[go: up one dir, main page]

JP3216835B2 - How to charge a lithium secondary battery - Google Patents

How to charge a lithium secondary battery

Info

Publication number
JP3216835B2
JP3216835B2 JP22420392A JP22420392A JP3216835B2 JP 3216835 B2 JP3216835 B2 JP 3216835B2 JP 22420392 A JP22420392 A JP 22420392A JP 22420392 A JP22420392 A JP 22420392A JP 3216835 B2 JP3216835 B2 JP 3216835B2
Authority
JP
Japan
Prior art keywords
negative electrode
potential
charging
lithium
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22420392A
Other languages
Japanese (ja)
Other versions
JPH0668909A (en
Inventor
徹 松井
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP22420392A priority Critical patent/JP3216835B2/en
Publication of JPH0668909A publication Critical patent/JPH0668909A/en
Application granted granted Critical
Publication of JP3216835B2 publication Critical patent/JP3216835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池の充
電方法、特に、その負極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a lithium secondary battery, and more particularly, to an improvement in a negative electrode thereof.

【0002】[0002]

【従来の技術】プロピレンカーボネート,γ−ブチロラ
クトン,ジメトキシエタン,テトラヒドロフラン,ジオ
キソラン等の有機溶媒に、LiClO4 ,LiBF4
LiAsF6 ,LiPF6 ,LiCF3 SO3 等の溶質
を溶かして得られる電解質と、リチウム金属を活物質と
する負極を組み合わせたリチウム電池は高エネルギー密
度を有するため、電子時計,カメラをはじめとする小型
電子機器に広く用いられるようになった。そして、この
種の二次電池としての開発が盛んに行われるようになっ
てきている。
2. Description of the Related Art LiClO 4 , LiBF 4 , and organic solvents such as propylene carbonate, γ-butyrolactone, dimethoxyethane, tetrahydrofuran, and dioxolane are used.
Lithium batteries that combine an electrolyte obtained by dissolving a solute such as LiAsF 6 , LiPF 6 , or LiCF 3 SO 3 with a negative electrode using lithium metal as an active material have a high energy density, and thus include electronic watches and cameras. Widely used for small electronic devices. Then, development as a secondary battery of this kind has been actively performed.

【0003】このリチウム二次電池開発の課題の一つ
は、負極充放電効率の向上である。すなわち、充電過程
で負極に析出したリチウムの量に対して、次の放電過程
で溶出できる量をほぼ100 %にまで高めることである。
しかし、現状では90〜95%の充放電効率が得られている
にすぎない。この負極充放電効率が低い原因は、充電時
に負極上に形成される針状のデンドライト(樹枝状結
晶)が極板より遊離したり、放電時でのデンドライトの
不均一溶解による分断と考えられている。
[0003] One of the issues in the development of this lithium secondary battery is to improve the charge and discharge efficiency of the negative electrode. That is, the amount that can be eluted in the next discharging process is increased to almost 100% of the amount of lithium deposited on the negative electrode in the charging process.
However, at present, only a charge / discharge efficiency of 90 to 95% is obtained. The reason for the low charge / discharge efficiency of the negative electrode is considered to be that needle-like dendrites (dendritic crystals) formed on the negative electrode at the time of charging are released from the electrode plate, or that the dendrites are separated by uneven dissolution at the time of discharging. I have.

【0004】そこで、このような充電時での針状のデン
ドライトの形成を避けるため、充電を比較的緩やかな条
件で行うことが検討されている(Progress in Batterie
s and Solar Cells ,第2巻,54頁,1979年)。その内
容は充電時における負極の電位を-50 mV vs. Li/Li+
り貴の電位に保っても、負極上へのリチウムの総析出量
は負極単位面積当たり5600層分(1C/cm2 )が限界とい
うものである。また、析出時の電位を-50 mV vs. Li/Li
+ より貴の電位に保つためには電流密度を小さくするこ
ととされており、高電流密度領域での過電圧の抑制手法
については開発されていないのが現状である。
Therefore, in order to avoid the formation of needle-like dendrites during such charging, it has been studied to perform charging under relatively mild conditions (Progress in Batterie).
s and Solar Cells, Vol. 2, p. 54, 1979). The content is that even if the potential of the negative electrode during charging is maintained at a potential no higher than -50 mV vs. Li / Li + , the total amount of lithium deposited on the negative electrode is 5600 layers per unit area of the negative electrode (1 C / cm 2 ) Is the limit. In addition, the potential at the time of deposition was -50 mV vs. Li / Li
+ It is said that the current density should be reduced in order to keep the potential at a higher value than that of the current source. At present, no technique has been developed for suppressing an overvoltage in a high current density region.

【0005】[0005]

【発明が解決しようとする課題】このように、-50 mV v
s. Li/Li+ より貴の電位に保つということは充電電流密
度を小さくすることになり、充電時間として一般的に受
け入れられている8時間以内(一晩)にすることが困難
になる。また、実際の商品として高エネルギー密度を取
り出せる電池を構成するためには、現在の電池極板構成
技術より見て単位面積当たり約56000 層分(約10C/c
m2 )のリチウムを負極上に充電時析出させる必要があ
る。このため従来の技術では充電電気量の制限のため約
1/10のエネルギー密度しか利用できないということにな
る。以上のように充電の間、負極の電位を-50 mV vs. L
i/Li+ より貴の電位に保つことによりデンドライトの形
成が抑制されるものの、充電時間が長くなったり高エネ
ルギー密度を取り出せないという課題があった。
As described above, -50 mV v
Keeping the potential nobler than s. Li / Li + reduces the charging current density, making it difficult to keep the charging time within 8 hours (overnight), which is generally accepted as the charging time. Also, in order to construct a battery that can extract high energy density as an actual product, about 56,000 layers per unit area (about 10 C / c
m 2 ) lithium must be deposited on the negative electrode during charging. For this reason, in the conventional technology, it is about
This means that only 1/10 of the energy density can be used. As described above, during charging, the potential of the negative electrode was set to -50 mV vs. L
Although the formation of dendrite is suppressed by maintaining the potential at a value higher than i / Li +, there have been problems that the charging time is prolonged and a high energy density cannot be obtained.

【0006】本発明は、前記従来技術の課題を解決する
ため、電流密度や電極面積当たりの充電電気量を増加さ
せても負極上でのデンドライトの形成が少なく負極充放
電効率の高い負極を得ることによって、高エネルギー密
度で充放電寿命の長い信頼性の大きいリチウム二次電池
を提供することを目的とする。
According to the present invention, in order to solve the above-mentioned problems of the prior art, even if the current density or the amount of charged electricity per electrode area is increased, the formation of a dendrite on the negative electrode is small and a negative electrode having high negative electrode charging / discharging efficiency is obtained. Accordingly, it is an object to provide a highly reliable lithium secondary battery having a high energy density and a long charge / discharge life.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するた
め、本発明のリチウム二次電池の充電方法は、正極と、
非水電解質と、リチウム金属を負極とする電池におい
て、充電開始時に前記負極の電位を-35 mV vs. Li/Li+
より貴の電位に保った状態で少なくとも前記負極単位面
積当たり100 原子層分量のリチウムを前記負極上に析出
させることを特徴とする。
In order to achieve the above object, a method for charging a lithium secondary battery according to the present invention comprises the steps of:
In a non-aqueous electrolyte and a battery using lithium metal as a negative electrode, at the start of charging, the potential of the negative electrode is -35 mV vs. Li / Li +
At least 100 atomic layer of lithium per unit area of the negative electrode is deposited on the negative electrode while maintaining the noble potential.

【0008】前記構成においては、充電開始時に保つ負
極の電位が-20 mV vs. Li/Li+ より貴の電位であること
が好ましい。
In the above configuration, it is preferable that the potential of the negative electrode maintained at the start of charging be a potential nobler than -20 mV vs. Li / Li + .

【0009】[0009]

【作用】前記した本発明の構成によれば、充電開始時に
負極の電位を従来の析出電位に比較して極端に緩やかな
-35 mV vs. Li/Li+ より貴の電位に保った状態で行い、
少なくとも負極単位面積当たり100 原子層分量のリチウ
ムを負極上に析出させることにより、電流密度や電極面
積当たりの充電電気量を増加させても負極上でのデンド
ライトの形成が少なく負極充放電効率の高い負極を得る
ことによって、高エネルギー密度で充放電寿命の長い信
頼性の大きいリチウム二次電池とすることができる。こ
れは、デンドライトの発生原因を種々検討し、リチウム
負極の表面状態に関係づけられることが判明したことに
起因する。すなわち、負極リチウムが不動態膜に覆われ
析出できる場所がスポット状に分散している場合や、凹
凸が激しく遍在的析出の原因となるエッジが多数存在す
る場合にデンドライトが形成されやすい。
According to the configuration of the present invention described above, the potential of the negative electrode at the start of charging is extremely gentle compared to the conventional deposition potential.
-35 mV vs. Li / Li +
By depositing at least 100 atomic layer equivalent of lithium on the negative electrode per unit area of the negative electrode, the formation of dendrites on the negative electrode is small and the charge / discharge efficiency of the negative electrode is high even if the current density or the amount of charge per electrode area is increased. By obtaining the negative electrode, a highly reliable lithium secondary battery having a high energy density and a long charge / discharge life can be obtained. This is attributable to the fact that various causes of dendrite generation were examined and found to be related to the surface state of the lithium anode. That is, dendrites are likely to be formed in the case where the places where the negative electrode lithium can be deposited by being covered with the passivation film are dispersed in the form of spots, or when there are many edges that cause ubiquitous precipitation due to severe irregularities.

【0010】このため、負極上への析出電位を-35 mV v
s. Li/Li+ の電位に保った場合、析出するリチウムは針
状にはならず、不動態膜や凹凸でのエッジを覆うように
負極面にそって平面状に広がり析出する。そして負極単
位面積当たり100 原子層分の析出量で負極全体が活性な
リチウムで覆われるようになる。
For this reason, the deposition potential on the negative electrode is -35 mV v
When the potential is maintained at s. Li / Li + , the deposited lithium does not become acicular, but spreads and deposits in a plane along the negative electrode surface so as to cover the edge of the passivation film or unevenness. Then, the entire negative electrode is covered with active lithium at a deposition amount of 100 atomic layers per unit area of the negative electrode.

【0011】いったんこのような全体が活性な負極を得
ると、充電電流密度を増加させても負極の過電圧は顕著
に増加せず、従来好ましいとされてきた-50 mV vs. Li/
Li+以上の貴の電位に保つことができる。このためリチ
ウムイオンは電解質から電極全体に均一に析出し針状デ
ンドライトの形成が抑制される。さらに充電電気量を増
加させても比較的均一に密な析出が行われるため、以後
の放電による析出リチウムの溶解は不均一にならずほと
んどのリチウムが効率よくに電極反応に関与する。
Once such a totally active negative electrode is obtained, the overvoltage of the negative electrode does not increase remarkably even if the charging current density is increased, and the conventionally preferred -50 mV vs. Li /
It can be kept at a noble potential higher than Li + . Therefore, lithium ions are uniformly deposited on the entire electrode from the electrolyte, and the formation of acicular dendrites is suppressed. Even if the amount of charged electricity is further increased, dense deposition is performed relatively uniformly. Therefore, the dissolution of deposited lithium by subsequent discharge does not become nonuniform, and most of the lithium efficiently participates in the electrode reaction.

【0012】ここで負極全体を均一に覆うために負極単
位面積当たり100 原子層分の析出量が必要であるが、電
極の凹凸を埋めたり電解質に含まれる水分などの不純物
を消費するためにこの程度の析出量で初めて全体が覆わ
れるようになったと考えられる。
Here, in order to uniformly cover the entire negative electrode, a deposition amount of 100 atomic layers per unit area of the negative electrode is required. However, since the amount of impurities such as moisture contained in the electrolyte is consumed to fill the unevenness of the electrode or to consume the impurities such as water contained in the electrolyte. It is considered that the whole was covered for the first time by the amount of the precipitation.

【0013】以上のような効果は負極の電位を-35 mV v
s. Li/Li+ 以上の貴の電位に保ち少なくとも単位面積当
たり100 原子層分の析出を行って得られ、好ましくは10
0 原子層分析出の間、電位を-20 mV vs. Li/Li+ 以上の
貴の電位に保つことが望ましい。
[0013] The above effect is achieved by setting the potential of the negative electrode to -35 mV v
s. Li / Li + is obtained by depositing at least 100 atomic layers per unit area while maintaining a noble potential of at least
During the atomic layer analysis, it is desirable to keep the potential at a noble potential of -20 mV vs. Li / Li + or higher.

【0014】[0014]

【実施例】以下、実施例を用いて本発明をさらに具体的
に説明する。 実施例1 作用極,対極,参照極は、それぞれリチウムシートをニ
ッケルリードを取り付けたニッケルエキスパンドメタル
に圧着して作製した。これらをガラスセルに組み入れ、
電解質としてプロピレンカーボネート(PC)にLiC
lO4 を1M/lの濃度で溶解させたものを用いた。試験
はすべてアルゴン雰囲気下で行った。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. Example 1 A working electrode, a counter electrode, and a reference electrode were produced by press-bonding lithium sheets to nickel expanded metal to which nickel leads were attached. Incorporate these into a glass cell,
LiC to propylene carbonate (PC) as electrolyte
A solution in which 10 4 was dissolved at a concentration of 1 M / l was used. All tests were performed under an argon atmosphere.

【0015】作用極(電池の負極に相当)を-30 mV vs.
Li/Li+ の一定電位に保ち、単位面積当たり200 原子層
分のリチウムを作用極上に予備析出させた。続いて、0.
5 mA/cm2 の電流密度で1時間析出後(1.8 C/cm2 , 1
0000原子層分の析出量)の作用極の電位を測定したとこ
ろ-25 mV vs. Li/Li+ であった。同様な試験を各電流密
度1時間析出させて作用極の電位を測定した結果を図1
にプロットした。
The working electrode (corresponding to the negative electrode of the battery) is -30 mV vs.
Maintaining a constant potential of Li / Li + , 200 atomic layers of lithium per unit area were pre-deposited on the working electrode. Then, 0.
After deposition for 1 hour at a current density of 5 mA / cm 2 (1.8 C / cm 2 , 1
When the potential of the working electrode was measured at -25 mV vs. Li / Li + . FIG. 1 shows the result of measuring the potential of the working electrode by depositing the same test at each current density for 1 hour.
Are plotted.

【0016】比較例として、作用極に予備析出を行って
いない以外は実施例と同様な試験を行い、各電流密度で
の電位を測定した。図1から明らかなように、本発明の
実施例では1.0 mA/cm2 の電流密度で析出を行っても作
用極の電位は-50 mV vs. Li/Li+ より貴に保たれている
が、比較例では-50 mV vs. Li/Li+ より貴に保つために
は最大約0.4 mA/cm2 の電流密度でしか行えない。すな
わち本発明によれば高電流密度での析出が可能になって
いる。さらに、作用極単位面積当たりの総析出量を約4
C/cm2 (約1mA/cm2 での析出)に増加しても電位は-5
0 mV vs. Li/Li+ より貴であり、デンドライトが形成さ
れにくい電位になっていることが確認できた。
As a comparative example, the same test as in the example was carried out except that the working electrode was not preliminarily deposited, and the potential at each current density was measured. As is apparent from FIG. 1, in the embodiment of the present invention, the potential of the working electrode is maintained more nominally than -50 mV vs. Li / Li + even when the deposition is performed at a current density of 1.0 mA / cm 2 . In contrast, in the comparative example, in order to keep it more precious than -50 mV vs. Li / Li +, it can be performed only with a current density of about 0.4 mA / cm 2 at the maximum. That is, according to the present invention, deposition at a high current density is possible. Furthermore, the total amount of precipitation per unit area of the working electrode is about 4
Potential is -5 even if it increases to C / cm 2 (deposition at about 1 mA / cm 2 )
It was confirmed that the potential was higher than 0 mV vs. Li / Li + , and the potential at which dendrite was hardly formed.

【0017】実施例2 実施例1で電解質に使用したプロピレンカーボネートの
他に種々の溶媒を用いて電解質を調製し、実施例1と同
様の試験を行い作用極の電位を測定した。表1は各電解
質での-50 mV vs. Li/Li+ となるときの析出電流密度を
記載したものである。表1より、予備析出させたものは
いずれの電解質においても高電流密度で析出が可能にな
ってることが明らかである。
Example 2 An electrolyte was prepared using various solvents in addition to propylene carbonate used for the electrolyte in Example 1, and the same test as in Example 1 was performed to measure the potential of the working electrode. Table 1 shows the deposition current density at -50 mV vs. Li / Li + for each electrolyte. From Table 1, it is clear that the pre-precipitated one can be deposited at a high current density in any of the electrolytes.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例3 実施例1で使用したガラスセルを用いて、種々の一定電
流密度で作用極(100mAh/cm2 のリチウム量)に対しリ
チウムの析出(充電に相当),溶解(放電に相当)のサ
イクルを繰り返し行った。各サイクルでの充放電容量は
5mAh/cm2 である。ここで本発明の実施例として、各サ
イクルでの析出を行うとき、充電時の作用極の電位を-3
0 mV vs. Li/Li+ に保ち単位面積当たり200 原子層分の
リチウムの析出を上記定電流密度での析出に先だって行
った。また、予備的な定電位での析出を行わない以外は
同様に充放電サイクルを行ったものを比較例とした。
Example 3 Using the glass cell used in Example 1, depositing (corresponding to charging) and dissolving (discharging) lithium on the working electrode (100 mAh / cm 2 of lithium) at various constant current densities. Cycle) was repeated. The charge / discharge capacity in each cycle is 5 mAh / cm 2 . Here, as an embodiment of the present invention, when performing deposition in each cycle, the potential of the working electrode at the time of charging was set to -3.
Lithium was deposited for 200 atomic layers per unit area while maintaining 0 mV vs. Li / Li + prior to the deposition at the above constant current density. In addition, a comparative example in which the charge and discharge cycle was performed in the same manner except that the deposition at the preliminary constant potential was not performed was performed.

【0020】図2は各電流密度での充放電サイクル寿命
をプロットしたものである。ここでサイクル寿命は、放
電後の作用極の電位が 1000 mV vs. Li/Li+ を超えた時
点のサイクル数を終点とした。これより明らかなよう
に、予備的な析出を行った電極では電流密度を増加させ
てもサイクル寿命に優れることがわかる。これは、図1
に見るように高電流密度で充電しても作用極の電位は-5
0 mV vs. Li/Li+ より卑になることがなく、デンドライ
トの形成が抑制された均一で密な析出が可能なためであ
る。
FIG. 2 is a plot of charge / discharge cycle life at each current density. Here, the cycle life was defined as the end point of the number of cycles when the potential of the working electrode after discharge exceeded 1000 mV vs. Li / Li + . As is clear from this, it can be seen that the electrode subjected to the preliminary deposition has an excellent cycle life even when the current density is increased. This is shown in FIG.
As can be seen, the potential of the working electrode is -5 even when charged at a high current density.
0 mV vs. Li / Li + , which makes it possible to form a uniform and dense precipitate with suppressed formation of dendrite.

【0021】実施例4 実施例1と同様のガラスセルを組み立て、作用極に対す
る予備析出での電位と単位面積当たりの析出量を変化さ
せた後、一定電流密度での充放電サイクルを行った。作
用極における初期リチウム量は100 mAh/cm2 ,予備析出
後の電流密度は0.4 mA/cm2 ,各サイクルでの充放電容
量は5mAh/cm2 である。
Example 4 A glass cell similar to that of Example 1 was assembled, and after changing the potential in the preliminary deposition on the working electrode and the amount of deposition per unit area, a charge / discharge cycle was performed at a constant current density. The initial lithium amount at the working electrode is 100 mAh / cm 2 , the current density after pre-deposition is 0.4 mA / cm 2 , and the charge / discharge capacity in each cycle is 5 mAh / cm 2 .

【0022】表2は、種々の予備析出条件を用いて、実
施例3と同様にして求めた充放電サイクル寿命をまとめ
たものである。
Table 2 summarizes the charge / discharge cycle life obtained in the same manner as in Example 3 using various pre-deposition conditions.

【0023】[0023]

【表2】 [Table 2]

【0024】表2より作用極への予備析出の電位が-35
mV vs. Li/Li+ より貴の電位であり、その析出量が単位
面積当たり100 原子層以上であれば充放電サイクル寿命
は良好であることがわかる。特に-25 mV vs. Li/Li+
上の貴の電位で予備析出を行うと、サイクル寿命は顕著
に伸び、-5 mV vs. Li/Li+ という極端な低過電圧での
予備析出の結果と同程度であることが理解できる。
According to Table 2, the potential of preliminary deposition on the working electrode was -35.
It can be seen that the charge / discharge cycle life is good if the potential is more noble than mV vs. Li / Li + and the deposition amount is 100 atomic layers or more per unit area. In particular, when pre-deposition is performed at a noble potential of -25 mV vs. Li / Li + or more, the cycle life is significantly increased, and the results of pre-deposition at an extremely low overvoltage of -5 mV vs. Li / Li + It can be understood that they are comparable.

【0025】[0025]

【発明の効果】以上のように、本発明の充電方法をリチ
ウム二次電池に適用すれば、高電流密度で充電しても負
極の電位を-50 mV vs. Li/Li+ より貴の電位に保つこと
ができ、そのためデンドライトが形成しにくく充放電効
率の高い二次電池を得ることができる。さらに負極単位
面積当たりのリチウム析出量を増加させることができる
ので極板面積が小さくても、各充放電サイクルでエネル
ギー密度を大きく取り出せるリチウム二次電池が可能に
なる。
As described above, if the charging method of the present invention is applied to a lithium secondary battery, the potential of the negative electrode can be reduced to -50 mV vs. a potential nobler than Li / Li + even when charged at a high current density. , And a secondary battery with high charge / discharge efficiency with less formation of dendrite can be obtained. Further, since the amount of lithium deposited per unit area of the negative electrode can be increased, a lithium secondary battery capable of obtaining a large energy density in each charge / discharge cycle even if the electrode plate area is small can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例及び比較例の充電方法を用い
た場合の各電流密度に対する作用極(負極)の電位をプ
ロットした図。
FIG. 1 is a diagram plotting the potential of a working electrode (negative electrode) with respect to each current density when the charging method according to one example of the present invention and the charging method according to the comparative example are used.

【図2】本発明の一実施例及び比較例の充電方法を用い
た場合の各電流密度に対する作用極(負極)のサイクル
寿命をプロットした図。
FIG. 2 is a diagram plotting the cycle life of a working electrode (negative electrode) with respect to each current density when the charging method according to one embodiment of the present invention and the comparative example are used.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/44 H01M 10/40 H02J 7/00 - 7/12 Continuation of front page (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/44 H01M 10/40 H02J 7/ 00-7/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と、非水電解質と、リチウム金属を
負極とする電池において、充電開始時に前記負極の電位
を-35 mV vs. Li/Li+ より貴の電位に保った状態で少な
くとも前記負極単位面積当たり100 原子層分量のリチウ
ムを前記負極上に析出させることを特徴とするリチウム
二次電池の充電方法。
1. A battery using a positive electrode, a non-aqueous electrolyte, and a lithium metal as a negative electrode, wherein at the start of charging, the negative electrode is kept at a potential no less than −35 mV vs. Li / Li +. A method for charging a lithium secondary battery, comprising depositing 100 atomic layers of lithium per unit area of the negative electrode on the negative electrode.
【請求項2】 充電開始時に保つ負極の電位が-20 mV v
s. Li/Li+ より貴の電位である請求項1記載のリチウム
二次電池の充電方法。
2. The potential of the negative electrode maintained at the start of charging is -20 mV v
2. The method for charging a lithium secondary battery according to claim 1, wherein the potential is higher than s. Li / Li + .
JP22420392A 1992-08-24 1992-08-24 How to charge a lithium secondary battery Expired - Fee Related JP3216835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22420392A JP3216835B2 (en) 1992-08-24 1992-08-24 How to charge a lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22420392A JP3216835B2 (en) 1992-08-24 1992-08-24 How to charge a lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0668909A JPH0668909A (en) 1994-03-11
JP3216835B2 true JP3216835B2 (en) 2001-10-09

Family

ID=16810144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22420392A Expired - Fee Related JP3216835B2 (en) 1992-08-24 1992-08-24 How to charge a lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3216835B2 (en)

Also Published As

Publication number Publication date
JPH0668909A (en) 1994-03-11

Similar Documents

Publication Publication Date Title
Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries
Jow et al. The role of conductive polymers in alkali‐metal secondary electrodes
CN1107354C (en) Electrode material for electrochemical lithium intercalation
JP2014524120A (en) Composite protective layer for lithium metal anode and method of manufacturing the same
JPS618850A (en) Dense anode of lithium alloy for full solid battery
KR102324692B1 (en) Negative electrode for lithium secondary battery, method of preparing the saem, and lithium secondary battery using the same
US5558953A (en) Electrocrystallized lithuim metal, method for producing the same, and lithium secondary battery
US20090148769A1 (en) Dendrite-free lithium electrode and method of making the same
KR100416094B1 (en) Anode thin film for Lithium secondary battery and preparation method thereof
Scrosati Non aqueous lithium cells
EP0281352B1 (en) Lithium-lithium nitride anode
Geronov et al. The secondary lithium—aluminium electrode at room temperature: I. Cycling in LiClO4—propylene carbonate solutions
JP3216835B2 (en) How to charge a lithium secondary battery
JP3223599B2 (en) How to charge a lithium secondary battery
JPH0636370B2 (en) Electrolyte for lithium secondary battery
JP3202880B2 (en) Crystalline lithium metal, method for producing the same, and lithium secondary battery
JPH06349524A (en) Secondary battery
JP3544259B2 (en) Negative electrode for lithium secondary battery
JPH087923A (en) Electrolyte for lithium secondary cell
JPH07282846A (en) Nonaqueous electrolytic battery
JP2002373646A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
CN115986230B (en) Sustained-release self-repairing lithium negative electrode protective film and preparation method and application thereof
JP3795614B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JP4023724B2 (en) Non-aqueous electrolyte lithium secondary battery and manufacturing method thereof
JPH06140078A (en) Charging of lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees