JP3227660B2 - Hydraulic control device for hydraulically operated transmission for vehicle - Google Patents
Hydraulic control device for hydraulically operated transmission for vehicleInfo
- Publication number
- JP3227660B2 JP3227660B2 JP21749793A JP21749793A JP3227660B2 JP 3227660 B2 JP3227660 B2 JP 3227660B2 JP 21749793 A JP21749793 A JP 21749793A JP 21749793 A JP21749793 A JP 21749793A JP 3227660 B2 JP3227660 B2 JP 3227660B2
- Authority
- JP
- Japan
- Prior art keywords
- solenoid valve
- current value
- oil temperature
- oil
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Control Of Transmission Device (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、車両用油圧作動式変速
機の油圧制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic control device for a hydraulically operated transmission for a vehicle.
【0002】[0002]
【従来の技術】車両用油圧作動式変速機の性能向上のた
めに各種機能、例えば変速ショック防止機能、クリープ
防止機能、トルクコンバータスリップ制御機能を付加す
る場合、電子制御により油圧を制御することが有利とな
ってくる。そして、電子制御化に当っては、油圧制御回
路に油圧源からの供給油圧を電気信号に応じた油圧に調
整して出力する電磁弁を設け、運転状態に応じた所要の
調整油圧が得られるように電子制御回路によって電磁弁
への電気信号を制御するを一般としている。ところで、
変速機の油温が変化して油の粘性が変化すると、電磁弁
に従前通りの電気信号を与えても所要の調整油圧を得ら
れなくなる。そこで、従来は、特開昭63−62964
号公報や特開昭62−63248号公報に見られるよう
に、変速機の油温を検知する油温センサを設け、電磁弁
への電気信号を油温センサの検知結果に応じて修正する
ようにしている。2. Description of the Related Art When various functions such as a shift shock prevention function, a creep prevention function, and a torque converter slip control function are added to improve the performance of a hydraulically operated transmission for a vehicle, the hydraulic pressure can be controlled by electronic control. It will be advantageous. In electronic control, a hydraulic control circuit is provided with an electromagnetic valve that adjusts and outputs a hydraulic pressure supplied from a hydraulic source to a hydraulic pressure according to an electric signal, and a required adjusted hydraulic pressure according to an operation state is obtained. As described above, it is general to control an electric signal to an electromagnetic valve by an electronic control circuit. by the way,
If the oil temperature of the transmission changes and the viscosity of the oil changes, it is no longer possible to obtain the required adjusted oil pressure even if a conventional electric signal is given to the solenoid valve. Therefore, conventionally, Japanese Patent Application Laid-Open No. 63-62964 is disclosed.
No. As seen in Japanese and Sho 62-63248 discloses, an oil temperature sensor for detecting the oil temperature of the transmission is provided, so as to modify in accordance with the electrical signal to the electromagnetic valve on the detection result of the oil temperature sensor I have to.
【0003】[0003]
【発明が解決しようとする課題】上記の如く油温センサ
を設けたのではコストが高くなり、特別なセンサを用い
ずに所要の調整油圧を得られるようにすることが望まれ
ている。そこで、本発明は、かかる要望に適合した車両
用油圧作動式変速機の制御装置を提供することをその目
的としている。The provision of the oil temperature sensor as described above increases the cost, and it is desired that the required adjusted hydraulic pressure can be obtained without using a special sensor. Accordingly, an object of the present invention is to provide a control device for a hydraulically operated transmission for a vehicle that meets such a demand.
【0004】[0004]
【課題を解決するための手段】上記目的を達成すべく、
本発明は、車両用油圧作動式変速機の油圧制御装置であ
って、油圧源からの供給油圧を電気信号に応じた油圧に
調整して出力する電磁弁を備えるものにおいて、前記電
磁弁から出力すべき制御油圧を決定する油圧決定手段
と、前記電磁弁への通電電流値と前記電磁弁の出力油圧
との関係を表す予め定められたデータから前記制御油圧
に対応する指令電流値を求める電流値算出手段と、前記
電磁弁の特性に基づいて前記指令電流値に対応する印加
電圧を求める電圧算出手段と、前記印加電圧を前記電磁
弁に印加した後前記電磁弁に流れる実電流値を検出し
て、実電流値が前記指令電流値に一致するように印加電
圧をフィードバック制御するフィードバック制御手段
と、実電流値と印加電圧とから前記電磁弁の通電抵抗値
の変化を検知する抵抗変化検知手段と、該抵抗変化検知
手段の検知結果に基づいて変速機の油温を推定する油温
推定手段と、前記電磁弁への通電電流値と前記電磁弁の
出力油圧との関係を表す前記データを前記油温推定手段
の推定結果に応じて変更する変更手段とを設けたことを
特徴とする。In order to achieve the above object,
The present invention relates to a hydraulic control device for a hydraulically operated transmission for a vehicle, comprising a solenoid valve that adjusts a hydraulic pressure supplied from a hydraulic source to a hydraulic pressure according to an electric signal and outputs the adjusted hydraulic pressure.
Oil pressure determining means for determining the control oil pressure to be output from the magnetic valve
Current value to the solenoid valve and output hydraulic pressure of the solenoid valve
From predetermined data representing the relationship with the control hydraulic pressure.
Current value calculating means for obtaining a command current value corresponding to
Application corresponding to the command current value based on the characteristics of the solenoid valve
Voltage calculating means for obtaining a voltage; and
After applying the current to the valve, the actual current flowing through the solenoid valve is detected.
So that the actual current value matches the command current value.
Feedback control means for pressure feedback control
When the resistance change detecting means for detecting a change in the energization resistance value of the solenoid valve from the actual current value and the applied voltage, oil temperature estimating the oil temperature of the transmission based on the detection result of the resistance change detecting means
Estimating means, an energizing current value to the solenoid valve,
The data representing the relationship with the output oil pressure is used as the oil temperature estimating means.
And changing means for changing according to the estimation result .
【0005】[0005]
【作用】電磁弁の温度は変速機の油温にほぼ一致し、油
温が変化すると電磁弁の通電抵抗値も変化する。そし
て、本発明によれば、制御油圧に対応する指令電流値を
求める際に使用する油圧と電流との関係を表すデータを
通電抵抗値の変化に基いて油温変化を補償するように変
更でき、油温が変化しても所要の調整油圧を得られる。
ところで、電磁弁の通電抵抗値は通電による発熱によっ
ても変化するため、通電抵抗値だけでは油温の推定に誤
差を生ずることがある。この場合、変速機と同一環境下
に置かれるエンジンの冷却水温を検知し、冷却水温も加
味して油温を推定すれば、油温をより正確に知ることが
でき、油圧の制御精度が向上する。The temperature of the solenoid valve substantially coincides with the oil temperature of the transmission, and when the oil temperature changes, the energization resistance of the solenoid valve also changes. Soshi
Therefore, according to the present invention, the command current value corresponding to the control oil pressure is
Varying to compensate for oil temperature changes on the basis of the data representing the relationship between hydraulic and electric current to be used for change of <br/> energization resistance value when obtaining
The required adjusted hydraulic pressure can be obtained even if the oil temperature changes.
By the way, since the energization resistance of the solenoid valve also changes due to heat generated by energization, an error may occur in estimating the oil temperature using only the energization resistance. In this case, if the temperature of the cooling water of the engine placed in the same environment as the transmission is detected and the oil temperature is estimated in consideration of the cooling water temperature, the oil temperature can be known more accurately, and the control accuracy of the hydraulic pressure is improved. I do.
【0006】[0006]
【実施例】図1を参照して、1は車両用油圧作動式変速
機であり、該変速機1は、エンジン2の出力側に設けた
ロックアップクラッチ3a付きのトルクコンバータ3
と、該トルクコンバータ3の出力側に設けた補助変速機
4とで構成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, reference numeral 1 denotes a hydraulically operated transmission for a vehicle. The transmission 1 is a torque converter 3 having a lock-up clutch 3a provided on the output side of an engine 2.
And an auxiliary transmission 4 provided on the output side of the torque converter 3.
【0007】補助変速機4は、トルクコンバータ3に連
結される入力軸4aと、車両の駆動輪5、5に差動ギア
6を介して連結される出力軸4bとの間に前進用の1速
乃至4速の変速段G1、G2、G3、G4と後進段GR
とを並設して成るもので、前進用の各変速段に1速乃至
4速の油圧クラッチC1、C2、C3、C4を介設し
て、該各油圧クラッチの係合により前進用の各変速段を
選択的に確立するようにした。また、後進段GRは4速
段G4と4速油圧クラッチC4を共用するものとし、出
力軸4b上に4速段G4と後進段GRとを選択するセレ
クタギア7を設けて、該セレクタギア7の図面で左方の
前進位置と右方の後進位置への切換動作で4速段G4と
後進段GRとを選択的に確立するようにした。図中8は
1速段G1に介設したワンウェイクラッチで、出力側の
オーバー回転を許容すべく機能する。The auxiliary transmission 4 is provided between an input shaft 4a connected to the torque converter 3 and an output shaft 4b connected to driving wheels 5, 5 of the vehicle via a differential gear 6 for forward movement. To fourth speed shift stages G1, G2, G3, G4 and reverse gear GR
The first to fourth speed hydraulic clutches C1, C2, C3, and C4 are provided at each forward speed, and each forward speed is engaged by engagement of each hydraulic clutch. The shift speed is selectively established. The reverse gear GR shares the fourth gear G4 and the fourth hydraulic clutch C4. A selector gear 7 for selecting the fourth gear G4 and the reverse gear GR is provided on the output shaft 4b. In the drawing, the fourth speed G4 and the reverse speed GR are selectively established by the switching operation between the left forward position and the right reverse position. In the drawing, reference numeral 8 denotes a one-way clutch provided at the first speed stage G1, which functions so as to allow overspeed on the output side.
【0008】前記油圧クラッチC1〜C4やロックアッ
プクラッチ3aやセレクタギア7はマイクロコンピュー
タから成る電子制御回路9により油圧制御回路10を介
して制御されるようになっており、電子制御回路9に、
エンジン2のスロットル開度を検出するスロットルセン
サ111や、エンジン2の回転数を検出する回転センサ
112や、エンジン2の冷却水温を検出する水温センサ
113や、差動ギア6の回転数から車速を検出する車速
センサ114や、補助変速機4の入力軸4aと出力軸4
bの回転数を検出する回転センサ115、116からの信
号を入力し、図外のシフトレバーを自動変速レンジに切
換えたとき、スロットル開度と車速とをパラメータとし
て予め設定される変速特性に従った変速指令を出力し、
油圧制御回路10に備える図外のシフト弁ユニットを介
して所要の油圧クラッチに給油し、1速乃至4速の自動
変速を行うようにした。The hydraulic clutches C1 to C4, the lock-up clutch 3a and the selector gear 7 are controlled by an electronic control circuit 9 comprising a microcomputer via a hydraulic control circuit 10.
And a throttle sensor 11 1 which detects a throttle opening of the engine 2, the rotational speed and the rotation sensor 11 2 which detects the engine 2, and a water temperature sensor 11 3 which detects the coolant temperature of the engine 2, the rotational speed of the differential gear 6 a vehicle speed sensor 11 for detecting the vehicle speed from 4 and an input shaft 4a of the auxiliary transmission 4 output shaft 4
When signals from rotation sensors 11 5 and 11 6 for detecting the number of rotations of b are input and a shift lever (not shown) is switched to an automatic shift range, a shift characteristic preset with the throttle opening and the vehicle speed as parameters. Output a shift command according to
Oil is supplied to a required hydraulic clutch via a shift valve unit (not shown) provided in the hydraulic control circuit 10 so as to perform first- to fourth-speed automatic shifting.
【0009】油圧制御回路10には、図2に示す如く、
油圧源からのライン圧PLを調圧してシフト弁ユニット
に供給する調圧弁12が設けられており、更に、ライン
圧PLをモジュレータ弁13で一定値減圧して入力する
電磁弁14を設け、該電磁弁14から出力される制御油
圧Pcを調圧弁12の増圧方向に作用させ、変速過渡期
に電磁弁14により調圧弁12を介して油圧クラッチへ
の給油圧を制御するようにした。As shown in FIG. 2, the hydraulic control circuit 10
A pressure regulating valve 12 for regulating a line pressure PL from a hydraulic pressure source and supplying the same to a shift valve unit is provided. Further, an electromagnetic valve 14 for reducing and inputting the line pressure PL by a constant value by a modulator valve 13 is provided. The control oil pressure Pc output from the solenoid valve 14 is applied in the pressure increasing direction of the pressure regulating valve 12, and the supply hydraulic pressure to the hydraulic clutch is controlled by the solenoid valve 14 via the pressure regulating valve 12 during a shift transition period.
【0010】電磁弁14はそのソレノイド14aへの通
電電流値に反比例した制御油圧Pcを出力するリニアソ
レノイドバルブで構成されており、電子制御回路9によ
りソレノイド14aへの通電を制御する。これを詳述す
るに、電子制御回路9は、スロットル開度等のパラメー
タと変速の種別とに応じて電磁弁14から出力すべき制
御油圧Pcを決定し、次に電磁弁14のソレノイド14
aへの通電電流値と電磁弁14から出力される油圧との
関係を表わす図4に示す如き油圧−電流マップを検索し
て制御油圧Pcに対応する指令電流値Icを算出し、次
いで図5に示す如き電流−電圧特性に従ってIcに対応
する電圧を算出し、この電圧をソレノイド14aに印加
する。そして、このときにソレノイド14aに流れる実
電流値Iaを検出し、IcとIaとの偏差を比例積分し
てソレノイド14aの印加電圧Vaをフィードバック制
御し、IaをIcに一致させる。The solenoid valve 14 is composed of a linear solenoid valve that outputs a control oil pressure Pc that is inversely proportional to the value of the current supplied to the solenoid 14a, and the electronic control circuit 9 controls the power supply to the solenoid 14a. More specifically, the electronic control circuit 9 determines the control oil pressure Pc to be output from the solenoid valve 14 according to the parameter such as the throttle opening and the type of shift, and then determines the control oil pressure Pc of the solenoid valve 14.
A hydraulic pressure-current map as shown in FIG. 4 showing the relationship between the value of the current supplied to a and the hydraulic pressure output from the solenoid valve 14 is searched to calculate a command current value Ic corresponding to the control hydraulic pressure Pc. The voltage corresponding to Ic is calculated in accordance with the current-voltage characteristics as shown in (1), and this voltage is applied to the solenoid 14a. Then, at this time, the actual current value Ia flowing through the solenoid 14a is detected, the deviation between Ic and Ia is proportionally integrated, and the applied voltage Va of the solenoid 14a is feedback-controlled to make Ia equal to Ic.
【0011】ところで、変速機1の油温変化で油の粘度
が変化した場合にはそれに応じて油圧−電流マップを変
更する必要がある。例えば、低温で油の粘度が増加した
場合には、油圧変化の応答遅れを補償するため図4のa
線で示す常温時のマップよりも同図のb線で示すように
高圧方向(電流を下げる方向)へ修正する必要があり、
更に、高温で油の粘度が減少した場合にも、バルブスプ
ールの摺動クリアランスからの油のリーク量が増すため
常温時のマップより同図のc線で示すように高圧方向へ
修正する必要がある。When the viscosity of the oil changes due to a change in the oil temperature of the transmission 1, it is necessary to change the hydraulic-current map accordingly. For example, when the viscosity of the oil increases at a low temperature, in order to compensate for the response delay of the oil pressure change, a in FIG.
It is necessary to correct in the high voltage direction (direction for decreasing the current) as shown by the line b in the same figure from the map at normal temperature indicated by the line,
Further, even when the viscosity of the oil decreases at a high temperature, the amount of oil leaking from the sliding clearance of the valve spool increases, so that it is necessary to correct the oil pressure from the map at normal temperature to the high pressure direction as shown by the line c in FIG. is there.
【0012】ここで、油温が変化すると電磁弁14の温
度も変化して、ソレノイド14aの通電抵抗値Rが変化
し、ソレノイド14aの電流−電圧特性の傾きが実線で
示す常温時の傾きに比し高温時には大きくなり、低温時
には小さくなる。従って、ソレノイド14aの印加電圧
Vaと実電流値Iaとから実抵抗値Raを算出すれば、
Raから油温を推定することができ、この油温に応じた
油圧−電流マップを選択することにより、油温変化を補
償することができる。但し、実抵抗値Raはソレノイド
14aの自己発熱によっても変化し、Raのみで油温を
推定したのでは誤差を生ずる可能性がある。そのため、
エンジン2の冷却水温TWも加味して、油温を図6に示
すマップに従って推定するようにした。即ち、抵抗値に
ついての低温判別値RLと高温判別値RHとを設定する
と共に、水温についての低温判別値TWLと高温判別値
TWHとを設定し、Ra≦RLのときは油温が低温、R
a≧RHのときは油温が高温と判別し、RL<Ra<R
Hのときはソレノイド14aの自己発熱による抵抗変化
を考慮して、TW≦TWLのときは油温が低温、TWL
<TW<TWHのときは油温が常温、TW≧TWHのと
きは油温が高温と判別する。Here, when the oil temperature changes, the temperature of the solenoid valve 14 also changes, the energization resistance value R of the solenoid 14a changes, and the slope of the current-voltage characteristic of the solenoid 14a changes to the slope at normal temperature indicated by a solid line. On the other hand, it becomes larger at high temperature and smaller at low temperature. Therefore, if the actual resistance value Ra is calculated from the applied voltage Va of the solenoid 14a and the actual current value Ia,
The oil temperature can be estimated from Ra, and a change in the oil temperature can be compensated by selecting a hydraulic-current map according to the oil temperature. However, the actual resistance value Ra also changes due to the self-heating of the solenoid 14a, and an error may occur if the oil temperature is estimated using only Ra. for that reason,
The oil temperature is estimated according to the map shown in FIG. 6 in consideration of the cooling water temperature TW of the engine 2. That is, a low-temperature discrimination value RL and a high-temperature discrimination value RH for the resistance value are set, and a low-temperature discrimination value TWL and a high-temperature discrimination value TWH for the water temperature are set. When Ra ≦ RL, the oil temperature is low.
When a ≧ RH, the oil temperature is determined to be high, and RL <Ra <R
When H, the oil temperature is low when TW ≦ TWL, taking into account the resistance change due to self-heating of the solenoid 14a, and TWL
When <TW <TWH, it is determined that the oil temperature is normal temperature, and when TW ≧ TWH, it is determined that the oil temperature is high.
【0013】電子制御回路9による上記した電磁弁14
の制御をまとめると図3に示す通りになり、先ずS1の
ステップでスロットル開度や冷却水温TW等の各種パラ
メータを読込むと共に、S2のステップで変速の種別を
判別し、次にS3のステップで変速の種別とスロットル
開度等のパラメータとから変速ショックを防止するのに
最適な制御油圧Pcを決定する。次にS4のステップで
Pcに対応する指令電流値Icを算出した後、S5のス
テップでIcに対応する印加電圧を算出して出力する。
そして、S6のステップで実電流値Iaを検出してフィ
ードバック制御を行うと共に、S7のステップで印加電
圧VaとIaとから実抵抗値Raを算出し、次にS8の
ステップでRaとTWとから油温を推定し、S9のステ
ップで油温に応じた油圧−電流マップを選択する。そし
て、次の変速に際し、S4のステップでのIcの算出を
前回S9のステップで選択された油圧−電流マップに基
いて行う。The above-mentioned solenoid valve 14 by the electronic control circuit 9
3 is summarized as shown in FIG. 3. First, in step S1, various parameters such as the throttle opening and the coolant temperature TW are read, and in step S2, the type of shift is determined. Then, the optimum control oil pressure Pc for preventing the shift shock is determined from the type of shift and parameters such as the throttle opening. Next, after the command current value Ic corresponding to Pc is calculated in step S4, the applied voltage corresponding to Ic is calculated and output in step S5.
Then, in step S6, the actual current value Ia is detected to perform feedback control, and in step S7, the actual resistance value Ra is calculated from the applied voltages Va and Ia, and then, in step S8, the actual resistance value Ra is calculated from Ra and TW. The oil temperature is estimated, and a hydraulic pressure-current map corresponding to the oil temperature is selected in step S9. Then, at the time of the next shift, the calculation of Ic in the step S4 is performed based on the hydraulic pressure-current map selected in the previous step S9.
【0014】以上、比例式電磁弁14によって油圧を制
御する実施例について説明したが、デューティー制御式
の電磁弁で油圧を制御するものにも本発明を適用でき、
この場合には電磁弁の駆動デューティー比と実効電流値
とから抵抗値を算出して油温を推定し、油圧と駆動デュ
ーティー比との関係を表わすデータマップを油温に応じ
て変更する。Although the embodiment in which the hydraulic pressure is controlled by the proportional solenoid valve 14 has been described above, the present invention can also be applied to a system in which the hydraulic pressure is controlled by a duty control solenoid valve.
In this case, the oil temperature is estimated by calculating the resistance value from the drive duty ratio and the effective current value of the solenoid valve, and the data map representing the relationship between the oil pressure and the drive duty ratio is changed according to the oil temperature.
【0015】[0015]
【発明の効果】以上の説明から明らかなように、本発明
によれば、油温が変化しても電磁弁により正確に油圧を
制御できると共に、油温センサといった特別のセンサを
用いずに済み、コストダウンも図れる。As is clear from the above description, according to the present invention, even if the oil temperature changes, the hydraulic pressure can be accurately controlled by the solenoid valve, and a special sensor such as an oil temperature sensor is not required. In addition, costs can be reduced.
【図1】 本発明装置を適用する変速機とその制御系を
示すシステム図FIG. 1 is a system diagram showing a transmission to which the present invention is applied and a control system thereof.
【図2】 その油圧制御回路に設ける電磁弁を示す図FIG. 2 is a diagram showing an electromagnetic valve provided in the hydraulic control circuit.
【図3】 電磁弁の制御プログラムを示すフローチャー
トFIG. 3 is a flowchart showing a control program for a solenoid valve.
【図4】 電磁弁の油圧−電流特性を示す図FIG. 4 is a diagram showing hydraulic-current characteristics of a solenoid valve.
【図5】 電磁弁の電流−電圧特性を示す図FIG. 5 is a diagram showing current-voltage characteristics of a solenoid valve.
【図6】 抵抗値と冷却水温とによる油温の判別マップ
を示す図FIG. 6 is a diagram showing an oil temperature discrimination map based on a resistance value and a cooling water temperature.
1 変速機 2 エンジン 9
電子制御回路 10 油圧制御回路 14 電磁弁1 transmission 2 engine 9
Electronic control circuit 10 Hydraulic control circuit 14 Solenoid valve
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16H 61/00 - 61/24 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) F16H 61/00-61/24
Claims (2)
であって、油圧源からの供給油圧を電気信号に応じた油
圧に調整して出力する電磁弁を備えるものにおいて、前
記電磁弁から出力すべき制御油圧を決定する油圧決定手
段と、前記電磁弁への通電電流値と前記電磁弁の出力油
圧との関係を表す予め定められたデータから前記制御油
圧に対応する指令電流値を求める電流値算出手段と、前
記電磁弁の特性に基づいて前記指令電流値に対応する印
加電圧を求める電圧算出手段と、前記印加電圧を前記電
磁弁に印加した後前記電磁弁に流れる実電流値を検出し
て、実電流値が前記指令電流値に一致するように印加電
圧をフィードバック制御するフィードバック制御手段
と、実電流値と印加電圧とから前記電磁弁の通電抵抗値
の変化を検知する抵抗変化検知手段と、該抵抗変化検知
手段の検知結果に基づいて変速機の油温を推定する油温
推定手段と、前記電磁弁への通電電流値と前記電磁弁の
出力油圧との関係を表す前記データを前記油温推定手段
の推定結果に応じて変更する変更手段とを設けたことを
特徴とする車両用油圧作動式変速機の油圧制御装置。1. A hydraulic control apparatus for a hydraulically operated vehicular transmission, in which comprises a solenoid valve for hydraulic pressure supplied to adjust the hydraulic pressure corresponding to the electric signal output from the hydraulic source, before
Hydraulic pressure determining means for determining the control hydraulic pressure to be output from the solenoid valve
Stage, the current flowing through the solenoid valve and the output oil of the solenoid valve
The control oil is obtained from predetermined data representing a relationship with pressure.
Current value calculating means for obtaining a command current value corresponding to the pressure;
A mark corresponding to the command current value based on the characteristics of the solenoid valve.
Voltage calculation means for obtaining an applied voltage;
After applying the voltage to the magnetic valve, the actual current value flowing through the electromagnetic valve is detected.
So that the actual current value matches the command current value.
Feedback control means for pressure feedback control
Resistance change detection means for detecting a change in the energization resistance value of the solenoid valve from an actual current value and an applied voltage; and an oil temperature for estimating an oil temperature of the transmission based on a detection result of the resistance change detection means.
Estimating means, an energizing current value to the solenoid valve,
The data representing the relationship with the output oil pressure is used as the oil temperature estimating means.
And a changing means for changing according to a result of the estimation of the hydraulic control apparatus for a vehicle hydraulically operated transmission.
手段を備え、前記油温推定手段は該水温検知手段の検知
結果を加味して油温を推定することを特徴とする請求項
1に記載の車両用油圧作動式変速機の油圧制御装置。2. An oil temperature estimating means for detecting a cooling water temperature of an engine, wherein the oil temperature estimating means estimates an oil temperature in consideration of a detection result of the water temperature detecting means.
2. The hydraulic control device for a hydraulically operated transmission for a vehicle according to claim 1 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21749793A JP3227660B2 (en) | 1993-09-01 | 1993-09-01 | Hydraulic control device for hydraulically operated transmission for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21749793A JP3227660B2 (en) | 1993-09-01 | 1993-09-01 | Hydraulic control device for hydraulically operated transmission for vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0771574A JPH0771574A (en) | 1995-03-17 |
JP3227660B2 true JP3227660B2 (en) | 2001-11-12 |
Family
ID=16705170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21749793A Expired - Lifetime JP3227660B2 (en) | 1993-09-01 | 1993-09-01 | Hydraulic control device for hydraulically operated transmission for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3227660B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5601175B2 (en) * | 2010-11-27 | 2014-10-08 | トヨタ自動車株式会社 | Control device for automatic transmission for vehicle |
JP5568498B2 (en) * | 2011-03-24 | 2014-08-06 | ジヤトコ株式会社 | Vehicle fluid temperature estimation device and fluid temperature estimation method thereof |
JP5568499B2 (en) * | 2011-03-24 | 2014-08-06 | ジヤトコ株式会社 | Vehicle fluid temperature estimation device and fluid temperature estimation method thereof |
JP2016187015A (en) * | 2015-03-27 | 2016-10-27 | アイシン精機株式会社 | Oil temperature estimation device |
-
1993
- 1993-09-01 JP JP21749793A patent/JP3227660B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0771574A (en) | 1995-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7536248B2 (en) | Vehicle take-off control apparatus and method | |
US5609067A (en) | Transmission control fault detection | |
KR950002368B1 (en) | Method of operating transmission | |
JP3067742B2 (en) | Overheating prevention device for torque converter | |
JP3374167B2 (en) | Learning control device for automatic transmission | |
JP3227660B2 (en) | Hydraulic control device for hydraulically operated transmission for vehicle | |
JP3205951B2 (en) | Hydraulic control device for hydraulically operated transmission for vehicle | |
JPH0615308B2 (en) | Integrated control system for power train | |
JPH08159273A (en) | Lockup control device for automatic transmission | |
JP4396247B2 (en) | Hydraulic control device for belt type continuously variable transmission | |
US5421793A (en) | Automatic transmisson controller | |
JP3606157B2 (en) | Creep force control device for vehicle automatic transmission | |
KR100276922B1 (en) | Low oil temperature correction method when power-on 2 to 3 speed up shift of automatic transmission | |
JP3314710B2 (en) | Drive control device for duty solenoid valve | |
JP3086279B2 (en) | Hydraulic control device for automatic transmission | |
KR100285470B1 (en) | Shift control method of automatic transmission | |
KR100203889B1 (en) | Shift control method of automatic transmission | |
KR100270041B1 (en) | How to control idle speed of automatic transmission | |
KR100206011B1 (en) | Transmission controller | |
JP3131889B2 (en) | Line pressure control device for automatic transmission | |
JP3161207B2 (en) | Transmission capacity control device for automatic transmission | |
JPH0615900B2 (en) | Line pressure control device for automatic transmission | |
JP2857962B2 (en) | Line pressure control device for automatic transmission | |
KR100239895B1 (en) | Line pressure controller | |
JP2009138871A (en) | Control device for continuously variable transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20070907 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20080907 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20080907 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090907 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100907 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20100907 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110907 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20110907 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20120907 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120907 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20130907 |