JP3228743B2 - High corrosion resistance α-sialon sintered body and method for producing the same - Google Patents
High corrosion resistance α-sialon sintered body and method for producing the sameInfo
- Publication number
- JP3228743B2 JP3228743B2 JP50510093A JP50510093A JP3228743B2 JP 3228743 B2 JP3228743 B2 JP 3228743B2 JP 50510093 A JP50510093 A JP 50510093A JP 50510093 A JP50510093 A JP 50510093A JP 3228743 B2 JP3228743 B2 JP 3228743B2
- Authority
- JP
- Japan
- Prior art keywords
- sialon
- sintered body
- weight
- sio
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 22
- 230000007797 corrosion Effects 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000203 mixture Substances 0.000 claims abstract description 41
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 6
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 6
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 21
- 238000005245 sintering Methods 0.000 claims description 21
- 239000006104 solid solution Substances 0.000 claims description 21
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 17
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 12
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 6
- 239000012298 atmosphere Substances 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 abstract description 16
- 238000007254 oxidation reaction Methods 0.000 abstract description 16
- 239000000126 substance Substances 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 3
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium(III) oxide Inorganic materials O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- OFHCOWSQAMBJIW-AVJTYSNKSA-N alfacalcidol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C OFHCOWSQAMBJIW-AVJTYSNKSA-N 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 39
- 239000013078 crystal Substances 0.000 description 18
- 239000012535 impurity Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- 229910003564 SiAlON Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000219977 Vigna Species 0.000 description 1
- 235000010726 Vigna sinensis Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/597—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】 技術分野 本発明は高耐食性を有する高耐食性α−サイアロン質
結合体及びその製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a highly corrosion resistant α-sialonic conjugate having high corrosion resistance and a method for producing the same.
背景技術 高温構造材料として有望なセラミックスである窒化ケ
イ素は難焼結性であり、従来、Y2O3、Al2O3等の酸化物
を焼結助剤として用いて焼結体を作製することが一般的
である。これら焼結助剤を用いることにより常圧焼結で
の緻密化が達成され、複雑形状部品への適用が可能とな
っている。まあ、本発明者らはα−サイアロン焼結体に
関し、特開昭60−260471号公報、特開昭60−260472号公
報及び特開昭61−91065号公報において、常圧焼結法に
より機械的特性の優れた焼結体が得られることを開示し
てている。BACKGROUND ART Silicon nitride, which is a promising ceramic as a high-temperature structural material, is difficult to sinter. Conventionally, a sintered body is manufactured using an oxide such as Y 2 O 3 or Al 2 O 3 as a sintering aid. That is common. By using these sintering aids, densification by normal-pressure sintering is achieved, and application to complicated-shaped parts is possible. Well, the inventors of the present invention relate to an α-sialon sintered body, and disclosed in Japanese Patent Application Laid-Open Nos. 60-260471, 60-260472 and 61-91065, a mechanical sintering method using a normal pressure sintering method. It discloses that a sintered body having excellent mechanical properties can be obtained.
しかし、このような窒化ケイ素系焼結体には、通常、
酸化物系助剤が合計で10重量%程度含まれており、焼結
体中に粒界相として残留することが多い。α−サイアロ
ン焼結体においても固溶元素の一部は粒界に残留すると
いう同様な現象が考えられる。焼結体中の粒界相の存在
は窒化ケイ素系セラミックスを高温部材として使用する
場合、高温強度や耐食性の低下をもたらす原因の一つと
なっており、その解決のために助剤の検討及び粒界相の
結晶化処理等の研究が盛んに実施されている。However, such a silicon nitride-based sintered body usually has
Oxide-based auxiliaries are contained in a total amount of about 10% by weight, and often remain as grain boundary phases in the sintered body. In the α-sialon sintered body, a similar phenomenon that a part of the solid solution element remains at the grain boundary is considered. The presence of the grain boundary phase in the sintered body is one of the causes of the decrease in high-temperature strength and corrosion resistance when using silicon nitride ceramics as a high-temperature member. Research on the crystallization of the interphase has been actively conducted.
例えば、W.Braueらは、Proc.of International Sym
posium on Ceramics Components for Engine,1986
FRG,503頁〜510項において、Y2O3、Al2O3を焼結助剤
とする窒化ケイ素の粒界結晶化による高温強度特性の向
上を報告している。For example, W. Braue et al., Proc. Of International Sym
posium on Ceramics Components for Engine, 1986
In FRG, 503 pp to 510 Section, have reported an improvement in high temperature strength due to Y 2 O 3, Al 2 O 3 grain boundary crystallization of silicon nitride to sintering aid.
α−サイアロンは、α−Si3N4結晶構造のSi位置にAl
が、N位置にOが置換固溶すると同時に、結晶格子間に
Li、Mg、Yなどの金属元素が侵入固溶した構造の物質で
あり、高温で安定であるという特徴を有している。侵入
固溶する金属元素は通常酸化物の形で添加されるが、こ
れら酸化物の一部は固溶せずに粒界相として残留してい
る。出発原料である窒化ケイ素中には、表面酸化等によ
り不純物としてのSiO2が数%含まれているが、このよう
なSiO2はα−サイアロンの固溶元素であるY2O3等と反応
し粒界相として残留することが多く、これらの粒界相の
存在は高温特性の低下や耐食性の低下をもたらす要因と
なることが知られている。α-SiAlON has Al at the Si position in the α-Si 3 N 4 crystal structure.
However, at the same time as the substitution of O at the N position,
It is a substance having a structure in which metal elements such as Li, Mg, and Y penetrate and form a solid solution, and have a feature of being stable at high temperatures. The metal element which penetrates and forms a solid solution is usually added in the form of an oxide, but a part of the oxide does not form a solid solution but remains as a grain boundary phase. The starting material, silicon nitride, contains several percent of SiO 2 as an impurity due to surface oxidation or the like. Such SiO 2 reacts with Y 2 O 3, which is a solid solution element of α-sialon, and the like. It is often known that these grains remain as grain boundary phases, and the presence of these grain boundary phases is a factor that causes a decrease in high-temperature characteristics and a decrease in corrosion resistance.
現在まで該粒界相の量の低減化や結晶化処理など特性
向上のための研究がなくされているが、本発明者らの鋭
意研究の結果、結晶化処理等は高温強度特性の改善には
有効であるが、1200℃以上の温度で長時間酸化を行うと
発泡が生じたり、表面に亀裂が発生するなど特に耐食性
に問題があることが分った。To date, there has been no study for improving the properties such as reduction of the amount of the grain boundary phase or crystallization treatment.However, as a result of the inventors' earnest studies, crystallization treatment and the like have led to improvement of the high-temperature strength properties. Is effective, but when oxidized at a temperature of 1200 ° C. or more for a long period of time, foaming occurs and cracks are generated on the surface.
本発明は上記の如き問題点を解決し、強度、靭性等の
機械的特性のみでなく、耐酸化性や耐薬品性などの耐食
性が要求される環境下での使用にも耐えうる高耐食性の
α−サイアロン質焼結体及びその製造法を提供すること
を目的とするものである。The present invention solves the problems as described above, not only mechanical properties such as strength and toughness, but also high corrosion resistance that can withstand use in an environment where corrosion resistance such as oxidation resistance and chemical resistance is required. An object of the present invention is to provide an α-sialon sintered body and a method for producing the same.
本発明者らは前記課題を解決するために鋭意研究を重
ねた結果、今回、α−サイアロンに固溶し得ないSc2O3
と窒化ケイ素、窒化アルミニウム、金属元素Mの酸化物
(ここで、MはYb、Er又はDyを表わす)からなるα−サ
イアロン組成物を混合、成形した後、非酸化性雰囲気中
で1600℃〜2000℃の範囲内の温度において焼結して得ら
れた焼結体、及び必要に応じて該焼結体をさらに熱処理
した焼結体は、機械的特性のみでなく、耐食性にも優れ
ていることを見出した。The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, this time, Sc 2 O 3 which cannot be dissolved in α-sialon
And an α-sialon composition composed of silicon nitride, aluminum nitride, and an oxide of a metal element M (where M represents Yb, Er or Dy), molded, and then heated to 1600 ° C. in a non-oxidizing atmosphere. The sintered body obtained by sintering at a temperature within the range of 2000 ° C., and the sintered body obtained by further heat-treating the sintered body as required, are excellent not only in mechanical properties but also in corrosion resistance. I found that.
発明の開示 本発明は、組成式:Mx(Si,Al)12(O,N)16、ここ
で、MはYb、Er及びDyよりなる群から選ばれる少なくと
も1種のα−サイアロン固溶元素であり、そして0<x
≦0.8である、で示されるα−サイアロン組成物と、焼
結体の重量に基いて0.01〜15重量%の該α−サイアロン
組成物に固溶し得ないSc2O3とから実質的になり、そし
て粒界相として、Sc2O3対SiO2のモル比1:0.1〜1:50の範
囲内にあるSc2O3−SiO2複合体を含有することを特徴と
する高耐食性α−サイアロン質結合体を提供するもので
ある。DISCLOSURE OF THE INVENTION The present invention has a composition formula: Mx (Si, Al) 12 (O, N) 16 , wherein M is at least one kind of α-sialon solid solution element selected from the group consisting of Yb, Er and Dy. And 0 <x
≦ 0.8, and 0.01 to 15% by weight, based on the weight of the sintered body, of Sc 2 O 3 which is insoluble in the α-sialon composition. And containing, as a grain boundary phase, a Sc 2 O 3 —SiO 2 composite in a molar ratio of Sc 2 O 3 to SiO 2 in the range of 1: 0.1 to 1:50. -To provide a sialonoid conjugate.
本明細書において用いる「α−サイアロン組成物」な
る語は、α−サイアロン結晶相単相のみからなるものな
らず、α−サイアロン結晶相とβ−窒化ケイ素結晶相の
複合組織からなるものをも包含する意味で使用するもの
であり、これらの結晶相ないし複合組織は、原料混合物
を焼結することにより形成されるものであつてもよく、
或いは焼結前の原料混合物の段階ですでに上記結晶相な
いし複合組成を形成していてもよい。As used herein, the term “α-sialon composition” includes not only an α-sialon crystal phase single phase but also an α-sialon crystal phase and a β-silicon nitride crystal phase composite structure. These crystalline phases or composite structures may be those formed by sintering the raw material mixture,
Alternatively, the crystal phase or the composite composition may be already formed at the stage of the raw material mixture before sintering.
ところで窒化ケイ素や窒化アルミニウム原料中には、
通常、不可避の陰イオン不純物としての酸素が含まれて
いる。本明細書において述べているβ−窒化ケイ素結晶
相は、β−SIALONを生成する目的で故意にAl2O3やSiO2
を添加する場合を除き、このような不可避の陰イオン不
純物が固溶した結晶相をも含むものである。By the way, in silicon nitride and aluminum nitride raw materials,
Usually, it contains oxygen as an unavoidable anionic impurity. The β-silicon nitride crystal phase described in this specification is intentionally made of Al 2 O 3 or SiO 2 for the purpose of producing β-SIALON.
Excluding the case where is added, a crystal phase in which such unavoidable anionic impurities are dissolved is also included.
本発明のα−サイアロン質結晶体の一部を構成するα
−サイアロン組成物は、組成式 Mx(Si,Al)12(O,N)16 で示されるものである。Α constituting a part of the α-sialon crystal of the present invention
The sialon composition is represented by the composition formula Mx (Si, Al) 12 (O, N) 16 ;
式中、Mはα−サイアロン中に侵入固溶する金属元素
であり、本発明ではYb、Er及びDyよりなる群から選ばれ
る元素が使用される。これらの固溶元素のうち本発明に
おいて特に好適なものはYbである。これらの金属元素は
α−Si3N4中に固溶し、α−サイアロンを安定化させる
とともに、以下で述べる非固溶成分であるSc2O3と反応
し、Sc2O3を含む第2の相を形成する。ここで「第2の
相」なる語は、本発明のサイアロン質焼結体の上記サイ
アロン組成物以外の相を総称するために使用するもので
ある。In the formula, M is a metal element that penetrates and forms a solid solution in α-sialon, and an element selected from the group consisting of Yb, Er, and Dy is used in the present invention. Among these solid solution elements, Yb is particularly preferable in the present invention. These metal elements dissolved in α-Si 3 N 4, α- sialon together with stabilizing and reacts with Sc 2 O 3 is immiscible components described below, the containing Sc 2 O 3 Two phases are formed. Here, the term "second phase" is used to generically refer to phases other than the sialon composition of the sialon-based sintered body of the present invention.
また、上記式中におけるxの値は金属元素Mの固溶量
を示すものであり、0<x≦0.8、好ましくは0.1≦x≦
0.5、さらに好ましくは0.1≦x≦0.4の範囲内にある数
である。このxの値は、α−サイアロン組成物における
結晶相の組成範囲を決定する1つのフあクターとなりう
るものであり、xの値が0<x≦0.3の範囲内にある場
合には、上記組成式で示されるα−サイアロン組成物は
α−サイアロン結晶相とβ−窒化ケイ素結晶相との複合
組織からなり、また、xの値が0.3≦x≦0.8の範囲内に
ある場合には、該α−サイアロン組成物はα−サイアロ
ン結晶相の単相となる。すなわち、α−サイアロンの安
定領域が0.3<x≦0.8の範囲内にあり、x=0.3はα−
サイアロンの固溶下限値に相当し、そしてx<0.3の領
域では安定化されたα−サイアロン(x=0.3)結晶相
と、β−窒化ケイ素結晶相の混合物となる。Further, the value of x in the above formula indicates the solid solution amount of the metal element M, and 0 <x ≦ 0.8, preferably 0.1 ≦ x ≦
It is a number in the range of 0.5, more preferably 0.1 ≦ x ≦ 0.4. The value of x can be one factor that determines the composition range of the crystal phase in the α-sialon composition, and when the value of x is within the range of 0 <x ≦ 0.3, The α-sialon composition represented by the composition formula has a composite structure of an α-sialon crystal phase and a β-silicon nitride crystal phase, and when the value of x is in the range of 0.3 ≦ x ≦ 0.8, The α-sialon composition becomes a single phase of the α-sialon crystal phase. That is, the stable region of α-sialon is in the range of 0.3 <x ≦ 0.8, and x = 0.3 is α-sialon.
This corresponds to the lower limit of solid solution of sialon, and in the region of x <0.3, a mixture of stabilized α-sialon (x = 0.3) crystal phase and β-silicon nitride crystal phase is obtained.
今回、本発明において、上記のα−サイアロン組成物
を、該α−サイアロン組成物と固溶しえない特定量のSc
2O3と共に焼結すると、得られる焼結体の耐食性が格段
に向上することが判明した。α−サイアロン組成物と共
に本発明の焼結体を構成するSc2O3の含有量は、焼結体
の重量に基いて0.01〜15重量%、好ましくは0.01〜10重
量%、さらに好ましくは0.05〜5重量%の範囲内であ
る。Sc2O3の含有量が0.01重量%未満では、Sc2O3添加の
効果が弱く、また、15重量%を超えると、熱間強度の低
下や耐酸化特性が劣るようになる。This time, in the present invention, the above-mentioned α-sialon composition is treated with a specific amount of Sc which cannot be dissolved in the α-sialon composition.
It was found that when sintered together with 2 O 3 , the corrosion resistance of the obtained sintered body was significantly improved. The content of Sc 2 O 3 constituting the sintered body of the present invention together with the α-sialon composition is 0.01 to 15% by weight, preferably 0.01 to 10% by weight, more preferably 0.05 to 10% by weight based on the weight of the sintered body. -5% by weight. If the content of Sc 2 O 3 is less than 0.01% by weight, the effect of the addition of Sc 2 O 3 is weak, and if it exceeds 15% by weight, the hot strength decreases and the oxidation resistance becomes poor.
α−サイアロン組成物の製造原料の1つである窒化合
ケイ素は、通常、表面酸化等により不可避的に不純物と
してSiO2を数%程度含有しているが、このSiO2は通常、
α−サイアロンの固溶元素の供給源となるYb2O3、Er2O3
及び/又はDy2O3と反応し、粒界相に残留している。is one nitride compounds silicon raw material for producing α- sialon composition is usually a SiO 2 containing about several% as unavoidable impurities by surface oxidation or the like, the SiO 2 is typically
Yb 2 O 3 , Er 2 O 3 as sources of solid solution elements of α-sialon
And / or reacts with Dy 2 O 3 and remains in the grain boundary phase.
一方、本発明に従い、α−サイアロン組成物に、該α
−サイアロン組成物に固溶し得ないSc2O3を添加して焼
結すると、Sc2O3は焼結助剤の役割を果し、得られる焼
結体の緻密化を促進するのに貢献するのみならず、添加
されたSc2O3の一部は、上記粒界相に残留しているSiO2
と反応して、粒界相にSc2O3−SiO2複合体が生成する。
本発明の焼結体における高い耐食性は、このようなSc2O
3−SiO2複合体よりなる粒界相組織の形成により生じる
ものと考えられる。On the other hand, according to the present invention, the α-sialon composition has
- When sintering with the addition of Sc 2 O 3 which can not be dissolved in sialon composition, Sc 2 O 3 plays a role of a sintering aid, suitable for promoting the densification of the sintered body obtained In addition to contributing, some of the added Sc 2 O 3 is the SiO 2 remaining in the grain boundary phase.
Reacts to form a Sc 2 O 3 —SiO 2 composite in the grain boundary phase.
The high corrosion resistance of the sintered body of the present invention is such Sc 2 O
It is thought to be caused by the formation of the grain boundary phase structure composed of the 3- SiO 2 composite.
Sc2O3−SiO2系に関してはその相平衡図より液相形成
温度は1660℃以上と高融点であるが、得られる焼結体の
耐食性のみでなく高温特性を向上させるにはこのような
高融点の粒界相を形成させる必要がある。From the phase equilibrium diagram of the Sc 2 O 3 -SiO 2 system, the liquid phase formation temperature is a high melting point of 1660 ° C or higher, but such a method is necessary to improve not only the corrosion resistance of the sintered body obtained but also the high temperature characteristics. It is necessary to form a high melting point grain boundary phase.
粒界相を形成するSc2O3−SiO2複合体におけるSc2O3対
SiO2の比率は、モル比で一般に1:0.1〜1:50の範囲内に
あることができる。該モル比が1:0.1未満では得られる
焼結体の熱間強度が小さく、また1:50を超えるとSc2O3
の添加の効果が弱くなり、焼結体の緻密化も不充分とな
る。従つて、Sc2O3対SiO2モル比は1:0.2〜1:50、特に1:
0.4〜1:40の範囲内にあるのが好適である。なお、粒界
相中のSc2O3及びSiO2の量は分析電子顕微鏡により決定
することができる。また、粒界相中のSc2O3−SiO2複合
体のSc2O3対SiO2モル比の調節は、例えば、Sc2O3添加量
を調整することや、窒化ケイ素原料中の酸素量をコント
ロールすることにより行なうことができる。Sc 2 O 3 pairs of Sc 2 O 3 -SiO 2 complex to form a grain boundary phase
The ratio of SiO 2 is generally at a molar ratio of 1: 0.1 to 1: may be in the range of 50. When the molar ratio is less than 1: 0.1, the hot strength of the obtained sintered body is small, and when it exceeds 1:50, Sc 2 O 3
The effect of the addition becomes weak, and the densification of the sintered body becomes insufficient. Accordance connexion, Sc 2 O 3 pairs SiO 2 molar ratio of 1: 0.2 to 1: 50, especially 1:
Preferably it is in the range of 0.4 to 1:40. The amounts of Sc 2 O 3 and SiO 2 in the grain boundary phase can be determined by an analytical electron microscope. The Sc 2 O 3 to SiO 2 molar ratio of the Sc 2 O 3 —SiO 2 composite in the grain boundary phase can be adjusted by, for example, adjusting the amount of Sc 2 O 3 added or the oxygen in the silicon nitride raw material. This can be done by controlling the amount.
本発明により提供されるα−サイアロン質焼結体は、
例えば次のようにして製造することができる。The α-sialon sintered body provided by the present invention is:
For example, it can be manufactured as follows.
まず、前記組成式で示されるα−サイアロン組成物を
生成する所定割合の窒化ケイ素、窒化アルミニウム、及
びYb2O3、Er2O3及びDy2O3から選ばれる少なくとも1種
の酸化物、並びに所定量の該α−サイアロン組成物に固
溶しないSc2O3を混合する。ここでYb2O3、Er2O3、Dy2O3
及びSc2O3としては、焼成条件下にこれら酸化物に変り
うる前駆化合物を使用することも可能である。混合はボ
ールミル、振動ミル等を用いて行うことができるが、こ
の場合原料粉末の酸化を防止するため有機溶媒中で実施
することが好ましく、また、粉砕ボール等からのAl2O3
混入を避けるために、α−サイアロン製のボール、容器
や樹脂製容器を用いることが望ましい。得られる混合物
はスプレードライヤー等を用いて造粒、乾燥を行い成形
用原料とする。First, silicon nitride predetermined ratio to produce the indicated is α- sialon composition by the composition formula, aluminum nitride, and Yb 2 O 3, Er 2 O 3 and at least one oxide selected from Dy 2 O 3, In addition, a predetermined amount of Sc 2 O 3 which does not form a solid solution with the α-sialon composition is mixed. Where Yb 2 O 3 , Er 2 O 3 , Dy 2 O 3
And as the Sc 2 O 3, it is also possible to use precursor compounds which may vary in these oxides the firing conditions. Mixing ball mill, may be carried out using a vibration mill or the like, it is preferable to carried out in this case in an organic solvent to prevent oxidation of the raw material powder, also, Al 2 O 3 from crushing balls or the like
In order to avoid contamination, it is desirable to use a ball, container or resin container made of α-sialon. The resulting mixture is granulated and dried using a spray drier or the like to obtain a raw material for molding.
成形方法としては例えば金型成形、静水圧プレス成
形、射出成形等を用いることができる。得られる成形体
は通常バインダー等有機分を含むため焼結前に脱脂処理
を行う。次いでこの成形体を非酸化性雰囲気中で1600℃
〜2000℃の範囲内の温度において焼結を行うが、焼結温
度としては好ましくは1600℃〜1800℃の範囲内であり、
焼結時間は通常30分〜10時間である。焼結は常圧焼結に
よって充分緻密な焼結体を得ることができるが、必要に
応じてHIP、ガス圧焼結、ホットプレスを用いてもよ
い。As a molding method, for example, mold molding, isostatic press molding, injection molding and the like can be used. Since the obtained molded body usually contains an organic component such as a binder, it is subjected to a degreasing treatment before sintering. Next, the molded body is heated at 1600 ° C. in a non-oxidizing atmosphere.
Sintering is performed at a temperature in the range of 20002000 ° C., and the sintering temperature is preferably in the range of 1600 ° C. to 1800 ° C.,
The sintering time is usually 30 minutes to 10 hours. For sintering, a sufficiently dense sintered body can be obtained by normal pressure sintering, but HIP, gas pressure sintering, or hot pressing may be used as necessary.
かくして得られる本発明のα−サイアロン質焼結体
は、耐酸化性や耐薬品などの耐食性が非常に優れてい
る。本発明の焼結体はこの高い耐食性は、α−サイアロ
ンに侵入固溶する金属元素としてYb、Er及び/又はDyを
用いた場合に達成される。このことは、たとえば酸化試
験を行なった場合、本発明の焼結体は酸化試験後表面に
緻密で滑らかな酸化膜を形成し、Sc2O3添加の効果と相
俟って、優れた耐食性を示すが、上記以外の固溶元素を
用いて形成された焼結体は一般に試料表面に発泡等の現
象が生じ、耐食性に劣るようになる。The α-sialon-based sintered body of the present invention thus obtained has extremely excellent corrosion resistance such as oxidation resistance and chemical resistance. The sintered body of the present invention achieves this high corrosion resistance when Yb, Er and / or Dy is used as a metal element which penetrates and forms a solid solution in α-sialon. This means that, for example, when an oxidation test is performed, the sintered body of the present invention forms a dense and smooth oxide film on the surface after the oxidation test, and together with the effect of the addition of Sc 2 O 3 , has an excellent corrosion resistance. However, a sintered body formed by using a solid solution element other than the above generally causes phenomena such as foaming on the sample surface, resulting in poor corrosion resistance.
本発明のα−サイアロン質焼結体は、機械的特性、例
えば曲げ強度、靭性等に優れており、曲げ強度に関して
みれば1200MPa(JIS R1601、3点曲げ)を超えるもの
が得られている。耐食性等の化学的安定性のみならず、
機械的特性にも優れていることが、本発明のα−サイア
ロン質焼結体の1つの特徴である。The α-sialon sintered body of the present invention is excellent in mechanical properties, for example, bending strength, toughness and the like, and has a bending strength exceeding 1200 MPa (JIS R1601, three-point bending). Not only chemical stability such as corrosion resistance,
One of the features of the α-sialon sintered body of the present invention is that it has excellent mechanical properties.
また、本発明の焼結体によれば、Sc2O3の添加量に依
存して、焼結体中のα−サイアロン含有量が変化するこ
とが明らかとなつた。例えば、Sc2O3添加量が増加する
とα−サイアロン結晶相の量が減少する。これは添加し
たSc2O3がα−サイアロンの固溶成分であるYb2O3、Er2O
3又はDy2O3と反応し、複合体を生成するためと考えられ
るが、このことはSc2O3の添加量により焼結体中のα−
サイアロン結晶相の量がコントロールできることを示し
ているものであり、それにより焼結体の特性制御が可能
となる。Further, according to the sintered body of the present invention, it has been clarified that the α-sialon content in the sintered body changes depending on the amount of Sc 2 O 3 added. For example, when the added amount of Sc 2 O 3 increases, the amount of the α-sialon crystal phase decreases. This is because the added Sc 2 O 3 is a solid solution component of α-sialon, Yb 2 O 3 , Er 2 O
3 or Dy 2 O 3, which is considered to form a composite.This is due to the amount of α- in the sintered body depending on the amount of Sc 2 O 3 added.
This indicates that the amount of the sialon crystal phase can be controlled, whereby the characteristics of the sintered body can be controlled.
α−サイアロンは金属元素Mの固溶量xに対応してα
−サイアロン結晶相とβ−窒化ケイ素結晶相の量比が変
化し、それに伴って硬度、靭性、強度等の機械的特性が
変化するが、また、Sc2O3の添加によつても同様の制御
が可能となる。α−サイアロン組成物はX≦0.3の低固
溶領域で特に強度、靭性等の機械的特性に優れるという
特徴を有しているが、この組成領域のものは一般に難焼
結性である。しかし、本発明の焼結体は、Sc2O3が焼結
過程で焼結助剤の役割をすることにより、この組成領域
のものでも焼結性が向上し、高温特性、耐食性に優れか
つ機械的特性にも優れたα−サイアロン質焼結体が容易
に得られるという利点がある。α-sialon is α corresponding to the solid solution amount x of the metal element M.
- ratio of sialon crystal phase and β- silicon nitride crystal phase changes, hardness accordingly, toughness, the mechanical properties such as strength changes, also be cowpea the addition of Sc 2 O 3 Similar Control becomes possible. The α-sialon composition is characterized by being particularly excellent in mechanical properties such as strength and toughness in a low solid solution region of X ≦ 0.3, but those having this composition region are generally difficult to sinter. However, in the sintered body of the present invention, Sc 2 O 3 functions as a sintering aid in the sintering process, so that sinterability is improved even in this composition region, high temperature characteristics, excellent corrosion resistance and There is an advantage that an α-sialon sintered body having excellent mechanical properties can be easily obtained.
実施例 次に実施例1により本発明をさらに具体的に説明す
る。EXAMPLES Next, the present invention will be described more specifically with reference to Example 1.
実施例1 窒化ケイ素(平均粒径:1μm、陽イオン不純物含有
量:0.2%以下、酸素含有量:0.8%)、窒化アルミニウム
(平均粒径:1μm、陽イオン不純物含有量:0.2%以下、
酸素含有量:1.0%)、Yb2O3、Er2O3、Dy2O3(いずれも
平均粒径:1.2μm、純度:99.9%)、Sc2O3(平均粒径:
1.0μm、純度:99.9%)の各原料を下記表−1に示す組
成比で配合し、混練を行った。混練は樹脂性ポットとα
−サイアロン製ボールを用いてボールミルにてエタノー
ル中30時間処理して行った。得られた混合物を乾燥した
後冷間静水圧プレスにて1.5t/cm2の圧力で成形し、得ら
れた成形体を窒素雰囲気中1700℃で5時間焼成し焼結体
を得た。得られた焼結体について平面研削により3×4
×40mmの試験片を製作し、酸化特性評価の試験を実施し
た。酸化試験は大気中1400℃で100時間保持して行い、
試験後の酸化増量値及び外観で評価を行った。Example 1 Silicon nitride (average particle size: 1 μm, cation impurity content: 0.2% or less, oxygen content: 0.8%), aluminum nitride (average particle size: 1 μm, cation impurity content: 0.2% or less,
Oxygen content: 1.0%), Yb 2 O 3 , Er 2 O 3 , Dy 2 O 3 (average particle size: 1.2 μm, purity: 99.9%), Sc 2 O 3 (average particle size:
1.0 μm, purity: 99.9%) were blended at a composition ratio shown in Table 1 below and kneaded. Kneading is resinous pot and α
-Performed in a ball mill using sialon balls for 30 hours in ethanol. After drying the obtained mixture, the mixture was molded by a cold isostatic press at a pressure of 1.5 t / cm 2 , and the obtained molded body was fired at 1700 ° C. for 5 hours in a nitrogen atmosphere to obtain a sintered body. The obtained sintered body was 3 × 4 by surface grinding.
A test piece of × 40 mm was manufactured, and a test for evaluating oxidation characteristics was performed. Oxidation test was carried out at 1400 ° C in air for 100 hours.
Evaluation was made on the basis of the oxidation weight increase value and appearance after the test.
粒界相中のSc、Si等の分析は分析電子顕微鏡を用いて
実施した。Analysis of Sc, Si, etc. in the grain boundary phase was performed using an analytical electron microscope.
結果を表−1に示す。No.1〜No.7の配合は本発明品で
あり、No.8〜No.10は比較例である。The results are shown in Table 1. No. 1 to No. 7 are products of the present invention, and No. 8 to No. 10 are comparative examples.
表−1の結果より、本発明のα−サイアロン質焼結体
の酸化増量値は1.0mg/cm2以下とすぐれたものであり、
酸化試験後の試料も発泡等がみられずなめらかな酸化膜
でおおわれていることがわかる。一方、固溶元素として
Yを用いたもの、あるいはSc2O3を過剰に添加した比較
例では酸化増量値が大きくなっている。From the results in Table 1, the oxidation weight gain of the α-sialon based sintered body of the present invention is excellent at 1.0 mg / cm 2 or less,
It can be seen that the sample after the oxidation test was also covered with a smooth oxide film without foaming or the like. On the other hand, in the case of using Y as a solid solution element or in the comparative example in which Sc 2 O 3 was excessively added, the oxidation increase value was large.
実施例2 窒化ケイ素(平均粒径:0.8μm、陽イオン不純物含有
量:0.2%以下、酸素含有量:1.2%)、窒化アルミニウム
(平均粒径:1.0μm、陽イオン不純物含有量:0.2%以
下、酸素含有量:1.0%)、Yb2O3、Er2O3、Dy2O3(いず
れも平均粒径:1.2μm、純度:99.9%)、Sc2O3(平均粒
径:1.0μm、純度:99.9%)の各原料を実施例1と同一
組成比で配合し混練を行った。 Example 2 Silicon nitride (average particle size: 0.8 μm, cation impurity content: 0.2% or less, oxygen content: 1.2%), aluminum nitride (average particle size: 1.0 μm, cation impurity content: 0.2% or less) , Oxygen content: 1.0%), Yb 2 O 3 , Er 2 O 3 , Dy 2 O 3 (average particle size: 1.2 μm, purity: 99.9%), Sc 2 O 3 (average particle size: 1.0 μm) , Purity: 99.9%) were mixed at the same composition ratio as in Example 1 and kneaded.
混練は樹脂性ポットとα−サイアロン製ボールを用い
振動ミルにてエタノール中20時間処理して行った。混合
物はスプレードライヤーを用いて乾燥した後冷間静水圧
プレスにて1.5t/cm2の圧力で成形し、得られた成形体を
窒素雰囲気中9.8kgf/cm2の圧力下1750℃で3時間加熱し
焼結を行った。The kneading was carried out by using a resin pot and α-sialon balls in a vibration mill for 20 hours in ethanol. The mixture is dried using a spray drier and then molded with a cold isostatic press at a pressure of 1.5 t / cm 2 , and the obtained molded body is placed in a nitrogen atmosphere at 1750 ° C. under a pressure of 9.8 kgf / cm 2 for 3 hours. It was heated and sintered.
得られた焼結体から3×4×40mmの試験片を作製し、
曲げ強度(常温及び1250℃)の評価及び酸化試験を実施
した。A 3 × 4 × 40 mm test piece was prepared from the obtained sintered body,
Evaluation of bending strength (normal temperature and 1250 ° C) and an oxidation test were performed.
曲げ試験はスパン30mmの3点曲げで行い、酸化試験は
実施例1と同一条件で行った。結果を表−2に示す。表
−2の結果より、本発明のα−サイアロン質焼結体は熱
間での強度の低下が少なく、高温特性にすぐれるもので
あることがわかる。一方比較例に示すように、固溶元素
としてYを用いたものは酸化増量が多く、またSc2O3を
過剰に添加した場合、熱間での強度低下が著しい。The bending test was performed by three-point bending with a span of 30 mm, and the oxidation test was performed under the same conditions as in Example 1. Table 2 shows the results. From the results in Table 2, it can be seen that the α-sialon sintered body of the present invention has a small decrease in strength during hot and has excellent high-temperature characteristics. On the other hand, as shown in the comparative examples, those using Y as a solid solution element have a large oxidation weight increase, and when Sc 2 O 3 is excessively added, the strength is significantly reduced during hot working.
産業上の利用可能性 以上述べたように、本発明のα−サイアロン質焼結体
は、優れた耐食性、高温特性、機械的強度等有してお
り、例えばバルブ部品、エンジン部材、工作機械部品、
切削工具等において有用である。 INDUSTRIAL APPLICABILITY As described above, the α-sialon sintered body of the present invention has excellent corrosion resistance, high temperature properties, mechanical strength, and the like. For example, valve parts, engine members, machine tool parts ,
Useful in cutting tools and the like.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−129667(JP,A) 特公 昭63−37075(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C04B 35/599 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-56-129667 (JP, A) JP-B-63-37075 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/599
Claims (6)
MはYb、Er及びDyよりなる群から選ばれる少なくとも1
種のα−サイアロン固溶元素であり、そして0<x≦0.
8である、で示されるα−サイアロン組成物と、焼結体
の重量に基いて0.01〜15重量%の該α−サイアロン組成
物に固溶し得ないSc2O3とから実質的になり、そして粒
界相として、Sc2O3対SiO2のモル比1:0.1〜1:50の範囲内
にあるSc2O3−SiO2複合体を含有することを特徴とする
高耐食性α−サイアロン質結合体。1. A composition formula: Mx (Si, Al) 12 (O, N) 16 , wherein M is at least one selected from the group consisting of Yb, Er and Dy.
Species of α-sialon solid solution element, and 0 <x ≦ 0.
8, and 0.01 to 15% by weight, based on the weight of the sintered body, of Sc 2 O 3 which cannot be dissolved in the α-sialon composition. And, as a grain boundary phase, a high corrosion resistance α- characterized by containing a Sc 2 O 3 -SiO 2 composite in a molar ratio of Sc 2 O 3 to SiO 2 of 1: 0.1 to 1:50. Sialonic conjugate.
載の焼結体。2. The sintered body according to claim 1, wherein the solid solution element M is Yb.
の範囲第1項記載の焼結体。3. The sintered body according to claim 1, wherein the value of x is within a range of 0.1 ≦ x ≦ 0.4.
量%の範囲内で含有する請求の範囲第1項記載の焼結
体。4. The sintered body according to claim 1, wherein Sc 2 O 3 is contained within a range of 0.05 to 5.0% by weight based on the weight of the sintered body.
ル比が1:0.4〜1:40の範囲内にある請求の範囲第1項記
載の焼結体。5. The sintered body according to claim 1, wherein the molar ratio of Sc 2 O 3 to SiO 2 in the Sc 2 O 3 —SiO 2 composite is in the range of 1: 0.4 to 1:40.
α−サイアロン組成物を生成する所定割合の窒化ケイ
素、窒化アルミニウム、及びYb2O3、Er2O3及びDy2O3か
ら選ばれる少なくとも1種の酸化物、並びに焼結体の重
量に基いて0.01〜15重量%のSc2O3からなる混合物を、
非酸化性雰囲気中で1600℃〜2000℃の範囲内の温度のお
いて焼結することを特徴とする請求の範囲第1項記載の
α−サイアロン質結合体の製造方法。6. A predetermined proportion of silicon nitride, aluminum nitride, and Yb 2 O 3 , Er 2 O 3 and Dy 2 O 3 which form an α-sialon composition represented by the composition formula according to claim 1. At least one oxide selected from the group consisting of: and a mixture comprising 0.01 to 15% by weight of Sc 2 O 3 based on the weight of the sintered body,
The method for producing an α-sialonic conjugate according to claim 1, wherein the sintering is performed at a temperature in the range of 1600 ° C to 2000 ° C in a non-oxidizing atmosphere.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3-250344 | 1991-09-04 | ||
JP25034491 | 1991-09-04 | ||
PCT/JP1992/001115 WO1993004997A1 (en) | 1991-09-04 | 1992-09-01 | HIGHLY CORROSION-RESISTANT α-SIALON SINTER AND PRODUCTION THEREOF |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3228743B2 true JP3228743B2 (en) | 2001-11-12 |
Family
ID=17206523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50510093A Expired - Lifetime JP3228743B2 (en) | 1991-09-04 | 1992-09-01 | High corrosion resistance α-sialon sintered body and method for producing the same |
Country Status (8)
Country | Link |
---|---|
US (1) | US5468696A (en) |
EP (1) | EP0602243B1 (en) |
JP (1) | JP3228743B2 (en) |
KR (1) | KR970009988B1 (en) |
AT (1) | ATE162166T1 (en) |
CA (1) | CA2116964A1 (en) |
DE (1) | DE69224068T2 (en) |
WO (1) | WO1993004997A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998023554A1 (en) * | 1996-11-25 | 1998-06-04 | The Regents Of The University Of Michigan | IN-SITU TOUGHENED ALPHA PRIME-SiAlON-BASED CERAMICS |
EP0963965A4 (en) * | 1997-09-03 | 2001-03-21 | Sumitomo Electric Industries | SILICON NITRIDE SINTER WITH HIGH THERMAL CONDUCTIVITY AND PROCESS FOR PREPARING THE SAME |
JP3149827B2 (en) * | 1997-09-09 | 2001-03-26 | 住友電気工業株式会社 | Silicon nitride based sintered body and method for producing the same |
US6124225A (en) * | 1998-07-29 | 2000-09-26 | The Regents Of The University Of Michigan | Cutting tools and wear resistant articles and material for same |
US7049256B2 (en) * | 2000-11-28 | 2006-05-23 | Kennametal Inc. | SiAlON containing ytterbium and method of making |
US6693054B1 (en) * | 2000-11-28 | 2004-02-17 | Kennametal Inc. | Method of making SiAlON containing ytterbium |
US7094717B2 (en) * | 2000-11-28 | 2006-08-22 | Kennametal Inc. | SiAlON containing ytterbium and method of making |
KR100987499B1 (en) * | 2010-07-26 | 2010-10-13 | 한국기계연구원 | SiAlON having magnetic properties and the manufacturing method thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5835950B2 (en) * | 1980-03-12 | 1983-08-05 | 科学技術庁無機材質研究所長 | Production method of α-sialon sintered body |
US4401768A (en) * | 1982-03-15 | 1983-08-30 | Rockwell International Corporation | Si3 N4 Ceramic densified using Sc2 O3 and SiO2 |
US4425141A (en) * | 1982-05-20 | 1984-01-10 | Gte Laboratories Incorporated | Composite ceramic cutting tool |
JPS5991065A (en) * | 1982-11-16 | 1984-05-25 | Matsushita Electric Ind Co Ltd | Ink feeder |
SE451581B (en) * | 1984-04-06 | 1987-10-19 | Sandvik Ab | CERAMIC MATERIAL MAINLY BASED ON SILICON NITRIDE, ALUMINUM NITRIDE AND ALUMINUM OXIDE |
JPS60215576A (en) * | 1984-04-07 | 1985-10-28 | 東陶機器株式会社 | Manufacture of sialon sintered body |
JPS60260472A (en) * | 1984-06-04 | 1985-12-23 | 新技術事業団 | α-sialon sintered body containing no β-sialon |
JPS61183169A (en) * | 1985-02-05 | 1986-08-15 | トヨタ自動車株式会社 | Manufacture of silicon nitride sintered body |
JPS61291463A (en) * | 1985-06-17 | 1986-12-22 | 日本特殊陶業株式会社 | Material for high toughness ceramic tool |
DE3584170D1 (en) * | 1985-12-20 | 1991-10-24 | Japan Res Dev Corp | HIGH-STRENGTH CERAMIC ITEMS CONTAINING ALPHA-SIALON. |
US5032553A (en) * | 1989-12-18 | 1991-07-16 | Gte Products Corporation | High density high strength alpha sialon based article and process for producing same |
US5200374A (en) * | 1990-04-06 | 1993-04-06 | Ube Industries, Ltd. | Sialon-based sintered body and process for producing same |
US5173458A (en) * | 1990-12-28 | 1992-12-22 | Sumitomo Electric Industries, Ltd. | Silicon nitride sintered body and process for producing the same |
-
1992
- 1992-09-01 JP JP50510093A patent/JP3228743B2/en not_active Expired - Lifetime
- 1992-09-01 US US08/199,308 patent/US5468696A/en not_active Expired - Fee Related
- 1992-09-01 DE DE69224068T patent/DE69224068T2/en not_active Expired - Fee Related
- 1992-09-01 EP EP92918502A patent/EP0602243B1/en not_active Expired - Lifetime
- 1992-09-01 AT AT92918502T patent/ATE162166T1/en not_active IP Right Cessation
- 1992-09-01 CA CA002116964A patent/CA2116964A1/en not_active Abandoned
- 1992-09-01 WO PCT/JP1992/001115 patent/WO1993004997A1/en active IP Right Grant
- 1992-09-01 KR KR1019940700728A patent/KR970009988B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP0602243B1 (en) | 1998-01-14 |
KR970009988B1 (en) | 1997-06-20 |
EP0602243A4 (en) | 1995-05-10 |
EP0602243A1 (en) | 1994-06-22 |
CA2116964A1 (en) | 1993-03-18 |
DE69224068D1 (en) | 1998-02-19 |
WO1993004997A1 (en) | 1993-03-18 |
US5468696A (en) | 1995-11-21 |
DE69224068T2 (en) | 1998-05-14 |
ATE162166T1 (en) | 1998-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3228743B2 (en) | High corrosion resistance α-sialon sintered body and method for producing the same | |
JPH11314969A (en) | High thermal conductive Si3N4 sintered body and method for producing the same | |
JPH07118070A (en) | Silicon nitride ceramic sintered compact | |
JP2914387B2 (en) | Silicon nitride ceramic and method for producing the same | |
JP2663028B2 (en) | Silicon nitride sintered body | |
JP3208181B2 (en) | Silicon nitride based sintered body | |
JP2736386B2 (en) | Silicon nitride sintered body | |
JP3290685B2 (en) | Silicon nitride based sintered body | |
JP2980342B2 (en) | Ceramic sintered body | |
JP2001206774A (en) | Silicon nitride sintered compact | |
JP3445345B2 (en) | High heat-resistant water sialon-based sintered body | |
JP2631105B2 (en) | Silicon nitride sintered body | |
JP3106208B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3318466B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH09157028A (en) | Silicon nitride sintered compact and its production | |
JP2684250B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2524635B2 (en) | Fiber reinforced ceramics | |
JPH06116045A (en) | Silicon nitride sintered compact and its production | |
JPH1081568A (en) | Silicon nitride-silicon carbide composite sintered product and its production | |
JP2584996B2 (en) | Silicon nitride sintered body | |
JPH05117040A (en) | Production of beta-sialon-based sintered compact | |
JPH05238829A (en) | Sintered silicone nitride ceramic | |
JPH07172926A (en) | Silicon nitride sintered compact | |
JP3124882B2 (en) | Silicon nitride sintered body and method for producing the same | |
TIEN | FABRICATION AND MECHANICAL PROPERTIES OF a'-SIALON-12H MULTIPHASE CERAMICS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080907 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090907 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100907 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110907 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120907 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |