページの続き (56)参考文献 特開 昭58−175929(JP,A) 特開 平1−164236(JP,A) 特開 平1−303022(JP,A) 特開 昭58−179133(JP,A) 特開 昭64−66718(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 7/00 - 7/12 H02J 7/34 - 7/36 G05F 1/67 H01L 31/04 H02J 3/00 H02J 3/38 Continuation of the front page (56) References JP-A-58-175929 (JP, A) JP-A-1-164236 (JP, A) JP-A-1-303022 (JP, A) JP-A-58-179133 (JP) , A) JP-A-64-66718 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02J 7 /00-7/12 H02J 7/34-7/36 G05F 1/67 H01L 31/04 H02J 3/00 H02J 3/38
Claims (2)
発電システムにおいて、前記太陽光発電システムに太陽
電池からの出力を蓄電する蓄電池を併置するとともに、
前記太陽電池の出力あるいは日射強度計からの出力に比
例しかつ所定の遅れを与えて前記太陽光発電システムの
出力制御を行なう遅延回路を設け、前記商用電力系統に
前記太陽光発電システムの出力を前記太陽電池出力ある
いは日射強度に比例させつつ前記太陽光発電システムの
出力の経時変化が、前記商用電力系統の夏期ピーク時間
帯の需要の経時変化に一致するように所定時間遅延して
重畳することを特徴とする太陽光発電出力制御方法。1. A photovoltaic power generation system that operates in connection with a commercial power system, wherein a storage battery that stores an output from a solar cell is provided in the photovoltaic power generation system,
Providing a delay circuit that performs output control of the photovoltaic power generation system by giving a predetermined delay in proportion to the output of the solar cell or the output from the insolation meter, and outputting the output of the photovoltaic power generation system to the commercial power system Of the photovoltaic power generation system in proportion to the solar cell output or insolation intensity
The change with time of the output is the summer peak time of the commercial power system.
A photovoltaic power generation output control method, wherein a superposition is carried out with a delay of a predetermined time so as to coincide with a change with time of the demand of a band .
発電システムにおいて、前記太陽光発電システムに太陽
電池からの出力を蓄電する蓄電池を併置すると共に、前
記太陽光発電システムの出力の経時変化が、前記商用電
力系統の夏期ピーク時間帯の需要の経時変化に一致する
ように、前記太陽電池の出力に比例した信号値または太
陽光発電システムと併置した日射強度計からの出力を一
次遅れ系の積分回路で積分し、その積分回路の出力に比
例するように前記太陽光発電システムからの出力を制御
して前記商用電力系統に重畳することを特徴とする太陽
光発電出力制御方法。2. A solar power generation system to operate with interconnection to the commercial power system, while juxtaposed the storage battery for storing electric outputs from the solar cell to the solar power generation systems, before
The change over time of the output of the photovoltaic power generation system
Match demand over time during peak summer hours of power systems
As described above, the signal value proportional to the output of the solar cell or the output from the solar irradiance meter that is juxtaposed with the photovoltaic power generation system is integrated by a first-order lag-type integrating circuit, and the solar value is proportional to the output of the integrating circuit. A photovoltaic power output control method, comprising controlling the output from a photovoltaic power system and superimposing the output on the commercial power system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07815492A JP3233433B2 (en) | 1992-02-29 | 1992-02-29 | Solar power output control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07815492A JP3233433B2 (en) | 1992-02-29 | 1992-02-29 | Solar power output control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05252671A JPH05252671A (en) | 1993-09-28 |
JP3233433B2 true JP3233433B2 (en) | 2001-11-26 |
Family
ID=13654002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07815492A Expired - Fee Related JP3233433B2 (en) | 1992-02-29 | 1992-02-29 | Solar power output control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3233433B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4236386B2 (en) * | 2001-02-27 | 2009-03-11 | 三洋電機株式会社 | Power trading method and trading system |
JP4596695B2 (en) * | 2001-07-16 | 2010-12-08 | 淳 伊賀 | Storage battery capacity calculation using photovoltaic power generation calculation and its operation method |
JP2003079054A (en) * | 2001-08-31 | 2003-03-14 | Sanyo Electric Co Ltd | Solar power generation system having storage battery |
JP5401003B2 (en) * | 2006-01-27 | 2014-01-29 | シャープ株式会社 | Solar power system |
JP2007330057A (en) * | 2006-06-08 | 2007-12-20 | Kawasaki Plant Systems Ltd | Charge control method of solar light system with secondary battery |
JP5602546B2 (en) * | 2010-08-31 | 2014-10-08 | 積水化学工業株式会社 | Grid interconnection method and grid interconnection system |
WO2012047898A2 (en) * | 2010-10-04 | 2012-04-12 | Cooper Technologies Company | Dynamic control of small-scale electrical loads for matching variations in electric utility supply |
JP5992748B2 (en) * | 2012-07-23 | 2016-09-14 | シャープ株式会社 | Solar power generation system and power supply system |
CN105027380B (en) | 2013-03-22 | 2018-09-11 | 松下知识产权经营株式会社 | Accumulating system, monitoring arrangement, electric control system |
WO2018109827A1 (en) * | 2016-12-13 | 2018-06-21 | 東芝三菱電機産業システム株式会社 | Power conversion device and solar power generation system |
-
1992
- 1992-02-29 JP JP07815492A patent/JP3233433B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05252671A (en) | 1993-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10857897B2 (en) | Energy generation and storage system with electric vehicle charging capability | |
US9923379B2 (en) | Hybrid inverter power control system for PV string, battery, grid and back-up loads | |
CN100380774C (en) | Electric power control apparatus, power generation system and power grid system | |
US6949843B2 (en) | Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems | |
US8541982B2 (en) | Battery system | |
US8901893B2 (en) | Electricity storage device and hybrid distributed power supply system | |
JP5584763B2 (en) | DC power distribution system | |
Jaboori et al. | A contribution to the simulation and design optimization of photovoltaic systems | |
EP0734111A2 (en) | High voltage photovoltaic energy station using a custom storage means | |
JP3233433B2 (en) | Solar power output control method | |
EP4032180A1 (en) | An apparatus, method and article for maximizing solar charge current through the use of split wire(s) in a solar array with solar panels connected in the combination of series and parallel | |
US20190222028A1 (en) | System and Method for Symmetric DC Regulation for Optimized Solar Power Generation and Storage | |
JP3581699B2 (en) | Power supply system and control method thereof | |
JP2003018763A (en) | Energy prediction method in solar power generation | |
Anis et al. | Energy losses in photovoltaic systems | |
JP2000166124A (en) | Auxiliary power unit | |
JP3223017U (en) | Storage and discharge device for photovoltaic power generation | |
JP3688744B2 (en) | Solar power plant | |
Parmar et al. | A review on renewable energy integration for electric vehicles | |
Ouedraogo et al. | Comparison of energy management strategies in a microgrid with photovoltaic/battery system | |
US12107539B2 (en) | Photovoltaic energy network | |
Tran et al. | Optimization for Microgrid with Considerations of Oversupply in National Grid based on Lagrange Multiplier | |
Chilate et al. | Case Study on Solar-Powered Hospital Elevator to Push Green Energy for the Use of Alternative Energy Sources-Sunlight | |
Schemes | Design Aspects of Solar PV Modules, Selection of Battery, and | |
CN109962483A (en) | Storage battery system and control method of storage battery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080921 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090921 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100921 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |