JP3219966B2 - Method for producing particle-dispersed magnetoresistive material - Google Patents
Method for producing particle-dispersed magnetoresistive materialInfo
- Publication number
- JP3219966B2 JP3219966B2 JP08766195A JP8766195A JP3219966B2 JP 3219966 B2 JP3219966 B2 JP 3219966B2 JP 08766195 A JP08766195 A JP 08766195A JP 8766195 A JP8766195 A JP 8766195A JP 3219966 B2 JP3219966 B2 JP 3219966B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetoresistive
- alloy material
- heat treatment
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0045—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
- H01F1/0063—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids
Landscapes
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Measuring Magnetic Variables (AREA)
- Magnetic Heads (AREA)
- Soft Magnetic Materials (AREA)
- Hall/Mr Elements (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気センサー、磁気ヘ
ッド等に用いられる高感度の磁気抵抗効果材料の製造方
法に関するものである。特に、低磁界での電気抵抗の変
化率が高い磁気抵抗効果材料を提供する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a highly sensitive magnetoresistive material used for a magnetic sensor, a magnetic head and the like. In particular, it provides a magnetoresistive effect material having a high rate of change in electric resistance in a low magnetic field.
【0002】[0002]
【従来の技術】磁気抵抗効果を有する磁気抵抗効果型素
子は、高感度で比較的大きな出力が得られるため、磁界
センサー、磁気ヘッドとして広く利用されている。この
ような磁気センサ、磁気ヘッドにおいては、感度を高め
るためおよび線形応答に近づけるためにバイアスとして
直流磁界を印加している。従来、磁気抵抗効果型素子に
は2%程度の磁気抵抗変化率を示し、膜の磁化のし易さ
の目安となる異方性磁界が5Oe程度と小さく、バイア
スがかかり易いパーマロイ合金薄膜が広く用いられてい
る。2. Description of the Related Art A magneto-resistive element having a magneto-resistive effect is widely used as a magnetic field sensor and a magnetic head because of its high sensitivity and relatively high output. In such magnetic sensors and magnetic heads, a DC magnetic field is applied as a bias in order to increase sensitivity and approximate a linear response. Conventionally, a magnetoresistive element has a magnetoresistance change rate of about 2%, has a small anisotropic magnetic field of about 5 Oe, which is a measure of the ease of magnetization of the film, and has a wide range of permalloy alloy thin films that are easily biased. Used.
【0003】又、電気抵抗の変化を大きくする方法とし
て、保磁力の異なる磁性薄膜層を交互に積層した多層膜
磁気抵抗効果材料などが知られている(例えば特開平4
−280483号公報参照)。この種の多層膜巨大磁気
抵抗材料(GMR)の場合、磁性層の磁化方向に依存し
て伝導電子が散乱され、グラニュラーGMRはマトリッ
クス中に磁性粒子を分散させ、それらの磁化の相関によ
り伝導電子の散乱が変化するといった問題を有する。ま
た、積層する膜厚周期性を高精度に制御する必要があ
り、その作製が難しく、高価な設備を必要とするととも
に、得られるものが積層膜であるため、その加工が難し
く、用途に応じた種々の形状のものを作製できないとい
った問題を有する。更にこの種の多層膜GMRは、スパ
ッタ法などにより得られるがその形状は制約を受け、特
に厚さについては、数mmぐらいのものしか得られない
といった問題を有する。As a method for increasing the change in electric resistance, a multilayer magnetoresistive material in which magnetic thin film layers having different coercive forces are alternately laminated is known (for example, Japanese Patent Application Laid-Open No. Hei 4 (1999) -104).
-280483). In the case of this type of multilayer giant magnetoresistive material (GMR), conduction electrons are scattered depending on the magnetization direction of the magnetic layer, and the granular GMR disperses magnetic particles in a matrix, and the conduction electrons are correlated by their magnetization. Has the problem that the scattering of In addition, it is necessary to control the thickness periodicity of the laminated film with high precision, and it is difficult to manufacture the film, requiring expensive equipment. In addition, since the obtained film is a laminated film, the processing is difficult, and depending on the application, In addition, there is a problem that various shapes cannot be manufactured. Further, this kind of multilayer film GMR can be obtained by a sputtering method or the like, but its shape is restricted, and there is a problem that a thickness of only about several mm can be obtained.
【0004】このように、従来の磁気センサーとして
は、誘導電流を利用したもの、ホール効果を利用したも
の、人工格子型巨大磁気抵抗効果を利用したものなどが
あるが、いずれも信号が小さいために信号処理に複雑な
回路を必要とする、あるいは高度な作製法を必要とし生
産性が悪い、強磁界を必要とするなど問題があった。ま
た作製装置が複雑、高価である点、作製後の取扱いによ
り特性が容易に劣化する問題があった。As described above, conventional magnetic sensors include those using an induced current, those using a Hall effect, and those using an artificial lattice type giant magnetoresistive effect. In addition, there are problems that a complicated circuit is required for signal processing, an advanced manufacturing method is required, productivity is low, and a strong magnetic field is required. Further, there is a problem that the manufacturing apparatus is complicated and expensive, and the characteristics are easily deteriorated by handling after the manufacturing.
【0005】そこで、本発明者らは磁気抵抗変化率が大
きい磁気抵抗効果素子を容易に製造することを目的とし
て、常磁性元素又は反磁性元素と強磁性元素からなる合
金中に、微細な強磁性体粒子を析出してなる磁気抵抗効
果素子を開発し、特許出願している(特開平6−268
280号)。Therefore, the present inventors aimed at easily manufacturing a magnetoresistive element having a large magnetoresistance change rate, and added a fine ferromagnetic element to an alloy composed of a paramagnetic element or a diamagnetic element and a ferromagnetic element. A magnetoresistive element formed by depositing magnetic particles has been developed and a patent application has been filed (Japanese Patent Laid-Open No. Hei 6-268).
280).
【0006】しかしながら、この磁気抵抗効果材料にお
いては、析出される強磁性体粒子が球状、粒状などの比
較的等方的に近い形状であるため、磁気抵抗効果(磁界
に対する電気抵抗の変化の割合)は十分でない、特に低
磁界での抵抗変化が十分でないという問題を有してい
た。However, in this magnetoresistive effect material, since the deposited ferromagnetic particles have a relatively isotropic shape such as a sphere or a granular shape, the magnetoresistance effect (the rate of change of the electric resistance with respect to the magnetic field). ) Has a problem that the resistance change is not sufficient, especially in a low magnetic field.
【0007】[0007]
【発明が解決しようとする課題】本発明は、従来のもの
にくらべて更に感度を高め、磁界に対する応答性に優れ
た粒子分散型磁気抵抗効果材料の製造方法を提供するも
のであり、特に、低磁界において大きな磁気抵抗変化率
を示す実用性のある磁気抵抗効果材料を提供する。SUMMARY OF THE INVENTION The present invention provides a method for producing a particle-dispersed magnetoresistive material having a higher sensitivity and a higher response to a magnetic field than conventional ones. Provided is a practical magnetoresistive material exhibiting a large magnetoresistance change rate in a low magnetic field.
【0008】[0008]
【課題を解決するための手段】本発明者らは鋭意検討し
た結果、形状異方性を有する磁性微粒子を方向を揃えて
存在させることによって、上記課題が解決されることを
見出し本発明に至った。Means for Solving the Problems As a result of intensive studies, the present inventors have found that the above problems can be solved by making magnetic fine particles having shape anisotropy exist in the same direction, and have reached the present invention. Was.
【0009】即ち、本発明は以下の(1)〜(4)であ
る。(1)非磁性体相に磁性体元素を固溶してなる合金材料
を作製し、これに0%<ε≦80%の歪みを与えて熱処
理を施し、磁性体元素からなる形状異方性を有する磁性
体微粒子を非磁性体相中に方向を揃えて均一微細に分散
析出させることを特徴とする磁気抵抗効果材料の製造方
法。 That is, the present invention provides the following (1) to (4) . (1) Alloy material obtained by dissolving a magnetic element in a non-magnetic phase
And subjected to a heat treatment with a strain of 0% <ε ≦ 80%.
With magnetic anisotropy consisting of magnetic elements
Fine particles are uniformly and finely dispersed in the non-magnetic phase in the same direction.
Method for producing magnetoresistive effect material characterized by precipitation
Law.
【0010】(2)非磁性体相に磁性体元素を固溶して
なる合金材料を作製し、これに1℃/cm<△T≦10
℃/cmの温度差を与えて熱処理を施し、磁性体元素か
らなる形状異方性を有する磁性体微粒子を非磁性体相中
に方向を揃えて均一微細に分散析出させることを特徴と
する磁気抵抗効果材料の製造方法。 (2) A magnetic element is dissolved in a non-magnetic phase to form a solid solution.
And an alloy material of 1 ° C./cm<ΔT≦10
Heat treatment with a temperature difference of ° C / cm
Magnetic particles with shape anisotropy in non-magnetic phase
It is characterized by being uniformly and finely dispersed and deposited in the same direction.
Manufacturing method of a magnetoresistive effect material.
【0011】(3)合金材料が一般式:Cu 100-X Ni
50-Y M 1 Y (但し、M 1 はFe,Coから選ばれる少なく
とも1種の元素、X,Yは原子パーセントで0.1<X
<50、1<Y<45)で示される組成からなる前記
(1)又は(2)記載の磁気抵抗効果材料の製造方法。 (3) The alloy material has a general formula: Cu 100-X Ni
50-Y M 1 Y (where M 1 is at least one selected from Fe and Co)
X and Y are 0.1 <X in atomic percent.
<50, 1 <Y <45)
The method for producing a magnetoresistive material according to (1) or (2).
【0012】(4)合金材料が一般式:A 100-X M
2 X (但し、AはAg,Auから選ばれる少なくとも1種
の元素、M 2 はFe,Co,Niから選ばれる少なくと
も1種の元素、Xは原子パーセントで0.1<X<5
0)で示される組成からなる前記(1)又は(2)記載
の磁気抵抗効果材料の製造方法。 [0012](4) The alloy material has the general formula: A 100-X M
Two X (However, A is at least one kind selected from Ag and Au
Element, M Two Is at least selected from Fe, Co and Ni
Is also one element, and X is 0.1 <X <5 in atomic percent.
The above (1) or (2), which comprises the composition represented by 0)
Of manufacturing a magnetoresistive effect material.
【0013】(5)0.2%耐力の10〜90%の応力
下で熱処理を施す前記(1)記載の磁気抵抗効果材料の
製造方法。 (5) Stress of 10 to 90% of 0.2% proof stress
The magnetoresistance effect material according to (1),
Production method.
【0014】本発明の粒子分散型磁気抵抗効果材料は、
非磁性を有する母相中に、板状、針状、円盤状、だ円球
状、棒状などの形状異方性を有する磁性微粒子が方向を
揃えて均一微細に分散されてなるものである。先行技術
のように磁性粒子が例えば、球状、粒状等、等方的であ
ると、磁気抵抗効果による抵抗変化は磁界に対する変化
の割合が小さいが、異方性を持った磁性粒子の方向を揃
えることで信号を大きくすることができ、また磁界に対
する変化の割合も大きくすることができる。The particle-dispersed magnetoresistive material of the present invention comprises:
Magnetic particles having shape anisotropy such as plate, needle, disk, ellipsoid, and rod are uniformly and finely dispersed in the non-magnetic matrix phase in the same direction. If the magnetic particles are isotropic, for example, spherical, granular, etc. as in the prior art, the change in resistance due to the magnetoresistive effect has a small rate of change with respect to the magnetic field, but aligns the direction of the magnetic particles with anisotropy. As a result, the signal can be increased, and the rate of change with respect to the magnetic field can be increased.
【0015】本発明では形状異方性を有する磁性微粒子
の大きさは1〜1000nmが好ましい。この範囲外と
なると、本発明の目的の1つである高い磁気抵抗効果が
得られなくなる。1000nmを超えると磁気抵抗効果
が急激に低下する。磁気抵抗効果の点から更に好ましく
は1〜500nmであり、特に好ましい大きさは1nm
〜300nmである。In the present invention, the size of the magnetic fine particles having shape anisotropy is preferably from 1 to 1000 nm. Outside this range, a high magnetoresistance effect, one of the objects of the present invention, cannot be obtained. Magnetoresistive effect is reduced sharply exceeds 1000 nm. From the viewpoint of the magnetoresistance effect, it is more preferably from 1 to 500 nm, and particularly preferably 1 nm.
300300 nm.
【0016】本発明に用いられる合金の組成は下記一般
式(I)又は(II)で表わされるものである。 Cu100-XNi50-YM1 Y (I) A100-XM2 X (II)The composition of the alloy used in the present invention is represented by the following general formula (I) or (II). Cu 100-X Ni 50-Y M 1 Y (I) A 100-X M 2 X (II)
【0017】但し、式中M1はFe,Coから選ばれる
少なくとも1種の元素、AはAg,Auから選ばれる少
なくとも1種の元素、M2はFe,Co,Niから選ば
れる少なくとも1種の元素であり、X,Yは原子パーセ
ントで0.1<X<50、1<Y<45である。Wherein M 1 is at least one element selected from Fe and Co, A is at least one element selected from Ag and Au, and M 2 is at least one element selected from Fe, Co and Ni. And X and Y are 0.1 <X <50 and 1 <Y <45 in atomic percent.
【0018】ここで、Cu,Ag,Auは常磁性又は反
磁性元素であり、Co,Fe,Niは強磁性元素であ
る。本発明はまず常磁性元素又は反磁性元素と強磁性元
素とからなる合金中に、強磁性元素を含む強磁性体粒子
を析出することにより、磁気的、組成的に不均一な合金
とし、大きな抵抗変化を生じさせることができる磁気抵
抗効果材料とすることができる。特に形状異方性を有す
る磁性微粒子を析出する場合、一般式(I)及び一般式
(II)の組成のものが好ましい。Here, Cu, Ag, and Au are paramagnetic or diamagnetic elements, and Co, Fe, and Ni are ferromagnetic elements. The present invention first, by precipitating ferromagnetic particles containing a ferromagnetic element in an alloy composed of a paramagnetic element or a diamagnetic element and a ferromagnetic element, to magnetically and compositionally non-uniform alloy, A magnetoresistive material capable of causing a resistance change can be obtained. In particular, when depositing magnetic fine particles having shape anisotropy, those having the compositions of the general formulas (I) and (II) are preferable.
【0019】Cu100-XCoX(0.1<X<50)系合
金ではナノサイズのCo粒子が球状に析出することはよ
く知られている。しかし、Cu−Ni−Fe系合金(ク
ニフェ:例えばCu50Ni25Fe25、Cu−Ni−Co
合金(クニコ:例えばCu50Ni25Co25)では時効を
施すとスピノーダル分解が起こり、磁性粒子はある決ま
った結晶面に周期的に析出する。従って組成は一般式
(I)で示されるものである。また磁性体である遷移金
属元素の原子半径(0.125〜0.128nm)より
少なくとも5%以上大きい元素であるAg(0.144
nm)、Au(0.144nm)を母相に用いることで
板状に磁性体が析出する。従って組成は一般式(II)で
示されるものである。It is well known that nano-sized Co particles precipitate spherically in a Cu 100-X Co X (0.1 <X <50) alloy. However, Cu-Ni-Fe alloy (cunife: e.g. Cu 50 Ni 25 Fe 25, Cu -Ni-Co
In an alloy (Kuniko: for example, Cu 50 Ni 25 Co 25 ), aging causes spinodal decomposition, and magnetic particles are periodically deposited on a certain crystal plane. Accordingly, the composition is represented by the general formula (I). Ag (0.144) which is at least 5% or more larger than the atomic radius (0.125 to 0.128 nm) of the transition metal element which is a magnetic substance.
nm) and Au (0.144 nm) as a matrix, a magnetic substance is precipitated in a plate shape. Therefore, the composition is represented by the general formula (II).
【0020】上記一般式(I)及び(II)で示される組
成から、本発明の非磁性体相に形状異方性を有する磁性
体元素からなる磁気抵抗効果材料を作製するには、ま
ず、非磁性体相に磁性体元素を固溶してなる合金材料を
作製し、これに特定の応力又は温度勾配を与えて、熱処
理することにより異方性を有する磁性体微粒子の方向を
揃えられる。上記の各工程を具体的に説明する。In order to prepare a magnetoresistance effect material comprising a magnetic element having a shape anisotropy in the nonmagnetic phase of the present invention from the composition represented by the above general formulas (I) and (II), first, An alloy material formed by dissolving a magnetic element in a non-magnetic phase is prepared, a specific stress or a temperature gradient is applied to the alloy material, and a heat treatment is performed to align the direction of the magnetic fine particles having anisotropy. Each of the above steps will be specifically described.
【0021】非磁性体相に磁性体元素を固溶してなる合
金材料の作製は合金組成を過飽和固溶体、強制固溶体に
できればよく、例えば冷却速度102K/sec以上に
て容易に作製できる。冷却速度102K/sec以上と
する方法として、真空蒸着、イオンプレーティング、ス
パッタなどの気相蒸着法、メルトスピン、ガスアトマイ
ズ、液中紡糸などの液体急冷法、高温からの水焼入れ法
などが有る。An alloy material formed by dissolving a magnetic element in a non-magnetic phase may be formed into a supersaturated solid solution or a forced solid solution, for example, at a cooling rate of 10 2 K / sec or more. Examples of the method of cooling at a cooling rate of 10 2 K / sec or more include vapor deposition methods such as vacuum deposition, ion plating, and sputtering, liquid quenching methods such as melt spin, gas atomization, and liquid spinning, and water quenching from a high temperature. .
【0022】また、作成される合金材料は用途に応じ
て、薄膜、薄帯、粉末、線材などに作製することができ
る。また、本発明において粉末を作製し、これを集成固
化し、バルク(固化材)としてもかまわない。この場
合、まず固化成形し、この後熱処理を施す。最終形状
(製品形状)の成形は集成固化後または熱処理後いずれ
でもかまわない。The alloy material to be produced can be made into a thin film, a ribbon, a powder, a wire or the like depending on the application. Further, in the present invention, a powder may be prepared, and the powder may be aggregated and solidified to form a bulk (solidified material). In this case, solidification molding is first performed, and then heat treatment is performed. The final shape (product shape) may be formed after solidification or heat treatment.
【0023】上記熱処理温度は200〜600℃であ
る。200〜600℃で30分以上熱処理することで、
微細な強磁性微粒子が析出され、大きな磁気抵抗効果が
得られる。さらに好ましくは熱処理温度を300〜50
0℃とすることにより、より大きな磁気抵抗効果が得ら
れる。熱処理温度が200℃未満では所望の大きさの強
磁性体微粒子が得られない。又、600℃を超えた場合
には析出される強磁性体微粒子が大きくなり過ぎて、本
発明の目的である磁気抵抗効果を有する材料が得られな
い。また、高温短時間の場合は析出の際の均一性が失わ
れやすい。The heat treatment temperature is 200 to 600 ° C. By heat treatment at 200-600 ° C for 30 minutes or more,
Fine ferromagnetic fine particles are deposited, and a large magnetoresistance effect is obtained. More preferably, the heat treatment temperature is 300 to 50.
By setting the temperature to 0 ° C., a greater magnetoresistance effect can be obtained. If the heat treatment temperature is lower than 200 ° C., ferromagnetic fine particles having a desired size cannot be obtained. On the other hand, when the temperature exceeds 600 ° C., the deposited ferromagnetic fine particles become too large, and a material having a magnetoresistance effect, which is the object of the present invention, cannot be obtained. In addition, when the temperature is high and the time is short, uniformity at the time of precipitation is easily lost.
【0024】熱処理中に応力又は温度勾配を与えて上記
熱処理を行うことにより、異方性を有する磁性体微粒子
の方向を揃えて配向析出させることができる。具体的に
は、これら磁性粒子が異方的な形状を持って析出する合
金の過飽和固溶体に時効を施すときに任意の方向からあ
るいはある結晶面に対し、例えば、(1) 0%<ε≦80%の歪み、望ましくは1%≦ε≦
50%の歪みを与え時効する、(2) 一方向に温度差を1℃/cm≦△T≦10℃/c
m、望ましくは2℃/cm≦△T≦5℃/cmを与えて
時効する、により析出方向を揃えることができる。さら
には (3) 時効温度における0.2%耐力の10%から90
%の応力下、望ましくは50%〜90%の応力下で時効
する。By applying the above-mentioned heat treatment by applying a stress or a temperature gradient during the heat treatment, the magnetic fine particles having anisotropy can be oriented and deposited in a uniform direction. Specifically, when aging a supersaturated solid solution of an alloy in which these magnetic particles precipitate with an anisotropic shape, for example, from an arbitrary direction or a certain crystal plane, for example, (1) 0% <ε ≦ 80% strain, preferably 1% ≦ ε ≦
(2) Temperature difference in one direction is 1 ° C./cm≦ΔT≦10° C./c
m, desirably 2 ° C./cm≦ΔT≦5° C./cm and aging can make the precipitation directions uniform. Further
The 10% of 0.2% proof stress (3) aging temperature 90
%, Preferably under 50% to 90% stress.
【0025】このように異方性(板状、針状)を持った
ナノサイズの磁性粒子を持った粒子の方向を揃えること
により磁界に対する応答性、信号変化も大きくなり、磁
気センサーとして望ましい性能を示す。As described above, by aligning the direction of the particles having nano-sized magnetic particles having anisotropy (plate shape, needle shape), the response to a magnetic field and the signal change are increased, and the desired performance as a magnetic sensor is obtained. Is shown.
【0026】応力下の熱処理として、0.2%耐力の1
0%〜90%の応力下での時効では、10%未満の場
合、磁性体微粒子の方向が揃えにくい。磁性体微粒子の
方向を揃えやすい点で50〜90%の応力下がより好ま
しい。As heat treatment under stress, 0.2% proof stress 1
In the case of aging under a stress of 0% to 90%, if it is less than 10%, it is difficult to align the directions of the magnetic fine particles. The stress is more preferably 50 to 90% because the direction of the magnetic fine particles can be easily aligned.
【0027】応力下の時効を他の指標で示すと、歪みを
εとすると、0%<ε≦80%の歪みでの時効が挙げら
れ、80%を超える歪みを与えた場合、結晶が細かくな
り、電気抵抗が大きくなり、磁気抵抗比が小さくなる。When aging under stress is indicated by another index, aging at a strain of 0% <ε ≦ 80% is given when the strain is ε, and when the strain exceeds 80%, the crystal becomes fine. As a result, the electric resistance increases and the magnetoresistance ratio decreases.
【0028】一方向に温度差を与えての時効では、1℃
/cmの温度差未満の場合、上記と同様に方向が揃えに
くい。In aging by giving a temperature difference in one direction, 1 ° C.
If the temperature difference is less than / cm, it is difficult to align the directions as described above.
【0029】本発明は上記に述べたように、異方的な磁
性体粒子が析出する合金系に対し、応力時効、歪み時
効、温度差をかけて時効を施すことにより異方性を持っ
た磁性体粒子を配向析出させ、優れた磁気抵抗センサー
とすることを主眼とする。この方法を用いることにより
図1に模式される、磁気抵抗効果に寄与する磁性体−非
磁性体界面の面積を小さくすることなく、磁性体微粒子
の体積を大きくできる。これから熱(室温)による磁界
の撹乱を受けにくくなり外部磁界に対する磁性微粒子の
磁化の応答性が良くなる。従って、磁気抵抗効果はより
低磁界で大きな変化を示す。また周期的に配置された磁
性粒子はその相互作用により協調的に強磁性になろうと
しやすくなることから、低い外部磁界で強磁性的に結合
し、電気抵抗は減少する。As described above, the present invention has anisotropy by subjecting an alloy system on which anisotropic magnetic particles are precipitated to aging by applying stress aging, strain aging, and temperature difference. The main objective is to orientate and deposit magnetic particles to make an excellent magnetoresistive sensor. By using this method, the volume of the magnetic fine particles can be increased without reducing the area of the interface between the magnetic material and the non-magnetic material that contributes to the magnetoresistance effect as schematically shown in FIG. From this, the magnetic field is not easily disturbed by heat (room temperature), and the response of the magnetization of the magnetic fine particles to an external magnetic field is improved. Therefore, the magnetoresistance effect shows a large change at a lower magnetic field. In addition, since the magnetic particles arranged periodically tend to cooperatively become ferromagnetic due to the interaction, they are ferromagnetically coupled with a low external magnetic field, and the electric resistance is reduced.
【0030】応力、温度勾配を与えることにより、図1
に示されるように、非磁性を有する母相1中に、形状異
方性を有する磁性微粒子2が方向を揃えて均一に分散さ
れる。By giving a stress and temperature gradient, FIG.
As shown in (1), magnetic fine particles 2 having shape anisotropy are uniformly dispersed in a matrix 1 having non-magnetism.
【0031】図2はAu90Co10を溶体化処理した後
に、300℃で1時間時効処理した試料の透過電子顕微
鏡(TEM)像であり、図3はAu90Co10を溶体化処
理した後に、300℃で1時間、図中の矢印方向に5%
の歪み時効を与えた試料のTEM像である。[0031] Figure 2 after solution treatment the Au 90 Co 10, a transmission electron microscope (TEM) image of a sample 1 hour aging treatment at 300 ° C., 3 after solution treatment the Au 90 Co 10 5 % in the direction of the arrow at 300 ° C for 1 hour
5 is a TEM image of a sample given strain aging.
【0032】図2に示される通常の時効では、板状Co
粒子の析出(写真では線状)が認められ、それが水平及
び垂直方向そして紙面に平行に3方向均一に析出してい
る。それに対し、図3の5%の歪み時効を施した試料で
は、Co粒子が歪み方向に対し垂直にのみ析出してい
る。この板状Co粒子の析出方向が揃ったことにより磁
気抵抗比は8%から18%まで大きくなった。このよう
に本発明では、異方的な磁性粒子の方向を揃えること
で、粒子分散型磁気抵抗効果の問題点であった低磁界で
の抵抗変化の小ささを解決することができる。In the normal aging shown in FIG.
Precipitation of particles (linear in the photograph) is observed, which is uniformly precipitated in three directions in the horizontal and vertical directions and parallel to the paper surface. On the other hand, in the sample subjected to the strain aging of 5 % in FIG. 3, Co particles are precipitated only perpendicularly to the strain direction. The magnetic resistance ratio increased from 8% to 18% due to the uniform precipitation direction of the plate-like Co particles. Thus, in the present invention, by aligning the directions of the anisotropic magnetic particles, it is possible to solve the problem of the particle dispersion type magnetoresistance effect, that is, the small change in resistance at a low magnetic field.
【0033】[0033]
【実施例】以下、本発明を実施例及び比較例によって更
に詳しく説明する。 実施例1 原子比がAg85Co15の組成を母合金をアーク溶解炉あ
るいは高周波溶解炉で溶製し、上記組成からなるターゲ
ットを作製し、これを水冷ポリイミドからなる基板上に
スパッタ蒸着した。この試料に対して、基板に蒸着した
膜を基板とともに曲げを加えることにより5%の引張り
歪みを与えて、500℃で1時間の時効を行った。該試
料を磁気特性はVSM(振動型磁化測定)により、抵抗
は4端子法により印加磁場15kOeにて測定したとこ
ろ32%の磁気抵抗効果比(△R/R%)であった。The present invention will be described below in more detail with reference to examples and comparative examples. Example 1 A master alloy having an atomic ratio of Ag 85 Co 15 was melted in an arc melting furnace or a high-frequency melting furnace to prepare a target having the above composition, and this was sputter-deposited on a water-cooled polyimide substrate. This sample was subjected to a 5% tensile strain by bending the film deposited on the substrate together with the substrate, and aged at 500 ° C. for 1 hour. The magnetic properties of the sample were measured by VSM (vibration-type magnetization measurement), and the resistance was measured by a four-terminal method with an applied magnetic field of 15 kOe. As a result, the magnetoresistive effect ratio (ΔR / R%) was 32%.
【0034】比較例1 実施例1において、引張り歪みを与えず、500℃で1
時間の通常の時効を行った。印加磁場15kOeでの磁
気抵抗効果比は20%であった。Comparative Example 1 In Example 1, no tensile strain was applied,
The usual aging of time was done. The magnetoresistance effect ratio at an applied magnetic field of 15 kOe was 20%.
【0035】実施例2 表1に示す組成(原子比)の母合金をアーク溶解炉ある
いは高周波溶解炉で溶解し、これを真空中1000℃で
2時間均質化処理し、氷水中へ急冷し、完全にあるいは
部分的に固溶させる。このようにしてバルク(鋳造)材
を得た。試料のうち実施例2の試料には10%の圧縮歪
みを与えて300℃で1時間時効した。磁気抵抗効果比
は実施例2の試料が18%であった。Example 2 A master alloy having the composition (atomic ratio) shown in Table 1 was melted in an arc melting furnace or a high-frequency melting furnace, homogenized in a vacuum at 1000 ° C. for 2 hours, and rapidly cooled in ice water. completely or <br/> unit content to be dissolved. Thus, a bulk (cast) material was obtained. The sample of Example 2 was given a 10% compressive strain and aged at 300 ° C. for 1 hour. The magnetoresistance effect ratio of the sample of Example 2 was 18%.
【0036】比較例2 実施例2において圧縮歪みを与えず、300℃で1時間
通常の時効を行った。結果を表1に示す。Comparative Example 2 In Example 2, normal aging was carried out at 300 ° C. for 1 hour without compressive strain. Table 1 shows the results.
【0037】実施例3 表1に示す組成の母合金を実施例2と同様にして、柱状
バルク材(鋳造材)を作製し、次にこのバルク材を細引
き加工を施し、細線を作製した。該試料を均熱帯の小さ
な炉の中を移動させることにより、4℃/20mmの温
度差を与え、300℃で約1時間の時効を行った。結果
を表1に示す。Example 3 A columnar bulk material (cast material) was prepared from a mother alloy having the composition shown in Table 1 in the same manner as in Example 2, and then the bulk material was subjected to thinning to obtain a thin wire. . By moving the sample in a small furnace in a soaking zone, a temperature difference of 4 ° C./20 mm was given, and aging was performed at 300 ° C. for about 1 hour. Table 1 shows the results.
【0038】比較例3 実施例3において、300℃で約1時間の通常の時効を
行った。結果を表1に示す。Comparative Example 3 In Example 3, normal aging was performed at 300 ° C. for about 1 hour. Table 1 shows the results.
【0039】[0039]
【表1】 [Table 1]
【0040】[0040]
【発明の効果】上記のとおり、本発明で得られる形状異
方性を有する磁性微粒子が方向を揃えて均一微細に分散
されることによって、通常の時効によって組織中に磁性
粒子がランダムに析出したものに比べて高感度の抵抗変
化を有するものであり、特に低磁界での磁気抵抗効果比
に優れている。As described above, the magnetic fine particles having shape anisotropy obtained by the present invention are uniformly and finely dispersed in the same direction, so that the magnetic particles randomly precipitate in the tissue by ordinary aging. It has a more sensitive change in resistance than that of the one, and is particularly excellent in magnetoresistance effect ratio in a low magnetic field.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の磁気抵抗効果材料の模式図。FIG. 1 is a schematic view of a magnetoresistive material of the present invention.
【図2】通常の時効を行った材料のTEM像。FIG. 2 is a TEM image of a material subjected to normal aging.
【図3】本発明の形状異方性を有する磁性微粒子が分散
された材料のTEM像。FIG. 3 is a TEM image of a material in which magnetic fine particles having shape anisotropy according to the present invention are dispersed.
1 非磁性を有する母相 2 形状異方性を有する磁性微粒子 DESCRIPTION OF SYMBOLS 1 Non-magnetic parent phase 2 Magnetic fine particles having shape anisotropy
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 43/12 G01R 33/06 R H01F 1/30 (56)参考文献 特開 平6−318749(JP,A) 特開 平6−268280(JP,A) 特開 平7−86017(JP,A) 欧州特許出願公開638943(EP,A 1) 電気学会マグネティクス研究会資料, Vol.MAG−94,No.85−100, pp.1−5(1994) 電気学会マグネティクス研究会資料, Vol.MAG−93,No.126−131, pp.1−8(1993) (58)調査した分野(Int.Cl.7,DB名) H01L 43/08 G01R 33/09 G11B 5/39 H01F 1/20 H01L 43/10 H01L 43/12 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification symbol FI H01L 43/12 G01R 33/06 R H01F 1/30 (56) References JP-A-6-318749 (JP, A) JP-A Heisei 6-268280 (JP, A) JP-A-7-86017 (JP, A) European Patent Application Publication No. 638943 (EP, A1) Material of the Institute of Magnetics, IEICE, Vol. MAG-94, no. 85-100, pp. 1-5 (1994) Materials of the Institute of Electrical Engineering Magnetics, Vol. MAG-93, No. 126-131 pp. 1-8 (1993) (58) Fields studied (Int. Cl. 7 , DB name) H01L 43/08 G01R 33/09 G11B 5/39 H01F 1/20 H01L 43/10 H01L 43/12 JICST file (JOIS )
Claims (5)
合金材料を作製し、これに0%<ε≦80%の歪みを与
えて熱処理を施し、磁性体元素からなる形状異方性を有
する磁性体微粒子を非磁性体相中に方向を揃えて均一微
細に分散析出させることを特徴とする磁気抵抗効果材料
の製造方法。 An alloy material formed by dissolving a magnetic element in a non-magnetic phase is subjected to a heat treatment by applying a strain of 0% <ε ≦ 80% to form a non-magnetic phase. A method for producing a magnetoresistive material, wherein magnetic fine particles having anisotropy are uniformly and finely dispersed and precipitated in a nonmagnetic phase in a uniform direction.
合金材料を作製し、これに1℃/cm<△T≦10℃/
cmの温度差を与えて熱処理を施し、磁性体元素からな
る形状異方性を有する磁性体微粒子を非磁性体相中に方
向を揃えて均一微細に分散析出させることを特徴とする
磁気抵抗効果材料の製造方法。 2. An alloy material in which a magnetic element is dissolved in a non-magnetic phase is prepared, and the alloy material is added to the alloy material at 1 ° C./cm<ΔT≦10° C.
The magnetoresistive effect is characterized in that heat treatment is performed by giving a temperature difference of 1 cm and magnetic fine particles having shape anisotropy composed of magnetic elements are uniformly and finely dispersed and deposited in the non-magnetic phase in the same direction. Material manufacturing method.
M1 Y(但し、M1はFe,Coから選ばれる少なくとも
1種の元素、X,Yは原子パーセントで0.1<X<5
0、1<Y<45)で示される組成からなる請求項1又
は2記載の磁気抵抗効果材料の製造方法。 3. The alloy material has the general formula: Cu 100-X Ni 50-Y
M 1 Y (where M 1 is at least one element selected from Fe and Co, and X and Y are 0.1 <X <5 in atomic percent)
3. The method for producing a magnetoresistive material according to claim 1, wherein the composition has a composition represented by the following formula: 0, 1 <Y <45).
し、AはAg,Auから選ばれる少なくとも1種の元
素、M2はFe,Co,Niから選ばれる少なくとも1
種の元素、Xは原子パーセントで0.1<X<50)で
示される組成からなる請求項1又は2記載の磁気抵抗効
果材料の製造方法。 4. An alloy material having a general formula: A 100-X M 2 X (where A is at least one element selected from Ag and Au, and M 2 is at least one element selected from Fe, Co and Ni)
3. The method for producing a magnetoresistive material according to claim 1, wherein the seed element, X, has a composition expressed by atomic percent of 0.1 <X <50).
熱処理を施す請求項1又は2記載の磁気抵抗効果材料の
製造方法。 5. The method according to claim 1 , wherein the heat treatment is performed under a stress of 10% to 90% of 0.2% proof stress.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08766195A JP3219966B2 (en) | 1995-03-22 | 1995-03-22 | Method for producing particle-dispersed magnetoresistive material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08766195A JP3219966B2 (en) | 1995-03-22 | 1995-03-22 | Method for producing particle-dispersed magnetoresistive material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08264860A JPH08264860A (en) | 1996-10-11 |
JP3219966B2 true JP3219966B2 (en) | 2001-10-15 |
Family
ID=13921139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08766195A Expired - Fee Related JP3219966B2 (en) | 1995-03-22 | 1995-03-22 | Method for producing particle-dispersed magnetoresistive material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3219966B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11859264B2 (en) | 2018-07-12 | 2024-01-02 | Sumitomo Metal Mining Co., Ltd. | Alloy powder and method for producing same |
CN109082548A (en) * | 2018-07-13 | 2018-12-25 | 湖州市道场乡资产经营有限公司 | A kind of Cu-Ni system powder sintering process |
CN113328035B (en) * | 2020-02-28 | 2024-04-23 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
-
1995
- 1995-03-22 JP JP08766195A patent/JP3219966B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
電気学会マグネティクス研究会資料,Vol.MAG−93,No.126−131,pp.1−8(1993) |
電気学会マグネティクス研究会資料,Vol.MAG−94,No.85−100,pp.1−5(1994) |
Also Published As
Publication number | Publication date |
---|---|
JPH08264860A (en) | 1996-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wecker et al. | Giant magnetoresistance in melt spun Cu‐Co alloys | |
Chien | Magnetism and giant magneto-transport properties in granular solids | |
EP0629998A2 (en) | Magnetoresistive film, method of its fabrication and magnetoresistive sensor | |
JPH07508133A (en) | Giant magnetoresistive single film alloy | |
JPH09293611A (en) | Magnetoresistive effect element thin film and its manufacturing method | |
JP3219966B2 (en) | Method for producing particle-dispersed magnetoresistive material | |
Xiao et al. | Giant magnetoresistive properties in granular transition metals | |
Hashi et al. | A large thermal elasticity of the ordered FeRh alloy film with sharp magnetic transition | |
Sang et al. | Giant magnetoresistance and microstructures in CoAg granular films fabricated using ion-beam co-sputtering technique | |
Takanashi et al. | Giant magnetoresistance and microstructure in Cr Fe and Cu Co heterogeneous alloys | |
Shukla et al. | Magnetic nanostructures: Synthesis, properties, and applications | |
JP2807398B2 (en) | Magnetoresistance effect material, method of manufacturing the same, and magnetoresistance element | |
JP2937680B2 (en) | Magnetoresistive element and method of manufacturing the same | |
US5591532A (en) | Giant magnetoresistance single film alloys | |
Shima et al. | Magnetic properties and structure of Nd-Fe-B thin films with Cr and Ti underlayers | |
US5882436A (en) | Giant magnetoresistive heterogeneous alloys and method of making same | |
JP3075332B2 (en) | High electrical resistivity magnetic thin film | |
JP3286131B2 (en) | Particle-dispersed magnetoresistor and its manufacturing method | |
US20020060305A1 (en) | Magneto conductive polymer composite and process for the preparation of the same | |
JP3810881B2 (en) | High frequency soft magnetic film | |
JP3654917B2 (en) | Method of manufacturing magnetic recording medium using hexagonal ferrite powder | |
Spasova et al. | Magnetism of monodisperse core/shell particles | |
Coffey et al. | Thin film structures for low field granular giant magnetoresistance | |
Lupu et al. | Investigations on the Magnetic Properties of High-Coercivity (Nd1− xFex) 90Al10 Bulk Amorphous Alloys | |
JP2853664B2 (en) | Magnetoresistance effect film and magnetoresistance effect element using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |