[go: up one dir, main page]

JP3222648B2 - Medical ultrasonic dispersion compression transmission / reception method and medical ultrasonic dispersion compression transmission / reception device - Google Patents

Medical ultrasonic dispersion compression transmission / reception method and medical ultrasonic dispersion compression transmission / reception device

Info

Publication number
JP3222648B2
JP3222648B2 JP21070493A JP21070493A JP3222648B2 JP 3222648 B2 JP3222648 B2 JP 3222648B2 JP 21070493 A JP21070493 A JP 21070493A JP 21070493 A JP21070493 A JP 21070493A JP 3222648 B2 JP3222648 B2 JP 3222648B2
Authority
JP
Japan
Prior art keywords
signal
transmission signal
transmission
reception
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21070493A
Other languages
Japanese (ja)
Other versions
JPH0759766A (en
Inventor
康人 竹内
Original Assignee
ジーイー横河メディカルシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジーイー横河メディカルシステム株式会社 filed Critical ジーイー横河メディカルシステム株式会社
Priority to JP21070493A priority Critical patent/JP3222648B2/en
Publication of JPH0759766A publication Critical patent/JPH0759766A/en
Application granted granted Critical
Publication of JP3222648B2 publication Critical patent/JP3222648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は医用超音波分散圧縮送受
信方法及び医用超音波分散圧縮送受信装置の改良に関
し、特に、媒質の非線形伝播に耐性を有する医用超音波
分散送受信方法及び医用超音波分散圧縮送受信装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical ultrasonic dispersion compression transmission / reception method and an improvement of a medical ultrasonic dispersion compression transmission / reception apparatus, and more particularly to a medical ultrasonic dispersion transmission / reception method and a medical ultrasonic dispersion resistant to nonlinear propagation of a medium. The present invention relates to a compression transmitting / receiving apparatus.

【0002】[0002]

【従来の技術】医用超音波装置とは一種の極短距離ソナ
ーであり、ターゲット(観測対象物:この場合被検体の
腹腔内)の損失性分散性の大きな音響学的性質と、診断
上の要求による映像系の空間分解能への要求に従って、
音響信号系の比帯域幅は非常に大きく(すなわち、イン
パルスレスポンスを非常に重視し)、また系のダイナミ
ックレンジへの要求も常に限界値を行っている。
2. Description of the Related Art A medical ultrasonic device is a kind of ultra-short distance sonar, and has a large lossy dispersive acoustic property of a target (observation target: in this case, the abdominal cavity of a subject) and a diagnostic property. According to the requirements for the spatial resolution of the video system according to the requirements,
The relative bandwidth of the acoustic signal system is very large (that is, the impulse response is very important), and the demand for the dynamic range of the system is always at a limit.

【0003】また、ターゲットの生体軟部組織のエコー
源としての性質はポイントターゲットとは裏腹の全てが
クラッタのようなエコー源であり、スペックル性を基本
とし、卓越した硬いエコーは骨などの特例以外には存在
しない。
[0003] In addition, the characteristics of the target as an echo source of the soft tissue of the living body are such that the whole of the point target is an echo source like clutter, and the speckle property is fundamental. There is no other than.

【0004】むしろ、組織実質部の砂を撒いたようなス
ペックルエコーの領域の中に僅かに性質の異なる部分が
識別できるとか、液体で満たされた管腔臓器の中身が本
当に透明か、なにかエコーを発する異物があるか、等が
大変重要な課題である。それ故に、一切のゴーストやス
プリアスレスポンスを極度に嫌う。すなわち、本質的に
ハイファイでクリーンであることが必須の条件である。
[0004] Rather, it is possible to distinguish a slightly different portion in the speckle echo area where the parenchyma of the tissue is scattered, or whether the contents of a luminal organ filled with liquid are really transparent or not. A very important issue is whether there is a foreign substance that emits an echo. Therefore, I extremely dislike all ghosts and spurious responses. That is, it is an essential condition that it is essentially hi-fi and clean.

【0005】この様な観測系ないし信号系への要求は、
オーディオシステムや資源探査用の合成開口レーダにお
ける事情にも似ているともいえるが、大きく異なる点も
ある。すなわち、リアルタイム性と安全性が要求される
点である。リアルタイム性とは、動体即時観測、すなわ
ち動いている臓器の遅滞ない観測(ドプラシフト観測な
ども含めて)要求されることである。また生体組織への
安全性の確保は医療器械としては本質的に重要な課題で
ある。
[0005] Such a demand for the observation system or the signal system is as follows.
It is similar to the situation in audio systems and synthetic aperture radars for resource exploration, but there are some significant differences. That is, real-time properties and security are required. The real-time property means that real-time observation of a moving object, that is, observation of a moving organ without delay (including Doppler shift observation) is required. Ensuring the safety of living tissues is essentially an important issue for medical instruments.

【0006】すなわち、安全性と送信電力の両者を確保
しつつ装置の探査能力を向上させるために、大振幅の単
発パルスのパルスエコーシステムや単一周波数のCWシ
ステムに代えて、時間帯域幅積(TB積)が1よりはる
かに大きいスペクトラム拡散方式を用いた分散圧縮送受
信が有効である。
That is, in order to improve the search capability of the apparatus while securing both security and transmission power, a time-bandwidth product is used in place of a large-amplitude single-pulse pulse echo system or a single-frequency CW system. Distributed compression transmission / reception using a spread spectrum system in which (TB product) is much larger than 1 is effective.

【0007】[0007]

【発明が解決しようとする課題】医用超音波装置のエコ
ー探査において以上のような事情に即して採用可能な分
散化信号としては、大別してFMチャープ信号と相補系
列による位相変調信号の二種類がある。そして、メイン
ローブの鋭さや形状は各々の事情による面があるとして
も、一般に、送波信号のそれ自身の方式原理上のタイム
サイドローブが大略−60dB程度以下であることは最
低限必要である。これは生体組織内のエコー源のレベル
分布に由来し、その分布範囲そのものである。
DISCLOSURE OF THE INVENTION In the echo search of a medical ultrasonic apparatus, there are roughly two types of dispersed signals that can be employed in accordance with the above circumstances: an FM chirp signal and a phase modulation signal based on a complementary sequence. There is. In general, even if the sharpness and shape of the main lobe depend on the circumstances, it is generally necessary that the time side lobe of the transmitted signal on its own principle is at most about -60 dB or less. . This is derived from the level distribution of the echo source in the living tissue, and is the distribution range itself.

【0008】ゴーレイコード等の相補系列を位相変調の
コード信号として時分割的に用いる場合には、タイムサ
イドローブは各コードの受信相関処理の後で結果を一次
結合することで完全に消去され、静止ターゲットに対し
てはほぼ理想的な結果が得られる。しかしこの方式はド
プラシフトのあるターゲットには本質的に脆弱で、応用
可能な場面には制約がある。
When a complementary sequence such as a Golay code is used in a time-division manner as a code signal for phase modulation, the time side lobe is completely eliminated by linearly combining the results after the reception correlation processing of each code. Almost ideal results are obtained for stationary targets. However, this method is inherently vulnerable to targets with a Doppler shift, and has limited applicability.

【0009】また、ビンのシフト数のある特定の値のみ
に関して相補性を呈する系もあるが、システムが同期シ
ステムではなく、エコー源が至る所に分布しているスペ
ックル性の強いものであるので、メインローブ以外の一
切の不所望レスポンスは字義通りゴースト発生源とな
る。
There is also a system which exhibits complementarity only with respect to a specific value of the bin shift number. However, the system is not a synchronous system but has a strong speckle characteristic in which echo sources are distributed everywhere. Therefore, any undesired response other than the main lobe is literally a ghost source.

【0010】そして、最大の問題が、媒質の非線形伝播
の影響の問題である。特に送波信号が伝播中に大きく波
形変化をきたす場合があること、及びそれを前提とした
信号設計である。
The biggest problem is the effect of nonlinear propagation of a medium. In particular, there is a case where a transmitted signal greatly changes its waveform during propagation, and the signal design is based on this.

【0011】空気中や水中の音響信号が電磁波信号と本
質的に異なる点は、媒質中の伝播が本質的に非線形を持
つ点である。これは、音波が縦波であり、瞬時音圧の高
い、瞬時粒子速度の大なる部分が先走りして先行する低
圧遅速の部分に追いつくことにより避けられない現象で
ある。これは低レベルの音波の短距離伝播では殆ど目立
たないが、レベルや周波数に依存するある限界を超える
と一様に波頭が立ってきて目立つようになる。
An acoustic signal in air or water is essentially different from an electromagnetic wave signal in that propagation in a medium is essentially nonlinear. This is a phenomenon in which the sound wave is a longitudinal wave, and a portion having a high instantaneous sound pressure and a large instantaneous particle velocity runs ahead and catches up with a preceding low pressure and slow speed portion. This is hardly noticeable in short-range propagation of low-level sound waves, but when a certain limit depending on the level or frequency is exceeded, the wave front uniformly rises and becomes noticeable.

【0012】実用を意識した典型例として、計算機シミ
ュレーションにより得た結果を図7以下を参照して説明
する。まず、上下周波数比2:1程の、全長50波長程
度のコサイン自乗振幅修飾したリニアチャープ信号を計
算機内で発生する(図8)。それを計算機内で非線形伝
播をシミュレーションすることにより波形を崩していく
と図9のようにまず振幅の大きい腹から壁が立ちはじ
め、トゲがでてくる。エコー源は波形を変えずに、これ
をただ低レベルにて送り返してきたとする。この波形と
元の送信波形との相関関係に注目することにする。ここ
で、受信機の事情を勘案してこの図9の波形を元の信号
の帯域幅に帯域制限(第二高調波以上を除去)すると、
図10のように痩せて平坦化し、あたかもアポダイゼー
ションが狂ったような波形になる。これを元の送信波形
と相関させると、相当現実離れした歪みを来してもタイ
ムサイドローブはさほど悪化しない。しかし、図11に
示すように片側に大きなコブを生じている。このコブは
チャープ波形の低域側の時間帯のひずんだ結果(第二高
調波)がレプリカの広域側の端の成分と相関を持つに至
ったものであり、それだけ広帯域なチャープ信号を想定
したのだから当然ではある。が、現実に欲しい信号はこ
の程度の広帯域なものになるので、この問題を避けて通
ることはできない。上下周波数比を2:1よりも有意に
狭め、例えば1.4:1程度に抑えれば、このコブはフ
ィルタで容易に除去することができるようになる。しか
し、そのようにすると、現行装置に等価な空間分解能も
得ることができなくなる。
As a typical example for practical use, results obtained by computer simulation will be described with reference to FIG. First, a cosine-square-amplitude-modified linear chirp signal having a total frequency of about 50 wavelengths with an upper / lower frequency ratio of about 2: 1 is generated in the computer (FIG. 8). When the waveform is broken by simulating the nonlinear propagation in the computer, a wall starts to rise from a belly having a large amplitude and thorns appear as shown in FIG. Suppose the echo source just sent it back at a low level without changing the waveform. Attention is paid to the correlation between this waveform and the original transmission waveform. Here, when the waveform of FIG. 9 is band-limited to the original signal bandwidth (removing the second harmonic and higher) in consideration of the circumstances of the receiver,
As shown in FIG. 10, the waveform becomes thin and flat, as if the apodization were out of order. When this is correlated with the original transmission waveform, the time side lobe does not deteriorate so much even if a considerably distant distortion occurs. However, as shown in FIG. 11, a large bump is generated on one side. This knot is a result of the distortion of the lower frequency band of the chirp waveform (second harmonic) having a correlation with the component at the wider end of the replica, and assuming a broadband chirp signal accordingly That is natural. However, since the signal actually desired has such a wide band, this problem cannot be avoided. If the upper / lower frequency ratio is significantly narrower than 2: 1 and is suppressed to, for example, about 1.4: 1, the bump can be easily removed by a filter. However, in such a case, a spatial resolution equivalent to the current device cannot be obtained.

【0013】次に、相補系列位相変調波について考え
る。図12に波形を示すコードAとコードBとを時間的
に別々に送受信し、相関させてから結果を足しあわせ
る。系の帯域幅とコード長は、上述のチャープ信号の場
合と大略同じにして考える。コード長は16ビット(A
=8D82,B=414E)であり、故に固有のプロセ
スゲイン32を持ち、固有の自己相関の加算後のサイド
ローブは計算誤差の範囲内で厳密に相殺するはずのもの
である。この相関の加算後の様子は図14に示すよう
に、−150dBの桁で合致するものである。
Next, a complementary sequence phase modulated wave will be considered. The code A and the code B whose waveforms are shown in FIG. 12 are transmitted and received separately in time, correlated, and the results are added. The system bandwidth and code length are assumed to be substantially the same as in the case of the above-described chirp signal. The code length is 16 bits (A
= 8D82, B = 414E), and therefore has a unique process gain 32, and the sidelobes after addition of the unique autocorrelation should exactly cancel within the calculation error. As shown in FIG. 14, the state after the addition of the correlation matches at the digit of -150 dB.

【0014】この場合において、伝播非線形が多少存在
する程度まではこの性質が比較的良く維持されるが、そ
れ以外では悪化する。すなわち、衝撃波限界近傍におい
ては、図12及び図13に示した波形が図15及び図1
6のようになる。この図15及び図16の波形をそれぞ
れ図12及び図13の波形と相関させて、その結果を加
算すると、図17に示すように−30dB〜−40dB
程度に悪化する。このように、サイドローブが−30d
B程度にまで大きくなると、実用には耐えないものとな
る。
In this case, this property is maintained relatively well up to the point where some propagation non-linearity exists, but worsens in other cases. That is, in the vicinity of the shock wave limit, the waveforms shown in FIGS.
It looks like 6. The waveforms of FIGS. 15 and 16 are correlated with the waveforms of FIGS. 12 and 13, respectively, and when the results are added, -30 dB to -40 dB as shown in FIG.
Worse to the extent. Thus, the side lobe is -30d
When it becomes as large as B, it becomes unsuitable for practical use.

【0015】本発明は上記の点に鑑みてなされたもの
で、その目的は、媒質の非線形伝播に耐性を有する医用
超音波分散圧縮送受信方法及び医用超音波分散圧縮送受
信装置を実現することである。
The present invention has been made in view of the above points, and an object of the present invention is to realize a medical ultrasonic dispersion compression transmission / reception method and a medical ultrasonic dispersion compression transmission / reception apparatus which are resistant to nonlinear propagation of a medium. .

【0016】[0016]

【課題を解決するための手段】前記の課題は、拡散変調
により第一の送波信号及びこの第一の送波信号と反対極
性の第二の送波信号を生成する送波信号生成手段と、送
波信号を超音波としてターゲットに照射し、反射波を受
信して受信信号として出力する送受波手段と、第一の送
波信号の受信結果と第一の送波信号の信号波形との相互
相関を第一の相関結果として求め、第二の送波信号の受
信結果と第二の送波信号の信号波形との相互相関を第二
の相関結果として求め、前記第一の相関結果と前記第二
の相関結果とを時間軸を整合させた状態で加算すること
により圧縮復調出力を得る受信信号処理手段とを備えた
医用超音波分散圧縮送受信装置により解決される。
The object of the present invention is to provide a transmission signal generating means for generating a first transmission signal and a second transmission signal having the opposite polarity to the first transmission signal by spread modulation. A transmitting and receiving means for irradiating a target with a transmitted signal as an ultrasonic wave, receiving a reflected wave and outputting it as a received signal, and a reception result of the first transmitted signal and a signal waveform of the first transmitted signal. The cross-correlation is determined as a first correlation result, the cross-correlation between the reception result of the second transmission signal and the signal waveform of the second transmission signal is determined as a second correlation result, and the first correlation result and This is solved by a medical ultrasonic dispersion compression transmission / reception device including a reception signal processing unit that obtains a compressed demodulation output by adding the second correlation result with the time axis aligned.

【0017】[0017]

【作用】この医用超音波分散圧縮送受信装置において、
拡散変調により生成された第一の送波信号及びこの第一
の送波信号と反対極性の第二の送波信号が送信された
後、第一の送波信号の受信結果と第一の送波信号の信号
波形との相互相関から求められた第一の相関結果と、第
二の送波信号の受信結果と第二の送波信号の信号波形と
の相互相関から求められた第二の相関結果とが時間軸を
整合させた状態で加算されることにより、媒質の非線形
伝播により発生した歪みが相殺された圧縮復調出力が得
られる。
In this medical ultrasonic dispersion compression transmitting and receiving apparatus,
After the first transmission signal generated by the spread modulation and the second transmission signal having the opposite polarity to the first transmission signal are transmitted, the reception result of the first transmission signal and the first transmission signal are transmitted. The first correlation result obtained from the cross-correlation with the signal waveform of the wave signal, and the second correlation result obtained from the cross-correlation between the reception result of the second transmission signal and the signal waveform of the second transmission signal By adding the correlation result in a state where the time axes are matched, a compressed demodulation output is obtained in which distortion generated by nonlinear propagation of the medium is canceled.

【0018】[0018]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明の一実施例の医用超音波分散
圧縮送受信方法を実現するための医用超音波分散圧縮送
受信装置の構成を分散圧縮送受信を行う部分を中心に示
す構成図、図2は図1に示した医用超音波装置の受信信
号処理装置の詳細を示す構成図である。また、図3はチ
ャープ信号を用いて分散圧縮送受信を行った場合の手順
を示すフローチャート、図4は相互相関の加算結果を示
す特性図である。また、図5は相補系列による位相変調
信号を用いて分散圧縮送受信を行った場合の手順を示す
フローチャート、図6は相互相関の加算結果を示す特性
図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a medical ultrasonic dispersion compression transmission / reception apparatus for realizing a medical ultrasonic dispersion compression transmission / reception method according to an embodiment of the present invention, mainly showing a part for performing distributed compression transmission / reception, and FIG. FIG. 3 is a configuration diagram showing details of a reception signal processing device of the medical ultrasonic device shown in FIG. FIG. 3 is a flowchart showing a procedure in the case of performing distributed compression transmission / reception using a chirp signal, and FIG. 4 is a characteristic diagram showing a result of addition of cross correlation. FIG. 5 is a flowchart showing a procedure in the case of performing distributed compression transmission / reception using a phase modulation signal based on a complementary sequence, and FIG. 6 is a characteristic diagram showing a result of cross-correlation addition.

【0019】まず、チャープ信号を用いた分散圧縮送受
信について図1〜図4を参照して説明を行う。システム
制御部10の指示により選択部11が所望の状態に選択
され、この選択状態に応じて送波信号発生器12は所定
のコード及び極性の送波信号を生成する。ここでは、一
対の極性を反転した送波信号(A,−A)が生成される
(図3ステップ(1) )。そして、送波信号A,−AはD
/A変換器13によりディジタル信号に変換され、送受
波器14から被検体に向けて送波される(図3ステップ
(2) )。そして、被検体からの反射波を送受波器14で
受信し(図3ステップ(3) )、アンプ15で増幅し、A
/D変換器16でディジタル信号に変換する。そして、
受波信号処理装置17において、A,−Aのそれぞれに
ついて送波信号と受信信号との相互相関処理を行って、
それぞれの相関結果を得る(図3ステップ(4) )。この
ようにして得られたAについての相関結果及び−Aにつ
いての相関結果を加算し(図3ステップ(5) )、各種処
理を行った後に表示装置18に表示を行う。
First, distributed compression transmission / reception using a chirp signal will be described with reference to FIGS. The selection unit 11 is selected to a desired state by an instruction from the system control unit 10, and the transmission signal generator 12 generates a transmission signal having a predetermined code and polarity in accordance with the selected state. Here, a pair of transmission signals (A, -A) with inverted polarities is generated (step (1) in FIG. 3). The transmission signals A and -A are D
The signal is converted into a digital signal by the / A converter 13 and transmitted from the transducer 14 toward the subject (step in FIG. 3).
(2)). Then, the reflected wave from the subject is received by the transducer 14 (step (3) in FIG. 3), amplified by the amplifier 15, and
The digital signal is converted by the / D converter 16. And
The received signal processing device 17 performs a cross-correlation process between the transmitted signal and the received signal for each of A and -A,
The respective correlation results are obtained (step (4) in FIG. 3). The correlation result for A and the correlation result for -A obtained in this way are added (step (5) in FIG. 3), and after performing various processes, display is performed on the display device 18.

【0020】相互相関処理については、図2を参照して
更に詳しく説明する。A/D変換器16でディジタル変
換された受信波形は、受信波形一時記憶部17aに一時
的に記憶されて相関器17cの一方の入力に供給され
る。また、見本波形生成部17bには選択部11のコー
ド及び極性の選択状態が通知されており、送波信号と同
じ波形の見本波形が生成され、相関器17cの他方の入
力に供給される。相関器17cでは、受信波形と見本波
形との相互相関処理が行われる。また、積分器17dに
おいて積分処理が行われる。ここでは、送波信号Aにつ
いては既に図11で示した特性の結果が得られる。本実
施例では、送波信号A及び逆極性の送波信号−Aについ
ても同様に相互相関処理(デチャープ処理)を行い、相
関結果同士を時間軸を整合させて加算して表示用一時記
憶部17eに記憶する。この結果、図4に示す特性の結
果を得ることができる。この図4に示したものは、図1
1の特性と比較するとコブ状の部分が相殺,消去され
る。従って、媒質の非線形伝播にも十分な耐性を有して
おり、−60dBをクリアしている。
The cross-correlation processing will be described in more detail with reference to FIG. The reception waveform digitally converted by the A / D converter 16 is temporarily stored in a reception waveform temporary storage unit 17a and supplied to one input of a correlator 17c. Further, the sample waveform generation unit 17b is notified of the code and polarity selection state of the selection unit 11, and generates a sample waveform having the same waveform as the transmission signal, and supplies the same to the other input of the correlator 17c. The correlator 17c performs a cross-correlation process between the received waveform and the sample waveform. Further, an integration process is performed in the integrator 17d. Here, the result of the characteristic shown in FIG. 11 is obtained for the transmission signal A. In the present embodiment, the cross-correlation processing (dechirp processing) is similarly performed on the transmission signal A and the transmission signal -A having the opposite polarity, and the correlation results are added with their time axes aligned, and the display temporary storage unit is added. 17e. As a result, the result of the characteristic shown in FIG. 4 can be obtained. The one shown in FIG.
As compared with the characteristic of No. 1, the bump-shaped portion is canceled or eliminated. Therefore, it has sufficient resistance to non-linear propagation of the medium, and clears -60 dB.

【0021】次に、相補系列位相変調の場合について説
明する。従来のコードAとコードBの位相変調波に加
え、それぞれの極性反転したコード(コード−A,−
B)も用い、これらを時間的に別々に送受信し、相関さ
せてから結果を足しあわせるようにする。
Next, the case of complementary sequence phase modulation will be described. In addition to the phase modulated waves of the conventional code A and code B, the code (code-A,-
B) is also used to transmit and receive these separately in time, correlate them, and then add the results.

【0022】すなわち、システム制御部10の指示によ
り選択部11が所望の状態に選択され、この選択状態に
応じて送波信号発生器12は所定のコード及び極性の送
波信号を生成する。ここでは、二対の極性を反転した送
波信号(A,−A,B,−B)が生成される(図5ステ
ップ(1) )。そして、送波信号A,−A,B,−BはD
/A変換器13によりディジタル信号に変換され、送受
波器14から被検体に向けて合計4回送波される(図5
ステップ(2) )。そして、被検体からの反射波は送受波
器14で受信され(図3ステップ(3) )、アンプ15で
増幅され、A/D変換器16でディジタル信号に変換さ
れる。そして、受波信号処理装置17において、A,−
A,B,−Bのそれぞれについて送波信号と受信信号と
の相互相関処理が行われ、それぞれの相関結果が得られ
る(図3ステップ(4) )。最終的に、このようにして得
られたA,−A,B,−Bについての4種の相関結果が
加算される(図3ステップ(5) )。この結果、図6に示
す特性の結果を得ることができる。この図6に示したも
のは、図17の特性と比較するとタイムサイドローブが
−45dB程度に減少する。従って、媒質の非線形伝播
にも十分な耐性を有している。
That is, the selection section 11 is selected to a desired state by an instruction from the system control section 10, and the transmission signal generator 12 generates a transmission signal having a predetermined code and polarity in accordance with the selected state. Here, two pairs of transmission signals (A, -A, B, -B) with inverted polarities are generated (step (1) in FIG. 5). The transmission signals A, -A, B, and -B are D
The signal is converted into a digital signal by the / A converter 13 and transmitted from the transducer 14 toward the subject a total of four times (FIG. 5).
Step (2)). The reflected wave from the subject is received by the transducer 14 (step (3) in FIG. 3), amplified by the amplifier 15, and converted to a digital signal by the A / D converter 16. Then, in the reception signal processing device 17, A,-
The cross-correlation processing between the transmission signal and the reception signal is performed for each of A, B, and -B, and the respective correlation results are obtained (step (4) in FIG. 3). Finally, the four types of correlation results for A, -A, B, and -B thus obtained are added (step (5) in FIG. 3). As a result, the result of the characteristic shown in FIG. 6 can be obtained. 6, the time side lobe is reduced to about -45 dB as compared with the characteristic shown in FIG. Therefore, it has sufficient resistance to nonlinear propagation of a medium.

【0023】以上詳細に説明したように、本実施例では
チャープ信号と相補系列位相変調との2種類について、
極性反転した波形を送受波して相関結果を加算すること
により、非線形伝播の影響を相当軽減することができる
ようになった。
As described above in detail, in the present embodiment, two types of chirp signal and complementary sequence phase modulation are used.
By transmitting and receiving the waveform whose polarity is inverted and adding the correlation result, the influence of nonlinear propagation can be considerably reduced.

【0024】[0024]

【発明の効果】以上詳細に説明したように、拡散変調に
より生成された第一の送波信号及びこの第一の送波信号
と反対極性の第二の送波信号を送信した後、第一の送波
信号の受信結果と第一の送波信号の信号波形との相互相
関から求められた第一の相関結果と、第二の送波信号の
受信結果と第二の送波信号の信号波形との相互相関から
求められた第二の相関結果とを時間軸を整合させた状態
で加算することにより、非線形伝播により発生した歪み
が相殺された圧縮復調出力が得られる。従って、媒質の
非線形伝播に耐性を有する医用超音波分散圧縮送受信方
法及び医用超音波分散圧縮送受信装置が実現できる。
As described above in detail, after transmitting the first transmission signal generated by the spread modulation and the second transmission signal having the opposite polarity to the first transmission signal, the first transmission signal is transmitted. The first correlation result obtained from the cross-correlation between the reception result of the transmission signal and the signal waveform of the first transmission signal, the reception result of the second transmission signal, and the signal of the second transmission signal By adding the second correlation result obtained from the cross-correlation with the waveform in a state where the time axis is matched, a compressed demodulation output in which distortion caused by nonlinear propagation is canceled is obtained. Therefore, it is possible to realize a medical ultrasonic dispersion compression transmission / reception method and a medical ultrasonic dispersion compression transmission / reception device that are resistant to nonlinear propagation of a medium.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の医用超音波分散圧縮送受信
装置の送受信に関する構成の概略を示す構成図である。
FIG. 1 is a configuration diagram schematically showing a configuration related to transmission / reception of a medical ultrasonic dispersion compression / transmission / reception device according to an embodiment of the present invention.

【図2】本発明の一実施例の医用超音波分散圧縮送受信
装置の受信信号処理に関する主要部の構成を示す構成図
である。
FIG. 2 is a configuration diagram showing a configuration of a main part related to reception signal processing of the medical ultrasonic dispersion compression transmission / reception device according to one embodiment of the present invention;

【図3】本発明の一実施例の分散圧縮送受信方法の処理
内容の一例を示すフローチャートである。
FIG. 3 is a flowchart illustrating an example of processing contents of a distributed compression transmission / reception method according to an embodiment of the present invention.

【図4】本発明の一実施例の分散圧縮送受信方法の処理
結果の特性を示す特性図である。
FIG. 4 is a characteristic diagram illustrating characteristics of processing results of the distributed compression transmission / reception method according to one embodiment of the present invention;

【図5】本発明の一実施例の分散圧縮送受信方法の処理
内容の一例を示すフローチャートである。
FIG. 5 is a flowchart illustrating an example of processing contents of a distributed compression transmission / reception method according to an embodiment of the present invention.

【図6】本発明の一実施例の分散圧縮送受信方法の処理
結果の特性を示す特性図である。
FIG. 6 is a characteristic diagram showing characteristics of processing results of the distributed compression transmission / reception method according to one embodiment of the present invention.

【図7】分散圧縮送受信の送波信号の波形を示す波形図
である。
FIG. 7 is a waveform diagram showing a waveform of a transmission signal of dispersion compression transmission / reception.

【図8】分散圧縮送受信の送波信号の自己相関結果を示
す波形図である。
FIG. 8 is a waveform diagram showing an autocorrelation result of a transmission signal of dispersion compression transmission / reception.

【図9】分散圧縮送受信の送波信号が非線形伝播で歪ん
だ状態を示す波形図である。
FIG. 9 is a waveform diagram showing a state in which a transmission signal of dispersion compression transmission / reception is distorted by nonlinear propagation.

【図10】歪んだ波形を帯域制限した状態を示す波形図
である。
FIG. 10 is a waveform diagram showing a state in which a distorted waveform is band-limited.

【図11】相互相関結果を示す波形図である。FIG. 11 is a waveform chart showing a cross-correlation result.

【図12】分散圧縮送受信の送波信号の波形を示す波形
図である。
FIG. 12 is a waveform diagram showing a waveform of a transmission signal of dispersion compression transmission / reception.

【図13】分散圧縮送受信の送波信号の波形を示す波形
図である。
FIG. 13 is a waveform diagram showing a waveform of a transmission signal of dispersion compression transmission / reception.

【図14】分散圧縮送受信の送波信号の自己相関結果を
示す波形図である。
FIG. 14 is a waveform diagram showing an autocorrelation result of a transmission signal of dispersion compression transmission / reception.

【図15】分散圧縮送受信の送波信号が非線形伝播で歪
んだ状態を示す波形図である。
FIG. 15 is a waveform diagram showing a state in which a transmission signal of distributed compression transmission / reception is distorted by nonlinear propagation.

【図16】分散圧縮送受信の送波信号が非線形伝播で歪
んだ状態を示す波形図である。
FIG. 16 is a waveform diagram showing a state in which a transmission signal of distributed compression transmission / reception is distorted by nonlinear propagation.

【図17】相互相関結果を示す波形図である。FIG. 17 is a waveform chart showing a cross-correlation result.

【符号の説明】[Explanation of symbols]

10 システム制御部 11 選択部 12 送波信号発生器 13 D/A変換器 14 送受波器 15 アンプ 16 A/D変換器 17 受信信号処理装置 18 表示装置 DESCRIPTION OF SYMBOLS 10 System control part 11 Selection part 12 Transmitted signal generator 13 D / A converter 14 Transmitter / receiver 15 Amplifier 16 A / D converter 17 Received signal processing device 18 Display device

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 医用超音波分散圧縮送受信方法におい
て、 拡散変調により生成された第一の送波信号及びこの第一
の送波信号と反対極性の第二の送波信号を送信し、 第一の送波信号の受信結果と第一の送波信号の信号波形
との相互相関を第一の相関結果として求め、 第二の送波信号の受信結果と第二の送波信号の信号波形
との相互相関を第二の相関結果として求め、 前記第一の相関結果と前記第二の相関結果とを時間軸を
整合させた状態で加算することにより圧縮復調出力を得
ることを特徴とする医用超音波分散圧縮送受信方法。
1. A medical ultrasonic dispersion compression transmission / reception method, comprising: transmitting a first transmission signal generated by spread modulation and a second transmission signal having a polarity opposite to that of the first transmission signal; The cross-correlation between the reception result of the transmission signal and the signal waveform of the first transmission signal is obtained as a first correlation result, and the reception result of the second transmission signal and the signal waveform of the second transmission signal are obtained. A cross-correlation is obtained as a second correlation result, and a compressed demodulation output is obtained by adding the first correlation result and the second correlation result in a state where the time axes are aligned. Ultrasonic dispersion compression transmission / reception method.
【請求項2】 医用超音波分散圧縮送受信装置におい
て、 拡散変調により第一の送波信号及びこの第一の送波信号
と反対極性の第二の送波信号を生成する送波信号生成手
段(10,11,12)と、 送波信号を超音波としてターゲットに照射し、反射波を
受信して受信信号として出力する送受波手段(14)
と、 第一の送波信号の受信結果と第一の送波信号の信号波形
との相互相関を第一の相関結果として求め、第二の送波
信号の受信結果と第二の送波信号の信号波形との相互相
関を第二の相関結果として求め、前記第一の相関結果と
前記第二の相関結果とを時間軸を整合させた状態で加算
することにより圧縮復調出力を得る受信信号処理手段
(17)とを備えたことを特徴とする医用超音波分散圧
縮送受信装置。
2. A medical ultrasonic dispersion compression transmitting / receiving apparatus, comprising: a transmission signal generating means (spread signal) for generating a first transmission signal and a second transmission signal having a polarity opposite to that of the first transmission signal by spread modulation. 10, 11 and 12), a transmitting / receiving means (14) for irradiating a target with a transmitted signal as an ultrasonic wave, receiving a reflected wave and outputting as a received signal.
And a cross-correlation between the reception result of the first transmission signal and the signal waveform of the first transmission signal is obtained as a first correlation result, and the reception result of the second transmission signal and the second transmission signal A cross-correlation with the signal waveform is obtained as a second correlation result, and the received signal that obtains a compressed demodulation output by adding the first correlation result and the second correlation result in a state where the time axis is matched is obtained. A medical ultrasonic dispersion compression transmission / reception device, comprising: processing means (17).
JP21070493A 1993-08-25 1993-08-25 Medical ultrasonic dispersion compression transmission / reception method and medical ultrasonic dispersion compression transmission / reception device Expired - Fee Related JP3222648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21070493A JP3222648B2 (en) 1993-08-25 1993-08-25 Medical ultrasonic dispersion compression transmission / reception method and medical ultrasonic dispersion compression transmission / reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21070493A JP3222648B2 (en) 1993-08-25 1993-08-25 Medical ultrasonic dispersion compression transmission / reception method and medical ultrasonic dispersion compression transmission / reception device

Publications (2)

Publication Number Publication Date
JPH0759766A JPH0759766A (en) 1995-03-07
JP3222648B2 true JP3222648B2 (en) 2001-10-29

Family

ID=16593723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21070493A Expired - Fee Related JP3222648B2 (en) 1993-08-25 1993-08-25 Medical ultrasonic dispersion compression transmission / reception method and medical ultrasonic dispersion compression transmission / reception device

Country Status (1)

Country Link
JP (1) JP3222648B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102702750B1 (en) 2023-02-03 2024-09-04 (주) 휴코스 A height adjustable desk and chair

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309146A (en) * 1998-03-26 1999-11-09 General Electric Co <Ge> System and method for imaging flow of ultrasonic scatterer
US6210332B1 (en) * 1998-03-31 2001-04-03 General Electric Company Method and apparatus for flow imaging using coded excitation
US5961463A (en) * 1998-08-24 1999-10-05 General Electric Company Nonlinear imaging using orthogonal transmit and receive codes
US6123670A (en) * 1998-12-15 2000-09-26 General Electric Company Ultrasound imaging with optimal image quality in region of interest
US6375618B1 (en) * 2000-01-31 2002-04-23 General Electric Company Enhanced tissue-generated harmonic imaging using coded excitation
JP4269145B2 (en) 2003-01-07 2009-05-27 株式会社日立メディコ Ultrasonic diagnostic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102702750B1 (en) 2023-02-03 2024-09-04 (주) 휴코스 A height adjustable desk and chair

Also Published As

Publication number Publication date
JPH0759766A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
Takeuchi An investigation of a spread energy method for medical ultrasound systems: Part one: Theory and investigation
US20040034305A1 (en) Ultrasound imaging system and method based on simultaneous multiple transmit-focusing using weighted orthogonal chirp signals
JP2002045359A (en) Filter coefficient decision method, ultrasonic photographing system and its method
US6656123B2 (en) Combined fundamental and harmonic ultrasonic imaging at low MI or deeper depths
US6786097B2 (en) Ultrasound imaging system and method using weighted chirp signals
JP2003010178A (en) Ultrasonograph
JP2001299750A (en) Ultrasonography and ultrasonographic instrument based on pulse compression system using modified golay code
CN105167802A (en) Doppler imaging method and device
US6599248B1 (en) Method and apparatus for ultrasound diagnostic imaging
JP3222648B2 (en) Medical ultrasonic dispersion compression transmission / reception method and medical ultrasonic dispersion compression transmission / reception device
JP3367462B2 (en) Active sonar and target detection method thereof
Nomura et al. Feasibility of low-frequency ultrasound imaging using pulse compressed parametric ultrasound
US5949739A (en) Sonar bearing estimation of extended targets
Kim et al. Ultrasound second harmonic imaging with a weighted chirp signal
JP3222653B2 (en) Ultrasonic dispersion compression transmission / reception method and ultrasonic dispersion compression transmission / reception device
JP2002034985A (en) Ultrasonograph
Takeuchi An investigation of a spread energy method for medical ultrasound systems: Part two: proposed system and possible problems
JP4490128B2 (en) Ultrasonic diagnostic equipment
JP2004222824A (en) Ultrasonic diagnostic apparatus
JP5035939B2 (en) FM pulse radar device group
Lew Broadband active sonar: Implications and constraints
JP2002360570A (en) Ultrasonic diagnostic instrument
JPS6228429B2 (en)
Kumru et al. Generation of very wideband chip signals for coded underwater applications using parametric array
JPH09133761A (en) Pulse compression device and ultrasonic diagnostic device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees