[go: up one dir, main page]

JP3220259B2 - Laser device - Google Patents

Laser device

Info

Publication number
JP3220259B2
JP3220259B2 JP29797192A JP29797192A JP3220259B2 JP 3220259 B2 JP3220259 B2 JP 3220259B2 JP 29797192 A JP29797192 A JP 29797192A JP 29797192 A JP29797192 A JP 29797192A JP 3220259 B2 JP3220259 B2 JP 3220259B2
Authority
JP
Japan
Prior art keywords
wavelength
diffraction grating
light
distributed
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29797192A
Other languages
Japanese (ja)
Other versions
JPH06125138A (en
Inventor
浩 森
俊弘 亀田
治男 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP29797192A priority Critical patent/JP3220259B2/en
Publication of JPH06125138A publication Critical patent/JPH06125138A/en
Application granted granted Critical
Publication of JP3220259B2 publication Critical patent/JP3220259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02453Heating, e.g. the laser is heated for stabilisation against temperature fluctuations of the environment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コヒーレント光伝送お
よび光計測の光源として有用な、広帯域波長可変機能を
有する高出力単一モード発振半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-power single-mode oscillation semiconductor laser having a wavelength tunable function which is useful as a light source for coherent optical transmission and optical measurement.

【0002】[0002]

【従来の技術】近年、光通信網の拡大、細分、高集積化
にむけて、コヒーレント光伝送方式の実用化が待ち望ま
れている。光を周波数レベルで制御するこの新しい技術
のキーデバイスとなる、コヒーレント光源としての半導
体レーザには非常に大きな期待が寄せられているが、今
後解決していかなければならない課題もいまだ山積して
いるのが現状である。コヒーレント光伝送方式の一つと
して有望視されている光ヘテロダイン方式では、送信側
の信号光と受信側の局発光とを干渉させその干渉成分か
ら信号を取出すことから、1本のファイバで周波数の異
なった複数の信号を同時に転送することが可能である。
そこで、光源として使用されるレーザには高出力の単一
縦モード発振を行えること、周波数チューニングを十分
高速で行えること、1つのチャンネルで送られる信号が
より正確且つ高密度となるようにスペクトル線幅ができ
るだけ狭いこと、1つの光源で送信できるチャンネルが
多数確保できるように波長の可変幅ができるだけ広いこ
と等の要求がある。これらの要求は、半導体レーザが光
計測用の光源として用いられる場合でも、分解能、測定
帯域、測定速度といった名目に置換えられるだけで、同
様に求められることには変りはない。
2. Description of the Related Art In recent years, practical use of a coherent optical transmission system has been awaited for expansion, subdivision, and high integration of an optical communication network. Semiconductor lasers as coherent light sources, which will be the key device of this new technology for controlling light at the frequency level, have very high expectations, but there are still many issues to be solved in the future. is the current situation. In the optical heterodyne system, which is regarded as one of the promising coherent optical transmission systems, the signal light on the transmitting side interferes with the local light on the receiving side to extract the signal from the interference component. It is possible to transfer a plurality of different signals simultaneously.
Therefore, the laser used as a light source must be capable of high-power single longitudinal mode oscillation, be capable of frequency tuning sufficiently fast, and have a spectral line so that signals transmitted in one channel are more accurate and dense. There is a demand that the width is as narrow as possible and that the variable width of the wavelength is as wide as possible so that many channels that can be transmitted by one light source can be secured. These requirements remain the same even when the semiconductor laser is used as a light source for optical measurement, merely by substituting the names such as resolution, measurement band, and measurement speed.

【0003】(従来技術1)以下、従来から知られてい
る半導体レーザを述べる。波長可変単一縦モード発振レ
ーザとしてよく知られているものに、発光領域と結合さ
れた波長制御領域に一様ピッチΛの回折格子が設けられ
た分布ブラッグ反射型レーザ(以下、DBRレーザとい
う。)がある。ピッチΛの回折格子はλ=2nΛ(nは
導波路の等価屈折率)の波長のみを反射するので、これ
を利用して単一縦モード発振を得ることができ、さらに
波長制御領域にキャリアを注入してプラズマ効果によっ
て波長を変化させることができる。しかし、一様のピッ
チの回折格子によって生じる反射では回折波長は1つの
値だけに限られてしまい、プラズマ効果による等価屈折
率の変化量も高々数%であることから、波長の可変幅は
最大でも10nm程度とされている。
(Prior Art 1) A conventionally known semiconductor laser will be described below. A well-known wavelength-tunable single longitudinal mode oscillation laser is a distributed Bragg reflection laser (hereinafter referred to as a DBR laser) in which a diffraction grating having a uniform pitch Λ is provided in a wavelength control region coupled to a light emitting region. ). Since the diffraction grating having the pitch Λ reflects only the wavelength of λ = 2nΛ (n is the equivalent refractive index of the waveguide), a single longitudinal mode oscillation can be obtained by using this, and the carrier can be added to the wavelength control region. Implantation can change the wavelength by the plasma effect. However, in the reflection caused by a diffraction grating having a uniform pitch, the diffraction wavelength is limited to only one value, and the amount of change in the equivalent refractive index due to the plasma effect is at most several percent. However, it is about 10 nm.

【0004】(従来技術2)一方、回折格子を用いずに
単一モード選択を行う方法として、図7に上面図を示す
Y字型の導波路を有するいわゆる複合共振器レーザがあ
る。このレーザは1つの発光領域3の導波路で発せられ
た光を結合器16を経由して波長制御領域21の2つの
導波路へと導き、2つの共振手段を形成するものであ
る。2つの共振手段により2種類のファブリペローモー
ドを得て、それらのモードうちで波長が重なるモードだ
けが発振するようにしたものである。波長の変化は、波
長制御領域21中の導波路に電流を流し、それぞれの実
効共振器長を変化させてモードの重なる波長を変えるこ
とで行うことができる。このレーザによれば広い範囲の
モード選択が可能でかつ十分な出力が得られるが、ファ
ブリペローモードの隣接モード間隔は極めて小さく(通
常では数オングストローム程度である。)、複数のモー
ドで同時に発振してしまうことが多い。
(Prior Art 2) On the other hand, as a method of performing single mode selection without using a diffraction grating, there is a so-called composite resonator laser having a Y-shaped waveguide whose top view is shown in FIG. This laser guides light emitted from the waveguide of one light emitting region 3 to two waveguides of the wavelength control region 21 via the coupler 16 to form two resonance means. Two types of Fabry-Perot modes are obtained by two resonance means, and only a mode having a wavelength overlapping among these modes oscillates. The wavelength can be changed by passing a current through the waveguide in the wavelength control region 21 and changing the effective resonator length of each to change the wavelength at which the mode overlaps. According to this laser, a wide range of modes can be selected and a sufficient output can be obtained, but the interval between adjacent modes in the Fabry-Perot mode is extremely small (usually about several angstroms), and the laser oscillates in a plurality of modes simultaneously. It often happens.

【0005】(従来技術3)そこで、回折格子による単
一波長選択性を備えながら、広い範囲でのモード選択を
得る方法として、分布型反射器に、回折格子のピッチを
一様とせず、ピッチをピッチΛaからピッチΛbまでチ
ャープ状に変化させ、それが超周期Λsで繰返す超周期
構造回折格子22(以下、SSGという。)を使用する
SSG−DBRレーザがある。これは図8に斜視図を示
すように互いに超周期の異なる2種類のSSGを発光領
域3の両側に結合したもので、各々のSSG内部には、
最大ピッチΛaに対応する発振モード波長λaから最小
ピッチΛbに対応する発振モード波長λbまでの間に複
数の反射モードが拮抗する反射率で存在する。反射モー
ド間隔は超周期Λsの逆数に比例して決るので、2種類
のSSGの超周期Λsを変えておくことで、ただ1つの
モードだけが一致して発振に至る。さらに、SSGに電
流を注入して実効ピッチを一様に変化させると、今度は
別のモードが一致して発振波長が変化する。この方式に
よれば半導体レーザの通常の利得帯域である100nm
のほぼ全域にわたる波長掃引が可能だとされている。し
かし、2つのSSGが発光領域の両側にあって1つの共
振器を構成する構造では、レーザ光の出射は2つのSS
Gのうちのいずれか一方をとおして行われるため、SS
Gの高い反射率によって出力は抑えられてしまい、数m
Wが限界となっている。
(Prior Art 3) Therefore, as a method for obtaining a mode selection in a wide range while providing a single wavelength selectivity by a diffraction grating, a distributed reflector is not provided with a uniform pitch of the diffraction grating. There is an SSG-DBR laser using a super-periodic structure diffraction grating 22 (hereinafter, referred to as SSG) in which chirp is changed from a pitch Λa to a pitch Λb, and the chirp is repeated at a super-period Λs. As shown in a perspective view in FIG. 8, two types of SSGs having different super-periods are combined on both sides of the light emitting region 3, and inside each SSG,
A plurality of reflection modes exist with an antagonistic reflectance between the oscillation mode wavelength λa corresponding to the maximum pitch Λa and the oscillation mode wavelength λb corresponding to the minimum pitch Λb. Since the reflection mode interval is determined in proportion to the reciprocal of the super period Λs, by changing the super period Λs of the two types of SSGs, only one mode coincides and oscillation occurs. Furthermore, when a current is injected into the SSG to change the effective pitch uniformly, another mode coincides, and the oscillation wavelength changes. According to this method, the normal gain band of the semiconductor laser is 100 nm.
It is said that wavelength sweeping over almost the entire range is possible. However, in a structure in which two SSGs are provided on both sides of the light emitting region to constitute one resonator, the laser light is emitted from two SSGs.
G is performed through one of G
The output is suppressed by the high reflectivity of G,
W is at the limit.

【0006】(従来技術4)SSG−DBRほど広い帯
域での波長掃引は望めないものの、ほぼ同様の効果が得
られる反射器として、サンプルドグレーティングを使用
したDBRレーザも考えられる。しかし、この場合もレ
ーザとしての構造は図8のSSGを用いたDBRレーザ
とほぼ同じで、分布ブラッグ反射器がSSGからサンプ
ルドグレーティングに置き代わっただけであり、光は反
射器を経由して出射されるためやはり出力が小さいとい
う欠点は免れない。
(Prior Art 4) Although a wavelength sweep in a wider band cannot be expected as in the SSG-DBR, a DBR laser using a sampled grating is also conceivable as a reflector that can obtain substantially the same effect. However, also in this case, the structure as a laser is almost the same as the DBR laser using the SSG of FIG. 8, except that the distributed Bragg reflector is merely replaced by the sampled grating from the SSG, and the light passes through the reflector. Since the light is emitted, the disadvantage that the output is small is inevitable.

【0007】[0007]

【発明が解決しようとする課題】従来の技術1で述べ
た、単一の反射ピークしか持たない分布型反射器を利用
した分布反射型レーザでは、出力は大きく、単一モード
性も良好であるが、波長変化量は屈折率変化量に比例す
るだけなので、数10nmにおよぶような広帯域可変は
期待できない。また、従来の技術2で述べた、回折格子
を持たないY字型の導波路を有するいわゆる複合共振器
レーザでは、広帯域波長変化が可能で出力も大きいもの
の、単一モード選択性は不十分である。さらに、従来の
技術3及び4で述べた、SSGまたはサンプルドグレー
ティングを反射器として発光領域の両側に備えたDBR
レーザでは、広い波長可変範囲にわたってサイドモード
抑圧比の大きい単一モード発振を得ることができるが、
光の出射が反射器を透過する形で行われるため出力が不
十分である、という問題がある。すなわち、広帯域の波
長可変特性を有し、出力が大きく、かつ単一モード選択
性の高いレーザを得ることが本発明の目的である。
A distributed reflection laser using a distributed reflector having only a single reflection peak as described in the prior art 1 has a large output and good single-mode characteristics. However, since the amount of change in the wavelength is only proportional to the amount of change in the refractive index, it is not possible to expect a wide band variable of several tens nm. Further, in the so-called composite resonator laser having a Y-shaped waveguide without a diffraction grating as described in the prior art 2, although a wide-band wavelength change is possible and the output is large, single-mode selectivity is insufficient. is there. Further, as described in prior arts 3 and 4, a DBR provided with SSG or sampled grating as a reflector on both sides of a light emitting region
In a laser, single mode oscillation with a large side mode suppression ratio can be obtained over a wide wavelength variable range.
There is a problem that the output is insufficient because the light is emitted through the reflector. That is, an object of the present invention is to obtain a laser having a wide-band wavelength tunable characteristic, a large output, and a high single-mode selectivity.

【0008】[0008]

【課題を解決するための手段】以下、上記課題を解決す
るための手段を述べる。
Means for solving the above problems will be described below.

【0009】請求項1に記載した発明では、単一モード
の選択性を向上させるために以下の手段を採用した。す
なわち、発光領域から発せられた光を共振手段を介して
出射するレーザ装置において、部分透過・部分反射特性
を有する出力端部(20)と、所定の波長間隔で反射す
る複数の反射波長を有する第1のモードの光を共振する
共振手段を前記出力端部とともに構成する第1の回折格
子を備えた第1の分布型反射器(4a)と、前記所定の
波長間隔とは異なった波長間隔で反射する複数の反射波
長を有する第2のモードの光を共振する共振手段を前記
出力端部とともに構成する第2の回折格子を備えた第2の
分布型反射器(4b)と、前記第1及び第2のモードの光
を結合するための結合器(16)と、前記第1及び第2の
分布型反射器により回折される光の位相をそれぞれ制御
するための第1及び第2の位相制御手段(17a、17
b)と、前記第1及び第2の分布型反射器の屈折率を変え
て波長を制御する波長制御手段(18a、18b)とを
有することを特徴とするレーザ装置を採用した。
In the first aspect of the present invention, the following means are employed to improve the selectivity of a single mode. That is, a laser device that emits light emitted from a light emitting region through a resonance means has an output end portion (20) having partial transmission / partial reflection characteristics and a plurality of reflection wavelengths reflected at predetermined wavelength intervals. A first distributed reflector (4a) provided with a first diffraction grating which forms a resonance means for resonating light of a first mode together with the output end, and a wavelength interval different from the predetermined wavelength interval. A second distributed reflector (4b) provided with a second diffraction grating, which comprises a resonance means for resonating light of a second mode having a plurality of reflection wavelengths reflected by the output end together with the second end; A coupler (16) for coupling the light of the first and second modes, and a first and a second for controlling the phase of the light diffracted by the first and second distributed reflectors, respectively. Phase control means (17a, 17
b) and wavelength control means (18a, 18b) for controlling the wavelength by changing the refractive index of the first and second distributed reflectors.

【0010】請求項2に記載した発明では、請求項1に
記載した2つの分布型反射器4a、4bにおいて、それ
ぞれが適当な間隔を持って複数の回折波長を有するよう
に、それぞれの分布型反射器の導波路にそれぞれ異なっ
た周期を有し、かつその周期が2回以上繰り返される温
度分布を生成させる手段を備えた。
According to the invention described in claim 2, in the two distributed reflectors 4a and 4b described in claim 1, each of the distributed reflectors 4a and 4b has a plurality of diffraction wavelengths at appropriate intervals. Means for generating a temperature distribution having different periods in the waveguides of the reflector and repeating the periods twice or more is provided.

【0011】請求項3に記載した発明では、請求項1に
記載した2つの分布型反射器4a、4bにおいて、それ
ぞれが適当な間隔を持って複数の回折波長を有するよう
に、分布型反射器の回折格子がそれぞれ異なった周期を
持って繰り返すチャープ状のピッチを有する。
According to a third aspect of the present invention, in the two distributed reflectors 4a and 4b according to the first aspect, the distributed reflectors 4a and 4b are arranged such that each has a plurality of diffraction wavelengths at appropriate intervals. Have a chirped pitch that repeats with different periods.

【0012】請求項4の発明では、以下の手段を採用し
た。すなわち、第1の分布型反射器が回折格子の存在す
る導波路部分と存在しない導波路部分とが第1の周期を
もって2回以上繰り返される構造を備えて所定の波長間
隔で反射する複数の反射波長を有するものであり、第2
の分布型反射器が回折格子の存在する導波路部分と存在
しない導波路部分とが第2の周期をもって2回以上繰り
返される構造を備えて前記所定の波長間隔とは異なった
波長間隔で反射する複数の反射波長を有するものである
ことを特徴とする請求項1記載のレーザ装置を採用し
た。
In the invention of claim 4, the following means are employed. That is, the first distributed reflector has a structure in which a waveguide portion where a diffraction grating is present and a waveguide portion where no diffraction grating is present are repeated at least twice with a first period, and a plurality of reflections are reflected at a predetermined wavelength interval. Having a wavelength, the second
Has a structure in which a waveguide portion where a diffraction grating is present and a waveguide portion where no diffraction grating is present are repeated at least twice with a second period, and reflects at a wavelength interval different from the predetermined wavelength interval. The laser device according to claim 1, wherein the laser device has a plurality of reflection wavelengths.

【0013】請求項5に記載した発明では、位相を制御
する位相制御手段と分布型反射器の屈折率を変化させる
波長制御手段に加熱手段を用いた。
In the invention described in claim 5, the heating means is used for the phase control means for controlling the phase and the wavelength control means for changing the refractive index of the distributed reflector.

【0014】[0014]

【作用】以下、請求項ごとに作用を述べる。請求項1の
発明では、発光領域に注入される電流によって発した光
は、結合器によって2つに分岐され、それぞれが第1お
よび第2の分布型反射器によってそれぞれ特定のモード
を選択されて回折され、さらに結合器を通過することで
再び1つの光に結合される。このとき、第1および第2
の分布型反射器の回折光のなかから、両者の波長が一致
する波長でレーザ発振が起る。各分布型反射器の屈折率
をそれぞれの波長制御手段によって適当に変化させる
と、各分布型反射器の回折波長がシフトし、先程とは異
なる波長で一致が生じて発振波長が変化する。ただし、
コヒーレントな光の結合に際しては、2つの共振器での
ファブリペローモードの一致が必要であるが、これはそ
れぞれの位相制御領域に第1及び第2の分布型反射器に
より回折される光の位相をそれぞれ制御するための第1
及び第2の位相制御手段を備えることで調整している。
The operation will be described below for each claim. According to the first aspect of the present invention, the light emitted by the current injected into the light emitting region is split into two by the coupler, and the specific mode is selected by the first and second distributed reflectors respectively. The light is diffracted and further combined into one light by passing through the coupler. At this time, the first and second
Out of the diffracted light of the distributed reflector, laser oscillation occurs at a wavelength where both wavelengths coincide. When the refractive index of each distributed reflector is appropriately changed by the respective wavelength control means, the diffraction wavelength of each distributed reflector shifts, and coincidence occurs at a different wavelength from the above, and the oscillation wavelength changes. However,
Coherent light coupling requires Fabry-Perot mode coincidence in the two resonators, which is provided in each phase control region by the phase of the light diffracted by the first and second distributed reflectors. The first for controlling each
And the second phase control means.

【0015】請求項2に記載の発明では、一様なピッチ
をもつ回折格子を有する分布型反射器を加熱手段により
加熱し、導波路内に周期的な温度分布をつくり、回折格
子の実効的周期を変調させて、1つの反射器に適当な間
隔をもつ複数の回折波長を持たせることができる。ピッ
チΛの回折格子のブラッグ波長はλ=2nΛであり、等
価屈折率nが温度により変化するので、それぞれの回折
格子のブラッグ波長は温度分布中の最大温度Taに対応
するλaから最小温度Tbに対応するλbまでの帯域に
複数のピークとして分布する。温度分布がΛsの周期を
持っているとすれば、回折格子の有する回折のピークは
Δλ=λ02 /2nΛsの間隔で分布することになる。
2つの反射器の回折ピークが同時に2つ以上一致してし
まうと単一モード発振にならないので、2つの反射器の
Λsは異なる大きさでなければならない。
According to the second aspect of the present invention, a distributed reflector having a diffraction grating having a uniform pitch is heated by a heating means, and a periodic temperature distribution is formed in the waveguide, so that an effective diffraction grating is obtained. The period can be modulated so that one reflector has multiple diffraction wavelengths at appropriate intervals. Since the Bragg wavelength of the diffraction grating having the pitch Λ is λ = 2nΛ, and the equivalent refractive index n changes with temperature, the Bragg wavelength of each diffraction grating changes from λa corresponding to the maximum temperature Ta in the temperature distribution to the minimum temperature Tb. It is distributed as a plurality of peaks in the band up to the corresponding λb. Assuming that the temperature distribution has a period of Δs, the diffraction peaks of the diffraction grating are distributed at intervals of Δλ = λ02 / 2nΛs.
If two or more diffraction peaks of two reflectors coincide at the same time, single mode oscillation does not occur, so that Δs of the two reflectors must be different.

【0016】請求項3に記載の発明では、分布型反射器
4a、4bの内部の回折格子自体がチャープ構造を持つ
ことによって複数の回折波長を有し、かつチャープの周
期(超周期)Λsが第1の分布型反射器と第2の分布型
反射器とで互いに異なるため、双方の複数の反射モード
のなかで波長の一致するモードのみで発振が起きる。さ
らに波長制御手段を駆使してこの波長の一致するモード
を変えてやることで、発振波長は大きく変化する。
According to the third aspect of the present invention, since the diffraction gratings themselves inside the distributed reflectors 4a and 4b have a chirp structure, they have a plurality of diffraction wavelengths, and the chirp period (super period) Λs is Since the first distributed reflector and the second distributed reflector are different from each other, oscillation occurs only in the mode having the same wavelength among the plurality of reflection modes. Further, by making full use of the wavelength control means to change the mode in which this wavelength coincides, the oscillation wavelength changes significantly.

【0017】請求項4に記載の発明では、分布型反射器
4a、4bの内部に、回折格子のある領域とない領域と
が一定の周期Λsを持って交互に連続し、かつ第1の分
布ブラッグ反射器内部のΛsと第2の分布ブラッグ反射
器内部のΛsとが異なる値を持つことで、請求項2の発
明と同様の作用を有する。
According to the fourth aspect of the present invention, in the distributed reflectors 4a and 4b, the area where the diffraction grating exists and the area where the diffraction grating does not exist alternately with a constant period Δs, and the first distribution Since the Δs inside the Bragg reflector and the Δs inside the second distributed Bragg reflector have different values, it has the same effect as the second aspect of the present invention.

【0018】請求項5に記載の発明では、分布型反射器
4a、4bと位相制御領域11a、11bの導波路の屈
折率を加熱することによりおこなっているので、プラズ
マ効果を利用した方式では不可避な損失の低下やスペク
トル線幅の劣化は生じない。
According to the fifth aspect of the present invention, since the refractive index of the waveguides of the distributed reflectors 4a and 4b and the phase control regions 11a and 11b is heated, it is inevitable in the system utilizing the plasma effect. There is no significant loss reduction or spectral line width degradation.

【0019】上記いずれの発明においても、このレーザ
装置は部分透過・部分反射特性を有する出力端部20を
有しているので、出射光は充分な強度を持って出射され
る。
In any of the above inventions, the laser device has the output end portion 20 having partial transmission / partial reflection characteristics, so that the emitted light is emitted with sufficient intensity.

【0020】[0020]

【実施例】【Example】

(実施例1)本発明の請求項1および請求項3の発明の
実施例を図1および図2を用いて説明する。図1(A)
は上面図、図1(B)はイ−ロでの断面図である。ま
ず、製造方法を述べる。p型InPの基板1上に、1.
55μmのエネルギーギャップをもつInGaAsPの
活性層2(図示せず。)を成長し、これをエッチングに
よって発光領域3の導波路部分を残してすべて除去す
る。続いて、分布型反射器4aとなる部分にピッチが6
7.5μm周期で2460Åから2380Åまでチャー
プする回折格子5aを、分布型反射器4bとなる部分に
ピッチが75μm周期で2460Åから2380Åまで
チャープする回折格子5bを、ともに電子ビーム描画法
を用いて形成し、先程の活性層2を除去した部分に1.
3μm帯のエネルギーギャップを持つInGaAsPの
ガイド層6を成長したあと全面にInPのクラッド層7
を成長する。
(Embodiment 1) An embodiment of the present invention according to claims 1 and 3 will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 (A)
FIG. 1B is a top view, and FIG. First, the manufacturing method will be described. 1. On a p-type InP substrate 1,
An InGaAsP active layer 2 (not shown) having an energy gap of 55 μm is grown, and all of the active layer 2 is removed except for the waveguide portion of the light emitting region 3 by etching. Subsequently, a pitch of 6 is added to a portion to be the distributed reflector 4a.
A diffraction grating 5a chirped from 2460 ° to 2380 ° at a period of 7.5 μm, and a diffraction grating 5b chirped from 2460 ° to 2380 ° at a period of 75 μm at a portion to be the distributed reflector 4b, both using an electron beam drawing method. Then, in the portion where the active layer 2 was removed, 1.
After growing an InGaAsP guide layer 6 having an energy gap of 3 μm band, an InP cladding layer 7 is formed on the entire surface.
Grow.

【0021】この回折格子の構造(超周期構造という)
を模式的に表したのが図2である。超周期構造回折格子
は、最大ピッチΛaに対応する回折波長λaから最小ピ
ッチΛbに対応する回折波長Λbまでの間の波長領域
に、Λsに反比例する間隔で複数の回折波長を有する。
その後、メサエッチングによって結合部16によって結
合されたY字型導波路を形成し、この導波路をn型In
Pの電流阻止層およびp型の電流阻止層(図示せず。)
によって埋め込み、電流狭窄と光の横方向閉じ込めを行
う。さらに、発光領域3に電流を注入するためのn型の
電極10aと、分布型反射器4a、4b及び位相制御領
域11a、11bの屈折率を変化させる波長制御手段1
8a、18b、位相制御手段17a、17bのための電
流を流すために必要なn型の電極10b、10cをそれ
ぞれのクラッド層上面に蒸着によって形成する。このあ
と基板を厚さ100μmまで研磨し、研磨面にp型の電
極10dを蒸着およびアロイングによって形成する。分
布型反射器4a、4bを共振器の片側の反射面とし、出
力端部20を反対側の反射面とする共振手段の場合、共
振手段の実効的な光学長は分布型反射器4a、4bの反
射効率によって異なるため、分布型反射器を2つ使用し
て共振手段を複数形成する場合には、2つの共振手段に
固有のファブリペローモードを一致させる必要がある。
この実施例では、位相制御領域の導波路の上面に電極を
設け、位相制御手段17a、17bとして電流を注入し
て位相制御領域11a、11bの導波路の屈折率を変化
させているが、後述する請求項5に記載の発明のように
Au薄膜抵抗により加熱して位相制御領域11a、11
bの導波路の屈折率を変えることもできる。
The structure of this diffraction grating (called a super-periodic structure)
Is schematically shown in FIG. The super-periodic grating has a plurality of diffraction wavelengths at an interval inversely proportional to Δs in a wavelength range from a diffraction wavelength λa corresponding to the maximum pitch Δa to a diffraction wavelength Λb corresponding to the minimum pitch Λb.
Thereafter, a Y-shaped waveguide coupled by the coupling section 16 is formed by mesa etching, and this waveguide is
P current blocking layer and p-type current blocking layer (not shown)
To perform current confinement and lateral confinement of light. Further, an n-type electrode 10a for injecting a current into the light emitting region 3, and a wavelength control means 1 for changing the refractive index of the distributed reflectors 4a, 4b and the phase control regions 11a, 11b.
8a, 18b and n-type electrodes 10b, 10c necessary for flowing current for the phase control means 17a, 17b are formed on the upper surfaces of the respective cladding layers by vapor deposition. Thereafter, the substrate is polished to a thickness of 100 μm, and a p-type electrode 10d is formed on the polished surface by vapor deposition and alloying. In the case of the resonating means in which the distributed reflectors 4a and 4b are the reflecting surfaces on one side of the resonator and the output end 20 is the reflecting surface on the other side, the effective optical length of the resonating means is the distributed reflectors 4a and 4b. When a plurality of resonance means are formed using two distributed reflectors, it is necessary to match the Fabry-Perot modes inherent to the two resonance means.
In this embodiment, an electrode is provided on the upper surface of the waveguide in the phase control region, and current is injected as phase control means 17a and 17b to change the refractive index of the waveguide in the phase control regions 11a and 11b. The phase control regions 11a and 11a are heated by an Au thin film resistor as in the invention according to claim 5.
The refractive index of the waveguide b can be changed.

【0022】(実施例2)次に、請求項1および請求項
2の発明の実施例を図3を用いて説明する。図3(A)
は上面図、図3(B)はイ−ロでの断面図である。請求
項1に記載の発明の分布型反射器4a、4bはそれぞれ
一様ピッチΛの回折格子を有するとし、これらの導波路
にそれぞれ異なった周期を有し、且つその周期が2回以
上繰り返される温度分布を生成するため、分布型反射器
4a、4bの上面に、それぞれ波長制御手段18a、1
8bのための電極10cおよび絶縁のためのSiO2の
絶縁膜12を介して、Au薄膜抵抗13を形成する。A
u薄膜抵抗13は、電流を流すためのワイアを結線する
ための2つのパッド部と発熱するストライプ部分とから
なる。ただし、第1の分布型反射器4aと第2の分布型
反射器4bでは、生成される温度分布の周期が異なるよ
うに、Au薄膜抵抗13の発熱量分布の周期を変えてお
く必要がある。ここに図示した例では、多数のAu薄膜
抵抗13をそれぞれ異なる間隔で配置することで、発熱
量分布を異なる間隔にしている。
(Embodiment 2) Next, an embodiment of the present invention will be described with reference to FIG. FIG. 3 (A)
FIG. 3B is a top view, and FIG. The distributed reflectors 4a and 4b according to the first aspect of the present invention each have a diffraction grating having a uniform pitch Λ, these waveguides have different periods, and the period is repeated twice or more. In order to generate a temperature distribution, the wavelength control means 18a, 18a,
An Au thin-film resistor 13 is formed via an electrode 10c for 8b and an insulating film 12 of SiO2 for insulation. A
The u thin film resistor 13 is composed of two pad portions for connecting wires for passing a current and a stripe portion that generates heat. However, in the first distributed reflector 4a and the second distributed reflector 4b, it is necessary to change the cycle of the calorific value distribution of the Au thin film resistor 13 so that the cycle of the generated temperature distribution is different. . In the example shown here, a large number of Au thin film resistors 13 are arranged at different intervals, respectively, so that the calorific value distribution is set at different intervals.

【0023】図4には請求項2の発明の実施例における
分布型反射器4a、4bの導波路の温度分布の一例とし
て、Au薄膜抵抗13を厚さ1000Å、ストライプ幅
10μm、長さ100μmとして、それぞれ0.2Wま
たは0.4Wずつ電力を与えたときの数値解析によるシ
ミュレーション結果を示す。横軸の座標は相対的位置を
示す。温度差が10℃あると、実効ブラッグ反射波長は
約1.1nm異なる。
FIG. 4 shows an example of the temperature distribution of the waveguides of the distributed reflectors 4a and 4b according to the second embodiment of the present invention, in which the Au thin film resistor 13 has a thickness of 1000 °, a stripe width of 10 μm, and a length of 100 μm. Shows simulation results by numerical analysis when power is applied by 0.2 W or 0.4 W, respectively. The coordinates on the horizontal axis indicate relative positions. If the temperature difference is 10 ° C., the effective Bragg reflection wavelength differs by about 1.1 nm.

【0024】(実施例3)次に、請求項4の発明の実施
例を図5を用いて説明する。分布型反射器の内部の回折
格子を図5(A)に模式図を示すサンプルドグレーティ
ングとして形成することでも、請求項2に記載の発明と
同様の機能が得られる。図5(B)は図5(A)に示す
サンプルドグレーティングにおいてΛ=2350Å、等
価屈折率n=3.6875、Λs=45μm、Z=5μ
m、分布型反射器の領域長を500μmとしたときの分
布型反射器の反射特性の計算値を示した図である。1.
55μmを中心として全体で約60nmのモード選択が
可能であることを示している。この回折格子の超周期Λ
sを互いに変えた第1および第2の分布型反射器を形成
する。
(Embodiment 3) Next, an embodiment of the present invention will be described with reference to FIG. By forming the diffraction grating inside the distributed reflector as a sampled grating whose schematic diagram is shown in FIG. 5A, the same function as the invention described in claim 2 can be obtained. FIG. 5B shows the sampled grating shown in FIG. 5A with Λ = 235023, equivalent refractive index n = 3.6875, Λs = 45 μm, Z = 5 μ.
m is a diagram showing calculated values of reflection characteristics of the distributed reflector when the area length of the distributed reflector is 500 μm. 1.
This indicates that a mode selection of about 60 nm with 55 μm as the center is possible. Super period of this diffraction grating Λ
First and second distributed reflectors having different s are formed.

【0025】(実施例4)次に、請求項1、請求項2お
よび請求項5の発明の実施例を図6を用いて説明する。
図6(A)は分布型反射器と位相制御領域の上面図、図
6(B)はイ−ロでの断面図である。分布型反射器4b
の上部は見やすくするため、Au薄膜抵抗13は記載し
ていない。以上述べてきた実施例では、分布型反射器4
a、4bと位相制御領域11a、11bの導波路の屈折
率を制御するため、電流注入用の電極を導波路の上部に
形成し、電流を注入することにより行なってきた。しか
し、この場合、損失の増大や屈折率の揺らぎによるスペ
クトル線幅の劣化という問題が残る。そこで、位相制御
領域11a、11bおよび分布型反射器4a、4bの上
面には、絶縁のためのSiO2膜の絶縁膜12を介して
加熱手段14としてAu薄膜抵抗14a、14bを形成
する。この実施例では実施例2と同様に、SiO2の絶
縁膜12を介してさらにAu薄膜抵抗13を設け、加熱
して、導波路に温度分布を生成している。Au薄膜抵抗
14aは、分布型反射器の屈折率を変えて波長を制御す
る分布型反射器の屈折率を変えて波長を制御する波長制
御手段18a、18bとなる。また、Au薄膜抵抗14
bは、分布型反射器により回折される光の位相をそれぞ
れ制御するための位相制御手段17a、17bとなる。
その結果、実際に作製した素子では、しきい値電流15
mA、100mA時で10mWの高出力が得られ、可変
幅も40nm以上が確保された。しかも熱による屈折率
変化は導波路の損失がほとんど増大しないため、定出力
動作での波長掃引においても、駆動電流の増大は高々2
割程度に抑えられた。また、サイドモード抑圧比も常に
30dB以上であり、良好な単一モード特性が得られ
た。以上、いずれの図においてもスケールは明記してい
ない限りは任意であり、導波路の幅、回折格子の形状、
薄膜抵抗のストライプ幅など微細な部分は強調して描い
ている。また複合共振器の形成方法は、Y字型結合器に
よらずとも、結晶面を利用するなどして半導体基板上に
反射面を形成して結合させる方法や、ハイブリッド方式
にする方法なども、本発明の請求項の範疇に含まれるも
のとする。
(Embodiment 4) Next, an embodiment of the first, second and fifth aspects of the present invention will be described with reference to FIG.
FIG. 6A is a top view of the distributed reflector and the phase control region, and FIG. Distributed reflector 4b
The Au thin film resistor 13 is not shown in order to make the upper part of FIG. In the embodiment described above, the distributed reflector 4
In order to control the refractive indices of the waveguides a and 4b and the phase control regions 11a and 11b, a current injection electrode is formed above the waveguide and current is injected. However, in this case, there remains a problem that the spectral line width is deteriorated due to an increase in loss and fluctuation of the refractive index. Therefore, Au thin film resistors 14a and 14b are formed as heating means 14 on the upper surfaces of the phase control regions 11a and 11b and the distributed reflectors 4a and 4b via an insulating film 12 of a SiO2 film for insulation. In this embodiment, as in the second embodiment, an Au thin-film resistor 13 is further provided via an insulating film 12 of SiO2 and heated to generate a temperature distribution in the waveguide. The Au thin film resistor 14a serves as wavelength control means 18a and 18b for controlling the wavelength by changing the refractive index of the distributed reflector to change the refractive index of the distributed reflector. The Au thin film resistor 14
b is phase control means 17a and 17b for controlling the phase of light diffracted by the distributed reflector, respectively.
As a result, the threshold current 15
A high output of 10 mW was obtained at mA and 100 mA, and a variable width of 40 nm or more was secured. Moreover, since the change in the refractive index due to heat hardly increases the loss of the waveguide, the drive current increases by at most 2 even in the wavelength sweep in the constant output operation.
It was reduced to about a percentage. Further, the side mode suppression ratio was always 30 dB or more, and good single mode characteristics were obtained. As described above, the scale in any of the figures is arbitrary unless specified, and the width of the waveguide, the shape of the diffraction grating,
Fine parts such as the stripe width of the thin film resistor are highlighted. In addition, the method of forming the composite resonator is not limited to the Y-shaped coupler, but also includes a method of forming and coupling a reflection surface on a semiconductor substrate using a crystal plane, and a method of using a hybrid method. It is intended to fall within the scope of the claims of the present invention.

【0026】[0026]

【効果】請求項1、請求項2、請求項3及び請求項4に
記載の発明では、半導体レーザの利得帯域全体に匹敵す
る広帯域発振波長モード選択が可能となるうえ、出力も
通常の半導体レーザと遜色のない高出力が得られる。請
求項5に記載の発明では、波長制御手段、位相制御手段
として加熱手段を用いたので、損失の増大やスペクトル
線幅の劣化といった問題は生じない。
According to the first, second, third, and fourth aspects of the present invention, it is possible to select a broadband oscillation wavelength mode comparable to the entire gain band of the semiconductor laser, and to output a normal semiconductor laser. High output comparable to that obtained. According to the fifth aspect of the present invention, since the heating means is used as the wavelength control means and the phase control means, problems such as an increase in loss and a deterioration in spectral line width do not occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の請求項1および請求項3の実施例の
上面図及び断面図である。
FIG. 1 is a top view and a sectional view of an embodiment according to claims 1 and 3 of the present invention.

【図2】 本発明の請求項1および請求項3の回折格子
構造を説明する模式図である。
FIG. 2 is a schematic diagram illustrating a diffraction grating structure according to claims 1 and 3 of the present invention.

【図3】 本発明の請求項1および請求項2の実施例の
上面図、及び断面図である。
FIG. 3 is a top view and a cross-sectional view of the first and second embodiments of the present invention.

【図4】 加熱手段によって生成される導波路内温度分
布のシミュレーション結果の一例である。
FIG. 4 is an example of a simulation result of a temperature distribution in a waveguide generated by a heating unit.

【図5】 本発明の請求項1および請求項4の実施例の
模式図、及び計算値を示した図である。
FIG. 5 is a schematic diagram of an embodiment according to claims 1 and 4 of the present invention, and a diagram showing calculated values.

【図6】 本発明の請求項1、請求項2及び請求項5の
実施例の上面図、及び断面図である。
FIG. 6 is a top view and a sectional view of the first, second, and fifth embodiments of the present invention.

【図7】 従来の技術を説明した図である。FIG. 7 is a diagram illustrating a conventional technique.

【図8】 従来の技術を説明した図である。FIG. 8 is a diagram illustrating a conventional technique.

【符号の説明】[Explanation of symbols]

1 基板 2 活性層 3 発光領域 4a 分布型反射器 4b 分布型反射器 5a 回折格子 5b 回折格子 6 ガイド層 7 クラッド層 10a 電極 10b 電極 10c 電極 10d 電極 11a 位相制御領域 11a 位相制御領域 12 絶縁膜 13 Au薄膜抵抗 14 加熱手段 14a Au薄膜抵抗 14b Au薄膜抵抗 16 結合器。 17a 位相制御手段 17b 位相制御手段 18a 波長制御手段 18b 波長制御手段 20 出力端部 21 波長制御領域 22 超周期構造回折格子。 DESCRIPTION OF SYMBOLS 1 Substrate 2 Active layer 3 Light emitting area 4a Distributed reflector 4b Distributed reflector 5a Diffraction grating 5b Diffraction grating 6 Guide layer 7 Cladding layer 10a Electrode 10b Electrode 10c Electrode 10d Electrode 11a Phase control area 11a Phase control area 12 Insulating film 13 Au thin film resistor 14 Heating means 14a Au thin film resistor 14b Au thin film resistor 16 Coupler. 17a Phase control means 17b Phase control means 18a Wavelength control means 18b Wavelength control means 20 Output end 21 Wavelength control area 22 Super periodic structure diffraction grating.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−289982(JP,A) 特開 昭64−49293(JP,A) 特開 平3−286587(JP,A) 特開 昭64−54790(JP,A) 特開 昭58−206183(JP,A) 特開 昭62−287683(JP,A) 特開 昭63−160391(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-289982 (JP, A) JP-A-64-49293 (JP, A) JP-A-3-286587 (JP, A) JP-A 64-64 54790 (JP, A) JP-A-58-206183 (JP, A) JP-A-62-287683 (JP, A) JP-A-63-160391 (JP, A) (58) Fields investigated (Int. 7 , DB name) H01S 5/00-5/50 JICST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】発光領域から発せられた光を共振手段を介
して出射するレーザ装置において、 部分透過・部分反射特性を有する出力端部(20)と、 所定の波長間隔で反射する複数の反射波長を有する第1
のモードの光を共振する共振手段を前記出力端部ととも
に構成する第1の回折格子を備えた第1の分布型反射器
(4a)と、 前記所定の波長間隔とは異なった波長間隔で反射する複
数の反射波長を有する第2のモードの光を共振する共振
手段を前記出力端部とともに構成する第2の回折格子を
備えた第2の分布型反射器(4b)と、 前記第1及び第2のモードの光を結合するための結合器
(16)と、 前記第1及び第2の分布型反射器により回折される光の
位相をそれぞれ制御するための第1及び第2の位相制御
手段(17a、17b)と、 前記第1及び第2の分布型反射器の屈折率を変えて第1
のモード光と第2のモード光とのなかから両者の波長が
一致する波長でレーザ発振が起こるように波長を制御す
る波長制御手段(18a、18b)とを有することを特
徴とするレーザ装置。
1. A laser device for emitting light emitted from a light emitting region through a resonance means, comprising: an output end having partial transmission / partial reflection characteristics; and a plurality of reflections reflecting at predetermined wavelength intervals. First with wavelength
A first distributed reflector (4a) provided with a first diffraction grating, which constitutes a resonance means for resonating light of the first mode together with the output end, and reflects at a wavelength interval different from the predetermined wavelength interval. A second distributed reflector (4b) provided with a second diffraction grating that constitutes a resonance unit for resonating light of a second mode having a plurality of reflection wavelengths together with the output end; A coupler (16) for coupling the light of the second mode, and first and second phase controls for controlling the phases of the light diffracted by the first and second distributed reflectors, respectively. Means (17a, 17b), and changing the refractive index of the first and second distributed reflectors to the first
Wavelength of both the mode light and the second mode light
A laser device comprising wavelength control means (18a, 18b) for controlling the wavelength so that laser oscillation occurs at the same wavelength.
【請求項2】第1の分布型反射器が導波路上に第1の周
期を有し、かつ該周期が2回以上繰り返される温度分布
を生成する手段を備え、第2の分布型反射器が導波路上
に第2の周期を有し、かつ該周期が2回以上繰り返され
る温度分布を生成する手段を備えたことを特徴とする請
求項1記載のレーザ装置。
2. A distributed reflector comprising: a first distributed reflector having a first period on a waveguide; and means for generating a temperature distribution in which the period is repeated at least twice. 2. The laser device according to claim 1, further comprising means for generating a temperature distribution having a second period on the waveguide and repeating the period two or more times.
【請求項3】第1の回折格子が第1の周期を持って繰り
返すチャープ状のピッチを有し、第2の回折格子が第2
の周期を持って繰り返すチャープ状のピッチを有するこ
とを特徴とする請求項1記載のレーザ装置。
3. The first diffraction grating has a chirped pitch that repeats with a first period, and the second diffraction grating has a second pitch.
2. The laser device according to claim 1, wherein the laser device has a chirp-like pitch that repeats at a period of:
【請求項4】第1の分布型反射器が回折格子の存在する
導波路部分と存在しない導波路部分とが第1の周期をも
って2回以上繰り返される構造を備えて所定の波長間隔
で反射する複数の反射波長を有するものであり、 第2の分布型反射器が回折格子の存在する導波路部分と
存在しない導波路部分とが第2の周期をもって2回以上
繰り返される構造を備えて前記所定の波長間隔とは異な
った波長間隔で反射する複数の反射波長を有するもので
あることを特徴とする請求項1記載のレーザ装置。
4. The first distributed reflector has a structure in which a waveguide portion where a diffraction grating is present and a waveguide portion where no diffraction grating is present are repeated twice or more with a first period, and a predetermined wavelength interval is provided.
In has a plurality of reflection wavelengths for reflecting, with a structure in which a waveguide section in which the second distributed reflector does not exist with the existing waveguide portion of the diffraction grating is repeated two or more times with a second cycle Different from the predetermined wavelength interval
With multiple reflection wavelengths reflected at different wavelength intervals
2. The laser device according to claim 1, wherein:
【請求項5】請求項1、請求項2、請求項3または請求
項4に記載の発明において、前記位相制御手段と前記波
長制御手段に加熱手段を用いたことを特徴とするレーザ
装置。
5. A laser device according to claim 1, wherein a heating means is used for said phase control means and said wavelength control means.
JP29797192A 1992-10-10 1992-10-10 Laser device Expired - Lifetime JP3220259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29797192A JP3220259B2 (en) 1992-10-10 1992-10-10 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29797192A JP3220259B2 (en) 1992-10-10 1992-10-10 Laser device

Publications (2)

Publication Number Publication Date
JPH06125138A JPH06125138A (en) 1994-05-06
JP3220259B2 true JP3220259B2 (en) 2001-10-22

Family

ID=17853466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29797192A Expired - Lifetime JP3220259B2 (en) 1992-10-10 1992-10-10 Laser device

Country Status (1)

Country Link
JP (1) JP3220259B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2189496B (en) * 1986-04-23 1989-11-29 Hitachi Chemical Co Ltd Photopolymerizable composition
WO1998038710A1 (en) * 1997-02-27 1998-09-03 Deutsche Telekom Ag Optoelectronic component
JP4180140B2 (en) * 1998-02-12 2008-11-12 富士通株式会社 Multi-wavelength light source
JP4690521B2 (en) * 1999-05-17 2011-06-01 アイメック Integrated semiconductor device tunable over a wide range of wavelengths and method for semiconductor devices tunable over a wide range of wavelengths
JP2004055647A (en) * 2002-07-17 2004-02-19 Nec Corp Distributed bragg reflector semiconductor laser diode, integrated semiconductor laser, semiconductor laser module, and optical network system
JP4533608B2 (en) * 2003-09-12 2010-09-01 富士通株式会社 Tunable laser
JP4657853B2 (en) * 2005-08-11 2011-03-23 住友電工デバイス・イノベーション株式会社 Semiconductor laser, laser module, optical component, laser device, semiconductor laser manufacturing method, and semiconductor laser control method
JP6067231B2 (en) * 2012-02-21 2017-01-25 古河電気工業株式会社 Optical filter and semiconductor laser device
GB2507527A (en) * 2012-11-01 2014-05-07 Oclaro Technology Ltd Semiconductor DBR laser
CN112362614B (en) * 2020-10-27 2023-09-08 哈尔滨工业大学 Current injection type DFB laser array continuous sweep driving method and measuring light path

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626268B2 (en) * 1987-08-19 1994-04-06 日本電気株式会社 Tunable semiconductor laser
JPS6454790A (en) * 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Distributed feedback type semiconductor laser
JP2891741B2 (en) * 1990-04-03 1999-05-17 日本電気株式会社 Semiconductor integrated light source
JP3152424B2 (en) * 1990-07-13 2001-04-03 株式会社日立製作所 Tunable semiconductor laser

Also Published As

Publication number Publication date
JPH06125138A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
US10193305B2 (en) Wavelength tunable laser device and laser module
US9312663B2 (en) Laser device, light modulation device, and optical semiconductor device
EP0314490B1 (en) Semiconductor laser
US11342726B2 (en) Tunable semiconductor laser based on half-wave coupled partial reflectors
US8009947B2 (en) Optical semiconductor device and method of controlling the same
JP3198338B2 (en) Semiconductor light emitting device
US8238388B2 (en) Tunable laser device and a method for producing light of respective selectable wavelengths
WO2016152274A1 (en) Variable wavelength laser element and laser module
US20020181532A1 (en) Multi-wavelength semiconductor laser array and method for fabricating the same
JP3220259B2 (en) Laser device
JP2003017803A (en) Wavelength tunable semiconductor laser and optical module
JP5001239B2 (en) Semiconductor tunable laser
JP3689483B2 (en) Multiple wavelength laser
WO2007005796A1 (en) Planar waveguides with air thin films used as antireflective layers, beam splitters and mirrors
US20020064203A1 (en) Strip-loaded tunable distributed feedback laser
JP2011086714A (en) Wavelength tunable laser
US6795623B2 (en) Optical cavity resonating over a continuous range of frequencies
JPH06112570A (en) Distributed bragg-reflection type semiconductor laser
JPH06313818A (en) Light reflector
JP2019212888A (en) Optical transmitter and multi-wavelength optical transmitter
JP3247450B2 (en) Semiconductor light emitting element and external cavity type semiconductor optical device
JP4074534B2 (en) Semiconductor laser
JP5034572B2 (en) Light source device
JP5058087B2 (en) Tunable semiconductor laser
JP2000223774A (en) Wavelength-variable light source

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12