[go: up one dir, main page]

JP3212126U - Safety helmet omnidirectional impact prevention structure - Google Patents

Safety helmet omnidirectional impact prevention structure Download PDF

Info

Publication number
JP3212126U
JP3212126U JP2017002646U JP2017002646U JP3212126U JP 3212126 U JP3212126 U JP 3212126U JP 2017002646 U JP2017002646 U JP 2017002646U JP 2017002646 U JP2017002646 U JP 2017002646U JP 3212126 U JP3212126 U JP 3212126U
Authority
JP
Japan
Prior art keywords
elastic
section
area
case body
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017002646U
Other languages
Japanese (ja)
Inventor
昌憲 何
昌憲 何
Original Assignee
瑞太科技股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞太科技股▲ふん▼有限公司 filed Critical 瑞太科技股▲ふん▼有限公司
Application granted granted Critical
Publication of JP3212126U publication Critical patent/JP3212126U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets
    • A42B3/062Impact-absorbing shells, e.g. of crash helmets with reinforcing means
    • A42B3/063Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets
    • A42B3/062Impact-absorbing shells, e.g. of crash helmets with reinforcing means
    • A42B3/063Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures
    • A42B3/064Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures with relative movement between layers
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets
    • A42B3/066Impact-absorbing shells, e.g. of crash helmets specially adapted for cycling helmets, e.g. for soft shelled helmets
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/10Linings
    • A42B3/12Cushioning devices
    • A42B3/124Cushioning devices with at least one corrugated or ribbed layer
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/10Linings
    • A42B3/12Cushioning devices
    • A42B3/125Cushioning devices with a padded structure, e.g. foam
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/10Linings
    • A42B3/14Suspension devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/08Body-protectors for players or sportsmen, i.e. body-protecting accessories affording protection of body parts against blows or collisions
    • A63B71/10Body-protectors for players or sportsmen, i.e. body-protecting accessories affording protection of body parts against blows or collisions for the head

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Helmets And Other Head Coverings (AREA)

Abstract

【課題】安全ヘルメットの全方向衝撃防止構造を提供する。【解決手段】安全ヘルメットの全方向衝撃防止構造はケース体、ケース体内に包まれる充填体と弾性キャリア40の組合せで、弾性キャリア40は骨組構造を形成する壁49と壁49が区画する幾何形輪郭の複数の井桁状構造区45を有する。井桁状構造区45の周辺区域(或いは井桁状構造区45に向かう中心方向)は突出した翼部46を形成する。井桁状構造区45は第一区41、第二区42、第一区41と第二区42との間に連接するサブエリア43を区画する。これにより充填体はケース体、弾性キャリア40に連結し全体形態を形成する。全体構造強度を高める条件下で、弾性キャリア40に対応し、頭形輪郭の違いに応じて異なる程度の可撓性変形作用を生じ、頭部を全面的にカバーし、緩衝吸收しながら外部衝撃力を伝達し、着用の快適性と密着度を高める等の作用を達成する。【選択図】図3An omnidirectional impact prevention structure for a safety helmet is provided. An omnidirectional impact prevention structure of a safety helmet is a combination of a case body, a filling body enclosed in the case body, and an elastic carrier 40. The elastic carrier 40 has a geometric shape in which a wall 49 and a wall 49 form a frame structure. A plurality of cross-girder-like structural sections 45 having a contour are provided. A peripheral area of the cross-girder-like structural area 45 (or a central direction toward the cross-girder-like structural area 45) forms a protruding wing 46. The well-like structure section 45 defines a first section 41, a second section 42, and a sub-area 43 connected between the first section 41 and the second section 42. As a result, the filling body is connected to the case body and the elastic carrier 40 to form the whole form. Corresponding to the elastic carrier 40 under the condition of increasing the overall structural strength, it produces a different degree of flexible deformation action according to the difference in head profile, covers the entire head, and absorbs external shock while absorbing It achieves actions such as transmitting force and increasing comfort and closeness of wear. [Selection] Figure 3

Description

本考案は安全ヘルメットの全方向衝撃防止構造に関し、特に(緩衝フォーム)充填体を応用しケース体と弾性キャリアを結合した組合せ設計で、弾性キャリアは骨組構造を形成する壁と複数の幾何形輪郭を有する井桁状構造区を対応させ、全体構造を複合成形する技術に関する。   The present invention relates to an omnidirectional impact-preventing structure for a safety helmet, in particular, a combination design in which a case body and an elastic carrier are combined by applying a (buffer foam) filling body. The present invention relates to a technique for forming a composite structure of the entire structure by matching the cross-girder-like structure section having the structure.

プラスチックケース体に発泡材料を組み合わせて加熱し形成する耐衝撃充填体、及びプラスチックケース体により発泡充填体を緊密に覆って粘着させ形成するヘルメット構造は、従来の技術である。
例えば、特許文献1「Safety Helmet with A Shell Injected from Thermoplastics And Method for The Manufacture of Said Helmet」、特許文献2「ヘルメット製造方法」等は、典型的な実施形態を提供する。
The impact resistance filling body formed by combining a foam material with a plastic case body and heated, and the helmet structure in which the foam filling body is tightly covered and adhered by the plastic case body are conventional techniques.
For example, Patent Document 1 “Safety Helmet with A Shell Injected Thermoplastics And Method for The Manufacture of Said Helmet”, Patent Document 2 “Helmet Manufacturing Method”, etc.

このタイプの安全ヘルメットの構造形態は、外部のプラスチック殼により、外物の突穿式衝撃に抵抗しながら、同時に発泡填充物により外力の衝撃を受けた時に、衝撃力の緩衝、分散伝達作用を提供し、使用者頭部保護の効果を達成する。   The structure of this type of safety helmet is to resist shock and impact of external objects with an external plastic bag, and at the same time, when shocked by external force is applied to the foam filling, it provides shock buffering and distributed transmission. Provide and achieve user head protection effect.

従来のヘルメット最内層の位置には通常は、薄層ライナーを設置し、ヘルメットと着用者頭部との間のクッション層とする。
薄層ライナーの多くは布製品である。
このタイプの薄層ライナーの構造特性と応用面における課題は、安全ヘルメット内部に別に薄層ライナーを設置することで、組み立てプロセスの面倒を拡大するだけではない。
他の材料特性と薄層構造は、使用者着用の快適性を高めることができず、或いは長時間着用の蒸し暑さを低下させることもできない。
Conventionally, a thin layer liner is usually installed at the position of the innermost layer of the conventional helmet to form a cushion layer between the helmet and the wearer's head.
Many of the thin layer liners are fabric products.
The structural characteristics and application issues of this type of thin-layer liner are not only to expand the trouble of the assembly process by installing a separate thin-layer liner inside the safety helmet.
Other material properties and thin-layer structures cannot increase the comfort of user wear or reduce the sultry heat of prolonged wear.

さらに、該項技術の習熟者なら知っているように、薄層ライナーの構造形態と特性の制限により、安全ヘルメット内部と着用者頭部とのカバー性と密着度を出来るだけ拡大しようとすれば、実務上は、着用者頭部のサイズに基づき、異なる規格のヘルメット製品を提供するしかなく、製造コストを明らかに拡大してしまう。   Furthermore, as those skilled in the art know, if the structure and characteristics of the thin liner are limited, the coverability and adhesion between the safety helmet and the wearer's head should be increased as much as possible. In practice, based on the size of the wearer's head, there is no choice but to provide helmet products of different standards, which clearly increases the manufacturing costs.

このタイプの安全ヘルメット組合せ薄層ライナーの構造形態と応用面におけるもう一つの課題は、従来の技術は、異なるサイズのヘルメット製品を提供することができたとしても、ヘルメット、薄層ライナーにより、様々な着用者の頭全体の輪郭或いは頭部の曲面を、確実に全面的にカバーして密着させることはできない。   Another problem in the structural form and application of this type of safety helmet combination thin layer liner is that even though the conventional technology can provide helmet products of different sizes, it varies depending on the helmet and thin layer liner. The entire contour of the wearer's head or the curved surface of the head cannot be reliably covered and adhered.

すなわち、従来の安全ヘルメットは、異なるサイズ或いは規格を提供することはできるが、着用者頭部の三次元方向上の頭全体の輪郭或いは頭部の曲面に完全に符合させることはできず、これにより着用者頭部に対するカバー性と密着度を低下させることとなっている。
これは、着用者頭部が外部力量の衝撃を受けた時の、ヘルメットの頭部に対する保護性と安全性に悪影響を及ぼす。
That is, conventional safety helmets can provide different sizes or standards, but cannot perfectly match the contours of the entire head in the three-dimensional direction of the wearer's head or the curved surface of the head. As a result, the coverability and the degree of adhesion to the wearer's head are reduced.
This adversely affects the protection and safety of the helmet head when the wearer's head is impacted by external force.

上記した特許文献に開示する従来の安全ヘルメットの、構造と製造面の設計技術において、外部ケース体或いはプラスチック殼と内部構造体、薄層ライナーの組合せ構造には、実際の使用において問題が存在する。
ケース体或いはプラスチック殼と発泡材料層、薄層ライナーの内部組合せ構造を新たに設計し、その構造設計が、製造が単純であるという条件に符合しながら、従来のものとは異なり、理想的な防護及び着用の快適性を提供でき、外部衝撃力の伝達分散形態を変えられるなら、従来の技術の欠点を改善することができる。
In the design technique of the structure and manufacturing surface of the conventional safety helmet disclosed in the above-mentioned patent document, there is a problem in actual use in the combination structure of the outer case body or the plastic bag and the inner structure body and the thin layer liner. .
Newly designed internal combination structure of case body or plastic bag, foam material layer and thin layer liner, and the structure design meets the condition that manufacture is simple, but unlike the conventional one, it is ideal If it is possible to provide protection and comfort for wearing and change the transmission distribution form of external impact force, the drawbacks of the prior art can be improved.

米国特許第4466138号明細書U.S. Pat. No. 4,466,138 台湾特許第85101810号明細書Taiwan Patent No. 85101810 specification

本考案者は、従来の構造において、薄層ライナーを別に組み立てなければならないプロセスの面倒さと、着用の快適性を効果的に高めることができない状況を考慮する必要に気づいた。
また、安全ヘルメットの組織構造を、三次元方向において着用者の頭部の輪郭或いは頭部の曲面、サイズに弾力的に符合させ、安全ヘルメットの頭部に対する全面カバー性と密着度を高めることで、外部の各類型(正方向或いは横方向)の衝撃力を、内部構造体によりヘルメット全体の各区域に分散して伝達し、しかも製造が簡易で、ヘルメットをコンパクト化するという設計トレンドに符合した構造形態とする必要にも考慮が必要である。
だが、これら課題は、上述の特許文献中では、未教示或いは具体的に開示されていない。
The inventor has realized that in the conventional structure, it is necessary to consider the troublesomeness of the process in which the thin-layer liner has to be assembled separately and the situation where the comfort of wearing cannot be effectively increased.
In addition, the structure of the safety helmet is elastically matched to the contour of the wearer's head or the curved surface and size of the head in the three-dimensional direction, thereby improving the overall coverage and adhesion to the head of the safety helmet. The impact force of each external type (positive direction or lateral direction) is distributed and transmitted to each area of the entire helmet by the internal structure, and it is easy to manufacture and matches the design trend of making the helmet compact. It is necessary to consider the necessity of the structural form.
However, these problems are not taught or specifically disclosed in the above-mentioned patent documents.

本考案は、ケース体、ケース体内に包まれる充填体と弾性キャリアの組合せで、弾性キャリアは骨組構造を形成する壁と壁が区画する幾何形輪郭の複数の井桁状構造区を有し、井桁状構造区の周辺区域(或いは井桁状構造区に向かう中心方向)には突出した翼部を形成し、これにより井桁状構造区は、第一区、第二区と第一区、第二区との間に連接するサブエリアを区画し、これにより充填体はケース体、弾性キャリアに連結し、全体形態を形成し、第一区(或いは壁)は、充填体(内部)の方向へと延伸する構造を形成し、全体構造強度を高める条件下で、弾性キャリアに対応し頭形輪郭の違いに応じて異なる程度の可撓性変形作用を生じ、頭部を全面的にカバーし、緩衝吸収しながら外部衝撃力を伝達し、着用の快適性と密着度を高める等の作用を達成する安全ヘルメットの全方向衝撃防止構造に関する。   The present invention is a combination of a case body, a packing body wrapped in the case body, and an elastic carrier, and the elastic carrier has a wall forming a frame structure and a plurality of grid-shaped structure sections having a geometric outline defined by the walls. The projecting wings are formed in the peripheral area of the ridge-like structure area (or in the central direction toward the cross-girder-like structure area). The sub-areas connected to each other are partitioned, whereby the filling body is connected to the case body and the elastic carrier to form an overall form, and the first section (or wall) is directed toward the filling body (inside). Under the conditions to form a stretched structure and increase the overall structural strength, it responds to the elastic carrier, causing a different degree of flexible deformation action according to the difference in head profile, covering the entire head, buffering Transmits external impact force while absorbing, increasing wearing comfort and adhesion About omnidirectional shock prevention structure of the safety helmet of the operation and effect.

本考案による安全ヘルメットの全方向衝撃防止構造は、充填体を有する。
前記充填体の材料の一部は、弾性キャリアの第一区及び/或いはサブエリア内に少なくとも進入し、充填体と弾性キャリアは結合或いはボンディング(前記ボンディングは、充填体の材料が第一区、サブエリア或いは翼部、壁の構造形態を通過、或いは充填連結することを言う)し全体構造を形成し、こうして薄層ライナーを別に組み立てなければならない従来の技術の面倒なプロセスを改善できる。
しかも、弾性キャリアと充填体の相互支持のメカニズム或いは作用を確立する。
ケース体と充填体が外部衝撃力を受け、緩衝吸収作用を生じると、前記弾性キャリアは、前記衝撃力を分散伝達する作用を生じる。
The omnidirectional impact prevention structure of the safety helmet according to the present invention has a filler.
A part of the material of the filler enters at least the first section and / or sub-area of the elastic carrier, and the filler and the elastic carrier are bonded or bonded (the bonding is performed when the filler material is the first section, This means that the sub-area or wing part and the wall structure form are passed or connected to form a whole structure, thus improving the troublesome process of the prior art in which the thin liner has to be assembled separately.
Moreover, the mechanism or action of mutual support between the elastic carrier and the filler is established.
When the case body and the filling body receive an external impact force and produce a buffer absorption action, the elastic carrier acts to disperse and transmit the impact force.

実質的に、前記第一区及び/或いはサブエリアが充填体に結合する構造形態により、第二区の下壁は弾性セクションに類似した構造を形成し、異なる頭部サイズ、三次元方向の頭形輪郭或いは頭部の曲面に基づき、異なる程度の可撓性変形作用をそれぞれ生じる。
こうして、着用者の頭部に弾性接触し、着用者頭部の快適性、全面カバー性と密着度を高め、従来のヘルメット及び/或いは薄層ライナーの構造欠点を改善できる。
Substantially, the lower wall of the second section forms a structure similar to the elastic section due to the structural form in which the first section and / or sub-area is connected to the filler, and the head in different head sizes and three-dimensional directions is formed. Based on the contour of the shape or the curved surface of the head, different degrees of flexible deformation occur.
In this way, the wearer's head can be elastically contacted, the wearer's head can be comfortably covered, and the entire surface coverage and adhesion can be improved, and the structural defects of the conventional helmet and / or thin layer liner can be improved.

特に、第二区の下壁は、異なる程度の可撓性変形作用を生じ、着用者の頭部に全面的に弾性接触する時、井桁状構造区(或いは第二区)と着用者頭部との間に形成される気室構造は、可撓性吸盤に類似の作用を形成する。
前記弾性キャリアは、着用者の異なる頭形輪郭或いは頭部の曲面に基づき、着用者の頭部に全面的に容易に密着するだけでなく、前記気室は外部衝撃力に反応し、外部衝撃力を緩衝吸収する作用を生じる。
In particular, the lower wall of the second section causes different degrees of flexible deformation, and when it is in full elastic contact with the wearer's head, the cross-shaped structure section (or the second section) and the wearer's head The air chamber structure formed between the two forms a function similar to that of a flexible suction cup.
The elastic carrier is based not only on the wearer's different head shape or curved surface of the head, but also easily adheres entirely to the wearer's head, and the air chamber reacts to external impact force, It acts to buffer and absorb force.

本考案による安全ヘルメットの全方向衝撃防止構造において、前記ケース体の内面と充填体との間には、有少なくとも1個の弾性構造体及び/或いはサブケースを設置する。
前記弾性構造体の上部区域及び/或いは下部区域には、複数の組合せ部を設置する。
メインケース体及び/或いはサブケースには、枢接部を形成し、上述の組合せ部に対応して組合される。
これにより、前記充填体は弾性構造体、メインケース体及び/或いはサブケースに連結し、全体形態を形成する。
全体構造の強度を高める条件下で、多層構造と全方向緩衝、吸收、外部衝撃力(或いは衝撃の正方向力、回転トルク)伝達の作用を実現する。
In the omnidirectional impact prevention structure of the safety helmet according to the present invention, at least one elastic structure and / or subcase is provided between the inner surface of the case body and the filler.
A plurality of combination parts are installed in the upper area and / or the lower area of the elastic structure.
The main case body and / or the sub case is formed with a pivotal portion and is combined corresponding to the combination portion described above.
Accordingly, the filler is connected to the elastic structure, the main case body, and / or the sub case to form an entire form.
Under the condition of increasing the strength of the entire structure, the multi-layer structure, omnidirectional buffering, absorption, external impact force (or impact positive direction force, rotational torque) transmission are realized.

本考案による安全ヘルメットの全方向衝撃防止構造において、前記弾性キャリアの井桁状構造区は、充填体(或いはケース体)の方向へと延伸し、弾性柱を形成する。
前記弾性柱は、連接端、充填体の方向へと延伸する自由端を有する。
前記連接端と井桁状構造区の上壁との間には、連接面を形成し、前記自由端は、接触面を有する。
前記弾性柱の断面の幅は、壁或いは上壁の厚み(或いは断面の幅)より大きく、これにより弾性柱がより大きな外部衝撃力に反応すると、前記連接面上には断裂点が形成される。
In the omnidirectional impact prevention structure of the safety helmet according to the present invention, the cross-shaped structure section of the elastic carrier extends in the direction of the filling body (or case body) to form an elastic column.
The elastic column has a connecting end and a free end extending in the direction of the filler.
A connecting surface is formed between the connecting end and the upper wall of the cross-shaped structure section, and the free end has a contact surface.
The width of the cross section of the elastic column is larger than the thickness of the wall or the upper wall (or the width of the cross section), and when the elastic column reacts to a larger external impact force, a breaking point is formed on the connecting surface. .

本考案による安全ヘルメットの全方向衝撃防止構造は、頭部を全面的にカバーし、緩衝吸収しながら外部衝撃力を伝達し、着用の快適性と密着度を高める等の作用を達成することができる。   The omnidirectional impact prevention structure of the safety helmet according to the present invention covers the entire head and transmits external impact force while absorbing the buffer, thereby achieving the effects of improving the comfort and closeness of wearing. it can.

メインケース体、弾性構造体、サブケース、充填体と弾性キャリアの構造対応状況を示す本考案の立体構造断面模式図である。FIG. 3 is a schematic cross-sectional view of a three-dimensional structure of the present invention showing a structural correspondence between a main case body, an elastic structure, a sub case, a filler, and an elastic carrier. 弾性キャリアの井桁状構造区と翼部の構造状況を示す本考案の弾性キャリアの立体構造模式図である。It is a three-dimensional structural schematic diagram of the elastic carrier of the present invention showing the structure of the cross-shaped structure section and the wing part of the elastic carrier. 第一区、サブエリア、第二区と翼部の構造状況を示す本考案の弾性キャリアの局部立体構造断面模式図である。It is a local three-dimensional structure cross-sectional schematic diagram of the elastic carrier of this invention which shows the 1st section, a subarea, the 2nd section, and the structural condition of a wing | blade part. メインケース体、弾性構造体、サブケース、充填体と弾性キャリアの構造対応状況を示す本考案の平面構造断面模式図である。It is a plane structure section schematic diagram of the present invention which shows the structure correspondence situation of a main case body, an elastic structure, a subcase, a filler, and an elastic carrier. 図4の部分構造拡大模式図である。It is a partial structure expansion schematic diagram of FIG. 外部衝撃力(或いは正方向力)がアセンブリに衝撃を与える状況を示す本考案の一操作実施形態模式図である。FIG. 6 is a schematic diagram of an operation embodiment of the present invention showing a situation where an external impact force (or positive direction force) gives an impact to the assembly. 図6の部分構造拡大模式図である。It is a partial structure expansion schematic diagram of FIG. 斜角方向の外部衝撃力(或いはせん断力)がアセンブリに衝撃を与える状況を示す本考案のもう一つの操作実施形態模式図である。It is another operation embodiment schematic diagram of the present invention showing a situation where an external impact force (or shear force) in the oblique direction gives an impact to the assembly. 図7の部分構造拡大模式図である。It is a partial structure expansion schematic diagram of FIG. 弾性キャリアに弾性柱を設置する構造状況を示す本考案による弾性キャリアの一修正実施形態の立体構造模式図である。It is a three-dimensional structural schematic diagram of one modified embodiment of an elastic carrier according to the present invention showing a structural situation in which an elastic column is installed on the elastic carrier. 図8の平面構造模式図である。It is a planar structure schematic diagram of FIG. メインケース体、弾性構造体、サブケース、充填体と弾性キャリアの構造対応状況を示す本考案修正実施形態の平面構造断面模式図である。It is a plane structure section schematic diagram of this invention modification embodiment which shows the structure correspondence situation of a main case body, an elastic structure, a subcase, a filler, and an elastic carrier. 図10の部分構造拡大模式図である。It is a partial structure expansion schematic diagram of FIG. 外部衝撃力(或いは正方向力)がアセンブリに衝撃を与える状況を示す本考案の一操作実施形態模式図である。FIG. 6 is a schematic diagram of an operation embodiment of the present invention showing a situation where an external impact force (or positive direction force) gives an impact to the assembly. 図12の部分構造拡大模式図である。It is a partial structure expansion schematic diagram of FIG. 斜角方向の外部衝撃力(或いはせん断力)がアセンブリに衝撃を与える状況を示す本考案のもう一つの操作実施形態模式図である。It is another operation embodiment schematic diagram of the present invention showing a situation where an external impact force (or shear force) in the oblique direction gives an impact to the assembly. 図13の部分構造拡大模式図である。It is a partial structure expansion schematic diagram of FIG. 斜角方向の較大外部衝撃力(或いはせん断力)がアセンブリに衝撃を与える状況を示す本考案のもう一つの操作実施形態模式図である。It is another operation embodiment schematic diagram of the present invention showing a situation where a large external impact force (or shear force) in an oblique direction gives an impact to the assembly. 図14の部分構造拡大模式図である。It is a partial structure expansion schematic diagram of FIG.

[実施例1]
図1、図2、図3に示す通り、本考案の安全ヘルメットの全方向衝撃防止構造は、スポーツ用に供する安全ヘルメットの実施形態を用いて説明する。
安全ヘルメットは、アメリカンフットボール、ホッケー用ヘルメット、工事用ヘルメット、登山用ヘルメット、乗馬用ヘルメット、或いはサイクリング、オートバイ、スキー、カーレース等に着用するハーフフェース式或いはフルフェース式ヘルメット形態で、ケース体10、ケース体10内に包まれる充填体30と弾性キャリア40の組合せ構造を有し、アセンブリ100を構成する。
[Example 1]
As shown in FIGS. 1, 2, and 3, the omnidirectional impact prevention structure of the safety helmet of the present invention will be described using an embodiment of a safety helmet for sports.
The safety helmet is an American football, hockey helmet, construction helmet, mountaineering helmet, riding helmet, or half-face or full-face helmet for cycling, motorcycle, skiing, car racing, etc. The assembly 100 is configured by having a combined structure of the filler 30 and the elastic carrier 40 wrapped in the case body 10.

以下の説明でいう上部、上方、下部、下方或いは底部は、図中に表示する方向を参考方向とする。
また、着用者方向に向かう部材を内面或いは内辺と定義し、着用者に反対の方向、或いは離れる部材を外面或いは外辺と定義する。
In the following description, the upper, upper, lower, lower, or bottom portions have reference directions as the directions displayed in the drawings.
Moreover, the member which goes to a wearer direction is defined as an inner surface or an inner side, and the direction opposite to a wearer or the member which leaves | separates is defined as an outer surface or an outer side.

実施形態中では、ケース体10は、プラスチック材料により製造し、着用者方向に向かう内面11と着用者に反対方向の外面12を有する。
ケース体の内面11は、充填体30に接触或いは連接する。
ケース体の外面12には、保護層60を配置する。
保護層60は、グラスファイバー、カーボンファイバー材料或いはその類似材料を用いて製造し、ケース体10の構造強度を強化する。
In the embodiment, the case body 10 is made of a plastic material and has an inner surface 11 facing the wearer and an outer surface 12 opposite to the wearer.
The inner surface 11 of the case body is in contact with or connected to the filling body 30.
A protective layer 60 is disposed on the outer surface 12 of the case body.
The protective layer 60 is manufactured using glass fiber, carbon fiber material, or a similar material, and reinforces the structural strength of the case body 10.

図に示す通り、弾性キャリア40は、安全ヘルメット或いはアセンブリ100の最内層箇所(すなわち、ケース体10から離れる区域)に位置し、充填体30の下部区域31に結合する。
弾性キャリア40は、可撓性或いは弾性材料(例えば、ゴム或いはその類似物)を選択し、ハニカム構造に類似の形態を形成する。
下部区域31は、ケース体の内面11から離れた箇所に位置する。
As shown, the elastic carrier 40 is located at the innermost layer location of the safety helmet or assembly 100 (ie, the area away from the case body 10) and is coupled to the lower area 31 of the filler 30.
The elastic carrier 40 selects a flexible or elastic material (for example, rubber or the like) and forms a shape similar to a honeycomb structure.
The lower area 31 is located at a location away from the inner surface 11 of the case body.

図に示す通り、弾性キャリア40は、骨組構造を形成する壁49と壁49が区画する(断面)が幾何形輪郭(例えば、六角形輪郭のハニカム構造)を呈する複数の井桁状構造区45を有する。
壁49は、両辺或いは周辺区域(或いは井桁状構造区45の周辺区域)に向かい、突出した翼部46を形成する。
これにより、井桁状構造区45は、第一区41、第二区42と第一区41、第二区42との間に連接するサブエリア43を区画する。
しかも、これにより第一区41或いは第二区42の断面は、サブエリア43の断面より大きく、壁49と壁49両辺に位置する翼部46(或いは骨組構造)は、「+++」型の断面構造を共同で形成する。
こうして、弾性キャリア40は、着用者頭部Hと全面的に接触し、或いは包み込む(図3或いは図4参照)。
As shown in the figure, the elastic carrier 40 includes a wall 49 forming a framework structure and a plurality of cross-girder-like structure sections 45 in which the walls 49 define a cross section (a honeycomb structure having a hexagonal outline, for example). Have.
The wall 49 faces both sides or the peripheral area (or the peripheral area of the cross-girder-like structure area 45) and forms a protruding wing 46.
Thereby, the cross-girder-like structure section 45 divides the sub-area 43 connected between the first section 41 and the second section 42 and the first section 41 and the second section 42.
Moreover, the cross section of the first section 41 or the second section 42 is larger than the cross section of the sub-area 43, and the wing 46 (or the frame structure) located on both sides of the wall 49 and the wall 49 has a “++++” cross section. Form the structure jointly.
Thus, the elastic carrier 40 makes full contact with or wraps around the wearer's head H (see FIG. 3 or FIG. 4).

採用する実施形態中では、弾性キャリア40は、その底部区域に形成する枠体44を有する。
枠体44は、弾性キャリア40外側(或いはケース体10方向)へと延伸し、U型断面構造を形成し、ケース体10と発泡充填体30を包んで連接する。
In the embodiment employed, the elastic carrier 40 has a frame 44 that forms in its bottom area.
The frame body 44 extends to the outside of the elastic carrier 40 (or in the direction of the case body 10), forms a U-shaped cross-sectional structure, and encloses the case body 10 and the foam filler 30 so as to be connected.

第一区41と第二区42に対応する位置或いは区域の壁49は、上壁47、下壁48に定義される。
モールド或いは成形モジュールを対応させることで、充填体30はケース体10、弾性キャリア40を連結し、全体形態を形成し、安全ヘルメットアセンブリ100を構成する。
A wall 49 of a position or section corresponding to the first section 41 and the second section 42 is defined as an upper wall 47 and a lower wall 48.
The filling body 30 connects the case body 10 and the elastic carrier 40 by forming a mold or a molding module so as to form an overall form, thereby forming the safety helmet assembly 100.

詳細に言うと、充填体30の部分(緩衝フォーム)材料は、弾性キャリア40の第一区41及び/或いはサブエリア43内に少なくとも進入し、これにより充填体30と弾性キャリア40は結合或いはボンディング(ボンディングとは、充填体30の材料が第一区41、サブエリア43或いは翼部46、壁49の構造形態を通過、或いは充填連結することを言う)し全体構造を形成し、少なくとも第一区41(或いは上壁47)は、充填体30(内部)の方向へと延伸する構造を形成する。
こうして、薄層ライナーを別に組み立てなければならない従来の技術の面倒なプロセスを改善できる。
In detail, the material (buffer foam) material of the filler 30 at least enters the first section 41 and / or the sub-area 43 of the elastic carrier 40, whereby the filler 30 and the elastic carrier 40 are bonded or bonded. (Bonding means that the material of the filling body 30 passes through the structural form of the first section 41, the sub-area 43 or the wing portion 46, and the wall 49, or is filled and connected). The section 41 (or the upper wall 47) forms a structure that extends in the direction of the filler 30 (inside).
In this way, the cumbersome process of the prior art where a thin liner has to be assembled separately can be improved.

好ましくは、充填体30の材料の一部は、第一区41とサブエリア43区域全体にいっぱいに充填し、上壁47と翼部46に連結する形態である。
しかも、弾性キャリア40(組合せ充填体30)の構造形態と材料特性により、弾性キャリア40が外部衝撃力(例えば、正方向力或いはせん断力)を受けた時、弾性変形及び/或いは回転変形を生じ、外部衝撃力と速度を緩衝して吸収する。
Preferably, a part of the material of the filling body 30 fills the entire first section 41 and the sub area 43 and is connected to the upper wall 47 and the wing portion 46.
In addition, due to the structure and material characteristics of the elastic carrier 40 (combined filler 30), when the elastic carrier 40 receives an external impact force (for example, a positive force or shear force), elastic deformation and / or rotational deformation occurs. Absorb and absorb external impact force and speed.

充填体30の材料の一部が、第一区41及び/或いはサブエリア43内に進入する状況を示す図4、図5に示す通り、弾性キャリア40(すなわち、第一区41及び/或いはサブエリア43)内に位置する充填体30の密度は、弾性キャリア40外部区域に位置する充填体30の密度より小さい。
異なる発泡構造密度は、異なる作用力(或いは衝撃力)伝達、分散と緩衝吸収効果を構成する。
As shown in FIGS. 4 and 5 showing a state in which a part of the material of the filling body 30 enters the first section 41 and / or the sub-area 43, the elastic carrier 40 (that is, the first section 41 and / or the sub-area 43). The density of the filling body 30 located in the area 43) is smaller than the density of the filling body 30 located in the outer area of the elastic carrier 40.
Different foam structure densities constitute different acting force (or impact force) transmission, dispersion and buffer absorption effects.

充填体30を弾性キャリア40に結合する組織形態によっても、弾性キャリア40と充填体30は、相互支持のメカニズム或いは作用を構成する。
ケース体10と充填体30が外部衝撃力を受け、緩衝吸収作用を生じると、弾性キャリア40は、衝撃力を分散伝達する作用を生じる。
これにより、アセンブリ100は、全体構造強度を高める条件下で、全面的或いは多方向の緩衝、回転トルク吸収、外部衝撃力伝達等の作用を達成する。
The elastic carrier 40 and the filler 30 also constitute a mutual support mechanism or action depending on the tissue configuration in which the filler 30 is bonded to the elastic carrier 40.
When the case body 10 and the filling body 30 receive an external impact force and produce a buffer absorption action, the elastic carrier 40 produces an action of dispersing and transmitting the impact force.
As a result, the assembly 100 achieves functions such as full or multi-directional buffering, rotational torque absorption, external impact force transmission, and the like under conditions that increase the overall structural strength.

上述の第一区41及び/或いはサブエリア43が充填体30に結合する構造形態により、第二区42の下壁48は、弾性セクションに類似した構造を形成し、異なる頭部サイズ、三次元方向の頭形輪郭或いは頭部の曲面に基づき、異なる程度の可撓性変形作用をそれぞれ生じ(例えば、図5実線部分に示す状況)、着用者の頭部Hに弾性接触し、着用者頭部Hの快適性、全面カバー性と密着度(或いは密着面積)を高めることができる。
こうして、従来のヘルメット及び/或いは薄層ライナーの構造欠点を改善できる。
Due to the structure configuration in which the first section 41 and / or the sub-area 43 is coupled to the filler 30, the lower wall 48 of the second section 42 forms a structure similar to the elastic section, and has a different head size, three-dimensional. Based on the head profile of the direction or the curved surface of the head, different degrees of flexible deformation are produced (for example, the situation shown in the solid line portion in FIG. 5), elastically contacting the wearer's head H, and the wearer's head The comfort of the part H, the whole surface cover property, and the adhesion degree (or adhesion area) can be increased.
In this way, the structural defects of conventional helmets and / or thin layer liners can be improved.

特に、第二区42の下壁48は、異なる程度の可撓性変形作用を生じ、着用者の頭部Hに全面的に弾性接触する時、井桁状構造区45(或いは第二区42)と着用者頭部Hとの間に形成される気室構造は、可撓性吸盤に類似の作用を形成する。
弾性キャリア40は、着用者の異なる頭形輪郭或いは頭部の曲面に基づき、着用者の頭部Hに全面的に容易に密着するだけでなく、従来の技術より理想的な保護性と安全性を生じ、しかも気室は、外部衝撃力に反応し、外部衝撃力を緩衝吸収する作用を生じる。
In particular, the lower wall 48 of the second section 42 has different degrees of flexible deformation action, and when it is in full elastic contact with the wearer's head H, the cross-shaped structure section 45 (or the second section 42). The air chamber structure formed between the wearer's head H and the wearer's head H forms an action similar to that of a flexible suction cup.
The elastic carrier 40 not only easily adheres to the wearer's head H entirely on the basis of the wearer's different head profile or curved surface of the head, but also more ideal protection and safety than conventional techniques. In addition, the air chamber reacts to the external impact force and acts to buffer and absorb the external impact force.

図4、5に示す通り、修正実施形態では、ケース体10と充填体30との間には、弾性構造体20及び/或いはサブケース50を設置し、多層で浮動可能な組合せ構造を形成する。   As shown in FIGS. 4 and 5, in the modified embodiment, the elastic structure 20 and / or the subcase 50 is installed between the case body 10 and the filling body 30 to form a multilayered and floating combination structure. .

上記「浮動」とは、部材が外部作用力に反応すると、アセンブリ100内で、相対移動及び/或いは回転の状況を生じるということである。
例えば、弾性構造体20が外部作用力に反応すると、メインケース体10とサブケース50との間で、相対移動及び/或いは回転し、圧迫、弾性変形作用等運動を生じる。
“Floating” means that a relative movement and / or rotation situation occurs within the assembly 100 when the member reacts to an external force.
For example, when the elastic structure 20 reacts to an external action force, the main case body 10 and the sub case 50 are moved relative to each other and / or rotated to generate a motion such as compression and elastic deformation.

好ましくは、仮にケース体10、充填体30(及び/或いは弾性構造体20、サブケース50)には気孔構造(図示なし)或いは充填体30発泡材料との間の間隙を設置し、弾性キャリア40の井桁状構造区45に対応し、アセンブリ100の空気対流作用を増大させ、使用者が長時間の着用で蒸し暑さを感じる状況を低下させられる。   Preferably, the case body 10 and the filling body 30 (and / or the elastic structure 20 and the sub case 50) are provided with a gap between the pore structure (not shown) or the filling material 30 and the foamed material, and the elastic carrier 40. The air convection action of the assembly 100 is increased, and the situation in which the user feels sultry by wearing for a long time can be reduced.

採用する実施形態中では、弾性構造体20は、ポリスチレン(EPS)、酢酸ビニル共重合体(EVA)、ゴム或いはその類似物などの可撓性或いは弾性材料を選択し製造する。
よって、弾性構造体20の弾性率(或いは変形量)は、充填体30の弾性率(或いは変形量)より大きく、弾性構造体20の変形、緩衝吸震効果を拡大することができる。
In the embodiment to be employed, the elastic structure 20 selects and manufactures a flexible or elastic material such as polystyrene (EPS), vinyl acetate copolymer (EVA), rubber or the like.
Therefore, the elastic modulus (or deformation amount) of the elastic structure 20 is larger than the elastic modulus (or deformation amount) of the filler 30, and the deformation of the elastic structure 20 and the shock absorbing effect can be expanded.

図に示す通り、弾性構造体20は、上部区域21と下部区域22を定義、或いは有する。
弾性構造体20の上部区域21、下部区域22には、複数の組合せ部23をそれぞれ設置する。
弾性構造体20の組合せ部23には、凹槽24を形成し、組合せ部23を幾何形輪郭(例えば、六角形輪郭)に区画し、各組合せ部23は、ハニカム構造に隣接して形成される。
As shown, the elastic structure 20 defines or has an upper section 21 and a lower section 22.
A plurality of combination parts 23 are installed in the upper area 21 and the lower area 22 of the elastic structure 20, respectively.
A concave tub 24 is formed in the combination part 23 of the elastic structure 20, and the combination part 23 is partitioned into a geometric outline (for example, a hexagonal outline), and each combination part 23 is formed adjacent to the honeycomb structure. The

採用する実施形態中では、サブケース50はプラスチック材料を採用して製造し、着用者方向に向かう内面51と着用者に反対方向の外面52を有する。
サブケース50は、モールド或いは成形モジュールを対応させることで、充填体30は、サブケースの内面51に連結する。
ケース体の内面11、サブケースの外面52は前記弾性構造体20の上部区域21、下部区域22にそれぞれ接触或いは連接する。
In the embodiment to be adopted, the subcase 50 is manufactured by adopting a plastic material, and has an inner surface 51 facing the wearer and an outer surface 52 opposite to the wearer.
The sub case 50 corresponds to a mold or a molding module, so that the filler 30 is connected to the inner surface 51 of the sub case.
The inner surface 11 of the case body and the outer surface 52 of the sub case are in contact with or connected to the upper area 21 and the lower area 22 of the elastic structure 20, respectively.

図に示す通り、ケース体の内面11、サブケースの外面52には、(弾性)枢接部13、53をそれぞれ形成する。
ケース体枢接部13、サブケース枢接部53は、突出した壁14、54をそれぞれ有し、枢接部13(或いは53)を区画し、幾何形輪郭(例えば、六角形輪郭)を形成する。
これにより、各枢接部13(或いは53)は、ハニカム構造に隣接して形成され、弾性構造体20の組合せ部23に対応して組み合わされ、或いは係合する。
As shown in the drawing, (elastic) pivot portions 13 and 53 are formed on the inner surface 11 of the case body and the outer surface 52 of the sub case, respectively.
The case body pivot part 13 and the sub case pivot part 53 have protruding walls 14 and 54, respectively, define the pivot part 13 (or 53), and form a geometric outline (for example, a hexagonal outline). To do.
Thereby, each pivotal part 13 (or 53) is formed adjacent to the honeycomb structure, and is combined or engaged with the combination part 23 of the elastic structure 20.

一実施形態中では、弾性構造体20には、貫通形態の孔25を設置し、組合せ部23上に配置する。
孔25には、流体を充填でき、これにより弾性構造体20の弾性率を調整或いは改変する。
In one embodiment, the elastic structure 20 is provided with a through hole 25 and disposed on the combination part 23.
The holes 25 can be filled with fluid, thereby adjusting or modifying the elastic modulus of the elastic structure 20.

図6、図6Aに示す通り、外部衝撃力(或いは正方向力)がアセンブリ100に衝撃を与えると、ケース体10、弾性構造体20、充填体30及び/或いはサブケース50(弾性キャリア40に対応し異なる程度の弾性変形を生じる。図6実線部分に示す状況参照)を経て、外部衝撃力の速度を低下させ、しかも外部衝撃力を共同で負担し、緩衝吸収作用を生じ、外部衝撃力を全方向(或いは多方向)に分散し、充填体30及び/或いはアセンブリ100全体に伝達する。   As shown in FIGS. 6 and 6A, when an external impact force (or positive direction force) impacts the assembly 100, the case body 10, the elastic structure 20, the filling body 30, and / or the sub case 50 (on the elastic carrier 40). Correspondingly, different degrees of elastic deformation occur (see the situation shown in the solid line in FIG. 6), and the speed of the external impact force is reduced, and the external impact force is jointly shared, creating a buffer absorption effect, and the external impact force. Are distributed in all directions (or in multiple directions) and transmitted to the filling body 30 and / or the entire assembly 100.

外部衝撃力が消失後、充填体30(或いは弾性構造体20、サブケース50)及び弾性キャリア40の構造特性により、できるだけ初期組合せ位置を回復する作用を獲得できる(図6、図6Aの点線Kに示す状況)。   After the external impact force disappears, the action of restoring the initial combination position as much as possible can be obtained by the structural characteristics of the filler 30 (or the elastic structure 20, the subcase 50) and the elastic carrier 40 (dotted line K in FIGS. 6 and 6A). Situation).

図7、図7Aに示す通り、外部衝撃力(或いはせん断力)がアセンブリ100に衝撃を与えると、ケース体10、弾性構造体20、充填体30及び/或いはサブケース50(弾性キャリア40に対応し、異なる程度の弾性変形と回転変形を生じる)を経て、外部衝撃力の回転加速度及びせん断力に反応した平移変形形態を低減する。
しかも、外部衝撃力を共同で負担し、緩衝吸収作用を生じ、外部衝撃力を全方向(或いは多方向)に分散し、充填体30及び/或いはアセンブリ100全体に伝達し、緩衝吸収し、外部衝撃力が生じる加速度と回転トルクを低下させる。
7 and 7A, when an external impact force (or shear force) gives an impact to the assembly 100, the case body 10, the elastic structure 20, the filling body 30, and / or the sub case 50 (corresponding to the elastic carrier 40). And undergoing different degrees of elastic deformation and rotational deformation), the flattening deformation form in response to the rotational acceleration and shearing force of the external impact force is reduced.
In addition, the external impact force is jointly borne, a buffer absorbing action is generated, the external impact force is distributed in all directions (or multiple directions), transmitted to the entire filling body 30 and / or the assembly 100, and absorbed and absorbed. Decreases acceleration and rotational torque that generate impact force.

外部衝撃力が消失後、弾性構造体20(及び/或いは充填体30)、弾性キャリア40の弾性変形メカニズムを経て、初期組合せ位置の作用を回復する(図7、図7A点線Kに示す状況)。   After the external impact force disappears, the action of the initial combination position is recovered through the elastic deformation mechanism of the elastic structure 20 (and / or the filling body 30) and the elastic carrier 40 (the situation shown by the dotted line K in FIGS. 7 and 7A). .

ケース体10とサブケース50との間には、複数の或いは複数層の弾性構造体20或いはアセンブリ100を設置し、複数の或いは複数層の弾性キャリア40の構造形態に対応する。   Between the case body 10 and the sub case 50, a plurality of or a plurality of layers of the elastic structure 20 or the assembly 100 are installed, and correspond to the structural form of the plurality of or a plurality of layers of the elastic carrier 40.

弾性キャリア40の一修正実施形態である図8、図9、図10に示す通り、井桁状構造区45の第一区41(或いは上壁47)は、充填体30(或いはケース体10)の方向へと延伸し、弾性柱70を形成する。
弾性柱70は、上壁47に連接する連接端71、充填体30の方向へと延伸する自由端72を有する。
自由端72は、接触面73を有する。
接触面73は、凹弧面構造を形成し、連接端71と上壁47との間に、連接面74を形成する。
As shown in FIGS. 8, 9, and 10, which is one modified embodiment of the elastic carrier 40, the first section 41 (or the upper wall 47) of the cross-girder-like structure section 45 is the filling body 30 (or the case body 10). The elastic column 70 is formed by stretching in the direction.
The elastic column 70 has a connecting end 71 connected to the upper wall 47 and a free end 72 extending in the direction of the filler 30.
The free end 72 has a contact surface 73.
The contact surface 73 forms a concave arc surface structure, and a connecting surface 74 is formed between the connecting end 71 and the upper wall 47.

採用する実施形態中では、弾性柱70の断面の幅は、壁49の厚みより大きく、これにより弾性柱70の弾性作用力を拡大できる。   In the embodiment to be adopted, the width of the cross section of the elastic column 70 is larger than the thickness of the wall 49, whereby the elastic acting force of the elastic column 70 can be expanded.

図10、11に示す通り、弾性柱70は充填体30(及び/或いは弾性構造体20)を通過後、接触面73は、ケース体10の内面11に接合し、しかもこれにより自由端72(或いは接触面73)とケース体の内面11との間には、気室構造を形成する。
気室構造は、ショックアブソーバーに類似の構造を形成し、外部の衝撃力に反応し、可撓性変形及び/或いは回転変形を生じ、外部衝撃力を緩衝吸収する作用を生じる。
As shown in FIGS. 10 and 11, after the elastic column 70 passes through the filler 30 (and / or the elastic structure 20), the contact surface 73 is joined to the inner surface 11 of the case body 10, and the free end 72 ( Alternatively, an air chamber structure is formed between the contact surface 73) and the inner surface 11 of the case body.
The air chamber structure forms a structure similar to a shock absorber, reacts to an external impact force, causes a flexible deformation and / or rotational deformation, and acts to buffer and absorb the external impact force.

図12、図12Aに示す通り、外部衝撃力(或いは正方向力)がアセンブリ100に衝撃を与えると、ケース体10、弾性構造体20、充填体30を経て、弾性キャリア40の弾性柱70に対応し、異なる程度の弾性変形を生じ、外部衝撃力の速度を低下させ、しかも外部衝撃力を共同で負担し、緩衝吸収作用を生じ、外部衝撃力を全方向(或いは多方向)に分散し、充填体30及び/或いはアセンブリ100全体に伝達する。   As shown in FIGS. 12 and 12A, when an external impact force (or a positive direction force) gives an impact to the assembly 100, the elastic column 70 of the elastic carrier 40 passes through the case body 10, the elastic structure 20, and the filling body 30. Correspondingly, different degrees of elastic deformation are generated, the speed of external impact force is reduced, the external impact force is jointly borne, a buffer absorption action is created, and the external impact force is distributed in all directions (or multiple directions) , Transmitted to the filler 30 and / or the entire assembly 100.

外部衝撃力が消失後、充填体30(或いは弾性構造体20)及び弾性キャリア40、弾性柱70の構造特性により、できるだけ初期組合せ位置を回復する作用を獲得できる(図12、図12A点線Kに示す状況)。   After the external impact force disappears, the initial combination position can be restored as much as possible by the structural characteristics of the filler 30 (or the elastic structure 20), the elastic carrier 40, and the elastic column 70 (indicated by the dotted line K in FIGS. 12 and 12A). Situation shown).

図13、図13Aに示す通り、外部衝撃力(或いはせん断力)がアセンブリ100に衝撃を与えると、ケース体10、弾性構造体20、充填体30を経て、弾性キャリア40に対応し、弾性柱70異なる程度の弾性変形と回転変形を生じ、外部衝撃力の回転加速度及びせん断力に反応した平移変形形態を低減する。
しかも、外部衝撃力を共同で負担し、緩衝吸収作用を生じ、外部衝撃力を全方向(或いは多方向)に分散し、充填体30及び/或いはアセンブリ100全体に伝達し、緩衝吸収し、外部衝撃力が生じる加速度と回転トルクを低下させる。
As shown in FIG. 13 and FIG. 13A, when an external impact force (or shear force) gives an impact to the assembly 100, the case corresponds to the elastic carrier 40 via the case body 10, the elastic structure 20, and the filling body 30, and the elastic column. 70 different degrees of elastic deformation and rotational deformation are produced, and the transition deformation form in response to the rotational acceleration and shear force of the external impact force is reduced.
In addition, the external impact force is jointly borne, a buffer absorbing action is generated, the external impact force is distributed in all directions (or multiple directions), transmitted to the entire filling body 30 and / or the assembly 100, and absorbed and absorbed. Decreases acceleration and rotational torque that generate impact force.

外部衝撃力が消失後、充填体30(及び/或いは弾性構造体20)及び弾性キャリア40、弾性柱70の弾性変形メカニズムを経て、初期組合せ位置の作用を回復する(図13、図13A点線Kに示す状況)。   After the external impact force disappears, the action of the initial combination position is recovered through the elastic deformation mechanism of the filler 30 (and / or the elastic structure 20), the elastic carrier 40, and the elastic column 70 (FIG. 13, FIG. 13A, dotted line K). Situation).

図14、図14Aに示す通り、比較的大きい外部衝撃力(或いはせん断力)がアセンブリ100に衝撃を与えると、ケース体10、弾性構造体20、充填体30を経て、弾性キャリア40、弾性柱70に対応し、異なる程度の弾性変形と回転変形を生じ、外部衝撃力の回転加速度及びせん断力に反応した平移変形形態を低減する。
しかも、外部衝撃力を共同で負担し、緩衝吸収作用を生じ、外部衝撃力を全方向(或いは多方向)に分散し、充填体30及び/或いはアセンブリ100全体に伝達し、緩衝吸収し、外部衝撃力が生じる加速度と回転トルクを低下させる。
As shown in FIGS. 14 and 14A, when a relatively large external impact force (or shear force) gives an impact to the assembly 100, the elastic carrier 40 and the elastic column pass through the case body 10, the elastic structure 20, and the filling body 30. Corresponding to 70, elastic deformation and rotational deformation of different degrees are generated, and the transition deformation form in response to the rotational acceleration and shearing force of the external impact force is reduced.
In addition, the external impact force is jointly borne, a buffer absorbing action is generated, the external impact force is distributed in all directions (or multiple directions), transmitted to the entire filling body 30 and / or the assembly 100, and absorbed and absorbed. Decreases acceleration and rotational torque that generate impact force.

弾性キャリア40(及び/或いは弾性柱70)は、着用者の異なる頭形輪郭或いは頭部の曲面の形態を包み込み、以下の作用を生じる。
1.弾性キャリア40はハニカム構造の井桁状構造区45を形成し、着用者の異なる頭形輪郭或いは頭部の曲面に基づき、連続して配列する各下壁48は異なる程度の可撓性変形量を生じ、頭部Hの形態に接触し、これにより弾性キャリア40は、全面的かつ確実に着用者頭部Hを包み込み密着する。よって、着用者頭部と確実な全面密着ができないため、ヘルメットのベルトを締めたり緩めたりし、ヘルメットの保護性或いは安全等状況に影響を与える従来の技術のヘルメットの欠点を、最低にまで低下させられる。
2.弾性キャリア40はハニカム構造の井桁状構造区45を形成して支えとし、弾性柱70は比較的大きい外部衝撃力に反応して生じる作用力(或いはせん断力)により、比較的大きい可撓性変形及び/或いは回転変形を生じ(或いは比較的大きい幅の弾性柱連接面74と井桁状構造区45の比較的小さい断面の幅の上壁47との間に断裂点を形成)、ケース体10、弾性構造体20に対応し、アセンブリ100内で比較的大きい相対運動を生じ(例えば、移動或いは回転)、大部分の外部衝撃力を緩衝吸収し、せん断力或いは回転トルクが生じる加速度と作用力量を低減し、しかも全方向(或いは多方向)の分散で充填体30及び/或いはアセンブリ100全体に伝達し、外部衝撃力が着用者頭部Hに伝達することを阻止し、全面的な保護作用を形成する。及び、弾性構造体20(及び/或いは充填体30)及び弾性キャリア40、弾性柱70の弾性回復メカニズムを経て、外部作用力量と速度をさらに緩衝吸収する。
The elastic carrier 40 (and / or the elastic column 70) envelops different head-shaped contours or curved shapes of the head of the wearer, and produces the following actions.
1. The elastic carrier 40 forms a cross-shaped structure section 45 having a honeycomb structure, and the continuously arranged lower walls 48 have different degrees of flexible deformation based on different head contours or curved surfaces of the head. It occurs and comes into contact with the form of the head H, whereby the elastic carrier 40 wraps around the wearer's head H completely and reliably. Therefore, since the entire head cannot be securely adhered to the wearer's head, the belt of the helmet is tightened or loosened, and the disadvantages of the conventional technology helmet that affects the helmet's protection or safety situation are reduced to the minimum. Be made.
2. The elastic carrier 40 forms a support structure 45 having a honeycomb structure and supports the elastic carrier 70, and the elastic column 70 has a relatively large flexible deformation due to an action force (or shear force) generated in response to a relatively large external impact force. And / or rotational deformation (or forming a break point between the elastic column connecting surface 74 having a relatively large width and the upper wall 47 having a relatively small cross-sectional width of the cross-like structure section 45), and the case body 10, Corresponding to the elastic structure 20, a relatively large relative motion is generated in the assembly 100 (for example, movement or rotation), most of the external impact force is buffered and absorbed, and an acceleration and an acting force amount at which shear force or rotational torque is generated are obtained. Reduced and transmitted to the entire filling body 30 and / or the assembly 100 with omnidirectional (or multidirectional) dispersion, preventing external impact force from being transmitted to the wearer's head H, and providing a full protective effect Formation to. Further, through the elastic recovery mechanism of the elastic structure 20 (and / or the filler 30), the elastic carrier 40, and the elastic column 70, the external acting force and speed are further buffered and absorbed.

本考案による安全ヘルメットの全方向衝撃防止構造は、従来の技術に比べ、以下の長所を有する。
1.ケース体10、充填体30と弾性キャリア40の組合せ構造は、すでに新たに設計考慮されている。例えば、弾性キャリア40は、骨組構造を形成する壁49を有し、複数の井桁状構造区45と井桁状構造区45周辺区域に設置する翼部46を形成し、これにより井桁状構造区45は、第一区41、第二区42と第一区41、第二区42との間に連接するサブエリア43を区画する。これにより、充填体30材料の一部は、弾性キャリア40の第一区41及び/或いはサブエリア43内に少なくとも進入し、こうして充填体30と弾性キャリア40との結合等部分は、従来の安全ヘルメットの構造形態と明らかに異なる。
2.弾性キャリア40(組合せ充填体30)の構造形態と材料特性により、弾性キャリア40が外部衝撃力(例えば、正方向力或いはせん断力)に反応する時、弾性変形及び/或いは回転変形を生じ、外部衝撃力と速度を緩衝して吸収する。弾性キャリア40の第一区41及び/或いはサブエリア43が充填体30に結合する構造形態により、第二区42の下壁48は弾性セクションに類似した構造を形成し、異なる頭部サイズ、頭形輪郭或いは頭部の曲面に基づき、異なる程度の可撓性変形作用をそれぞれ生じ、着用者頭部Hへの全面弾性接触(或いは密着)が容易で、従来の技術よりさらに理想的な保護性と安全性を生じる。或いは井桁状構造区45(或いは第二区42)と着用者頭部Hとの間に気室構造を形成することで、アセンブリ100が外部衝撃力を緩衝吸収する作用を補助し、着用者頭部Hの快適性、カバー性と密着度(或いは密着面積)を強化でき、薄層ライナーを別に組み立てなければならない従来の技術の面倒なプロセス、使用者着用のカバー性、快適性を効果的に高められない等状況を明らかに改善することができる。
3.弾性キャリア40の井桁状構造区45(或いは上壁47)は、弾性柱70の構造形態を形成し、弾性柱70は充填体30(及び/或いは弾性構造体20)を通過後、接触面73はケース体10の内面11に接合し、気室構造を形成する。外部の衝撃力に反応し弾性柱70は可撓性変形及び/或いは回転変形を生じ、アセンブリ100の外部衝撃力を緩衝吸収する作用を補助する。
4.しかも、ケース体10が充填体30(或いは弾性構造体20、サブケース50)と弾性キャリア40と結合する構造組織により、構造強度は明らかに向上し、さらに構造形態上は製造が簡単及びヘルメットコンパクト化設計の条件に符合し、比較的理想的な防護及び多重方向の緩衝能力を提供し、外部衝撃力の伝達分散形態を改変する。
The omnidirectional impact prevention structure of the safety helmet according to the present invention has the following advantages over the conventional technology.
1. The combination structure of the case body 10, the filler body 30, and the elastic carrier 40 has already been newly designed. For example, the elastic carrier 40 has a wall 49 that forms a frame structure, and forms a plurality of cross-girder-like structural sections 45 and wing portions 46 that are installed in the peripheral area of the cross-girder-like structural section 45, thereby Defines a sub-area 43 connected between the first ward 41 and the second ward 42 and the first ward 41 and the second ward 42. Thereby, a part of the material of the filler 30 enters at least the first section 41 and / or the sub-area 43 of the elastic carrier 40, and thus the portion such as the connection between the filler 30 and the elastic carrier 40 is the conventional safety. It is clearly different from the structure of the helmet.
2. Due to the structure and material characteristics of the elastic carrier 40 (combined filler 30), when the elastic carrier 40 reacts to an external impact force (for example, positive direction force or shear force), elastic deformation and / or rotational deformation occurs, and external Absorbs shock force and speed. Due to the structural configuration in which the first section 41 and / or the sub-area 43 of the elastic carrier 40 are coupled to the filler 30, the lower wall 48 of the second section 42 forms a structure similar to the elastic section, and has a different head size, head Based on the contour of the shape or the curved surface of the head, different degrees of flexible deformation are produced, making it easy to make elastic contact (or close contact) with the wearer's head H, which is more ideal than conventional techniques. And produce safety. Alternatively, by forming an air chamber structure between the cross-girder-like structure section 45 (or the second section 42) and the wearer's head H, the assembly 100 assists the action of buffering and absorbing the external impact force. The comfort, coverability and adhesion (or adhesion area) of the part H can be strengthened, and the troublesome process of the conventional technology in which a thin-layer liner has to be assembled separately, the coverability and comfort of the user are effective. It is possible to clearly improve the situation where it cannot be raised.
3. The cross-shaped structure 45 (or the upper wall 47) of the elastic carrier 40 forms a structural form of the elastic column 70, and the elastic column 70 passes through the filler 30 (and / or the elastic structure 20) and then contacts the contact surface 73. Is joined to the inner surface 11 of the case body 10 to form an air chamber structure. In response to an external impact force, the elastic column 70 causes a flexible deformation and / or a rotational deformation, and assists in buffering and absorbing the external impact force of the assembly 100.
4). In addition, the structural strength of the case body 10 is clearly improved by the structural structure in which the case body 10 is coupled to the filling body 30 (or the elastic structure 20 and the subcase 50) and the elastic carrier 40, and the structure is easy to manufacture and the helmet compact. To meet the requirements of computerized design, provide relatively ideal protection and multi-directional buffer capacity, and modify the transmission distribution form of external impact force.

前述した本考案の実施形態は本考案を限定するものではなく、よって、本考案により保護される範囲は後述される実用新案登録請求の範囲を基準とする。   The above-described embodiments of the present invention do not limit the present invention. Therefore, the scope protected by the present invention is based on the scope of claims for utility model registration to be described later.

10 ケース体
11、51 内面
12、52 外面
13、53 枢接部
14、54 壁
20 弾性構造体
21 上部区域
22 下部区域
23 組合せ部
24 凹槽
25 孔
30 充填体
31 下部区域
40 弾性キャリア
41 第一区
42 第二区
43 サブエリア
44 枠体
45 井桁状構造区
46 翼部
47 上壁
48 下壁
49 壁
50 サブケース
60 保護層
70 弾性柱
71 連接端
72 自由端
73 接触面
74 連接面
100 アセンブリ
H 頭部
K 点線
DESCRIPTION OF SYMBOLS 10 Case body 11,51 Inner surface 12,52 Outer surface 13,53 Pivoting part 14,54 Wall 20 Elastic structure 21 Upper area 22 Lower area 23 Combination part 24 Recessed tank 25 Hole 30 Filler 31 Lower area 40 Elastic carrier 41 1st 1st section 42 2nd section 43 Subarea 44 Frame 45 Cross-girder structure section 46 Wings 47 Upper wall 48 Lower wall 49 Wall 50 Subcase 60 Protective layer 70 Elastic column 71 Connecting end 72 Free end 73 Contact surface 74 Connecting surface 100 Assembly H Head K Dotted line

Claims (9)

安全ヘルメットの全方向衝撃防止構造であって、ケース体、前記ケース体内に包まれる充填体と弾性キャリアの組合せで、
前記弾性キャリアは、骨組構造を形成する壁と壁が区画する複数の幾何形輪郭の井桁状構造区を有し、
前記井桁状構造区の周辺区域には、突出した翼部を形成し、これにより前記井桁状構造区は、第一区、第二区と第一区、第二区との間に連接するサブエリアを区画し、
前記第一区と前記第二区の区域に対応する壁は、上壁、下壁に定義され、
こうして、前記充填体が前記ケース体、前記弾性キャリアに連結し全体形態のアセンブリを形成することを特徴とする安全ヘルメットの全方向衝撃防止構造。
It is an omnidirectional impact prevention structure of a safety helmet, in a combination of a case body, a filling body wrapped in the case body and an elastic carrier,
The elastic carrier has a wall forming a frame structure and a plurality of geometrically-shaped cross-girder-like structure sections defined by the walls;
Protruding wings are formed in the peripheral area of the cross-girder-like structure area, and the cross-girder-like structure area is connected to the first area, the second area, the first area, and the second area. Partition the area,
Walls corresponding to the areas of the first ward and the second ward are defined as an upper wall and a lower wall,
Thus, the omnidirectional impact prevention structure of a safety helmet, wherein the filling body is connected to the case body and the elastic carrier to form an assembly of the whole form.
前記ケース体は、内面と外面を有し、
前記外面には、保護層を設置し、前記内面は、前記充填体に接触し、
前記弾性キャリアは、前記アセンブリの最内層箇所に位置し、前記充填体の下部区域に連接し、前記充填体の前記下部区域は、前記ケース体の前記内面から離れた箇所に位置し、
前記弾性キャリアの前記井桁状構造区は、六角形輪郭のハニカム構造を形成し、
前記第一区、前記第二区の内の少なくとも一つの断面は、前記サブエリアの断面より大きいことを特徴とする請求項1に記載の安全ヘルメットの全方向衝撃防止構造。
The case body has an inner surface and an outer surface,
A protective layer is provided on the outer surface, and the inner surface is in contact with the filler,
The elastic carrier is located at an innermost layer location of the assembly and is connected to a lower area of the filling body, and the lower area of the filling body is located at a location away from the inner surface of the case body,
The cross-shaped structure section of the elastic carrier forms a honeycomb structure with a hexagonal outline,
2. The omnidirectional impact prevention structure for a safety helmet according to claim 1, wherein at least one cross section of the first section and the second section is larger than a cross section of the sub-area.
前記壁と前記壁の両辺に位置する翼部は、「+++」型の断面構造を共同で形成し、
これにより、前記充填体の材料の一部は、前記弾性キャリアの前記第一区、前記サブエリアの少なくともいずれか一つに進入し、前記第一区、前記サブエリア、前記翼部と前記壁の少なくともいずれか一つに連結し、しかもこれにより前記第二区の前記下壁には、弾性セクション構造を形成し、
前記井桁状構造区の前記第二区と着用者頭部との間には、気室構造を形成することを特徴とする請求項1或いは2に記載の安全ヘルメットの全方向衝撃防止構造。
The wall and the wings located on both sides of the wall jointly form a “++++” type cross-sectional structure,
Accordingly, a part of the material of the filling body enters at least one of the first section and the sub area of the elastic carrier, and the first section, the sub area, the wing portion, and the wall. Are connected to at least one of the above, and thereby an elastic section structure is formed in the lower wall of the second section,
The omnidirectional impact prevention structure of the safety helmet according to claim 1 or 2, wherein an air chamber structure is formed between the second section of the well-like structure section and the wearer's head.
前記弾性キャリアは、その底部区域に形成する枠体を有し、
前記枠体は、前記弾性キャリアの外側方向へと延伸し、U型断面構造を形成し、前記ケース体と前記充填体を包んで連接し、
前記弾性キャリア内に位置する前記充填体の密度は、前記弾性キャリアの外部区域に位置する前記充填体の密度より小さいことを特徴とする請求項1或いは2に記載の安全ヘルメットの全方向衝撃防止構造。
The elastic carrier has a frame formed in its bottom area;
The frame body extends in an outward direction of the elastic carrier, forms a U-shaped cross-sectional structure, and wraps and connects the case body and the filling body,
3. The safety helmet according to claim 1, wherein a density of the filler located in the elastic carrier is smaller than a density of the filler located in an outer area of the elastic carrier. Construction.
前記弾性キャリアは、その底部区域に形成する枠体を有し、
前記枠体は、前記弾性キャリアの外側方向へと延伸し、U型断面構造を形成し、前記ケース体と前記充填体を包んで連接し、
前記充填体の材料の一部は、前記第一区と前記サブエリアの区域全体にいっぱいに充填され、前記上壁と翼部を連結し、
前記弾性キャリアの前記第一区、前記サブエリア内に位置する前記充填体の密度は、前記弾性キャリアの外部区域に位置する前記充填体の密度より小さいことを特徴とする請求項3に記載の安全ヘルメットの全方向衝撃防止構造。
The elastic carrier has a frame formed in its bottom area;
The frame body extends in an outward direction of the elastic carrier, forms a U-shaped cross-sectional structure, and wraps and connects the case body and the filling body,
A part of the material of the filling body is filled in the whole area of the first section and the sub area, and connects the upper wall and the wing part,
The density of the filler located in the first section of the elastic carrier and the sub-area is smaller than the density of the filler located in an outer section of the elastic carrier. Safety helmet omnidirectional impact prevention structure.
前記ケース体と前記充填体との間には、弾性構造体とサブケースの少なくともいずれか一つを設置することを特徴とする請求項1乃至5項の任意の一項に記載の安全ヘルメットの全方向衝撃防止構造。   The safety helmet according to any one of claims 1 to 5, wherein at least one of an elastic structure and a sub-case is installed between the case body and the filling body. Anti-omnidirectional structure. 前記弾性構造体の弾性率は、前記充填体の弾性率より大きく、
前記弾性構造体は、上部区域と下部区域を定義され、
前記弾性構造体の前記上部区域、前記下部区域には、複数の組合せ部をそれぞれ設置し、
前記弾性構造体の前記組合せ部には、凹槽を形成し、前記組合せ部を区画し六角形輪郭を形成し、これにより前記各組合せ部は鄰接してハニカム構造を形成し、
前記サブケースは、内面と外面を有し、前記充填体は、前記サブケースの前記内面に連接し、
前記ケース体の前記内面、前記サブケースの前記外面は、前記弾性構造体の前記上部区域、前記下部区域にそれぞれ連接し、
前記ケース体の前記内面、前記サブケースの前記外面には、枢接部をそれぞれ形成し、
前記ケース体の前記枢接部は、突出した壁を有し、前記ケース体の前記枢接部を区画し、六角形輪郭を形成し、これにより前記各ケース体の前記枢接部はハニカム構造を隣接して形成し、前記弾性構造体の前記上部区域の前記組合せ部に対応して組み合わせ、
前記サブケースの前記枢接部は、突出した壁を有し、前記サブケースの前記枢接部を区画し、六角形輪郭を形成し、これにより前記各サブケースの前記枢接部はハニカム構造を隣接して形成し、前記弾性構造体の前記下部区域の前記組合せ部に対応して組合せし、
前記弾性構造体には、貫通形態の孔を設置し、前記組合せ部上に配置することを特徴とする請求項6に記載の安全ヘルメットの全方向衝撃防止構造。
The elastic modulus of the elastic structure is greater than the elastic modulus of the filler,
The elastic structure is defined with an upper section and a lower section;
A plurality of combination parts are respectively installed in the upper area and the lower area of the elastic structure,
In the combination part of the elastic structure, a concave tub is formed, the combination part is partitioned to form a hexagonal outline, whereby each combination part is in contact with each other to form a honeycomb structure,
The sub case has an inner surface and an outer surface, and the filler is connected to the inner surface of the sub case,
The inner surface of the case body and the outer surface of the sub case are connected to the upper area and the lower area of the elastic structure, respectively.
The inner surface of the case body and the outer surface of the sub-case each have a pivot portion,
The pivot portion of the case body has a protruding wall, defines the pivot portion of the case body, and forms a hexagonal outline, whereby the pivot portion of each case body has a honeycomb structure Are formed adjacent to each other and combined corresponding to the combination part of the upper section of the elastic structure,
The pivot part of the sub case has a protruding wall, defines the pivot part of the sub case, and forms a hexagonal contour, whereby the pivot part of each sub case has a honeycomb structure. Are formed adjacent to each other and combined corresponding to the combination part of the lower section of the elastic structure,
The safety helmet omnidirectional impact prevention structure according to claim 6, wherein the elastic structure is provided with a through hole and disposed on the combination part.
前記井桁状構造区の前記第一区は、弾性柱を形成し、前記弾性柱は、前記上壁に連接する連接端と、前記ケース体の方向へと延伸する自由端を有し、
前記自由端は、接触面を有し、前記接触面は、凹弧面構造を形成し、前記連接端と前記上壁との間に、連接面を形成し、
前記弾性柱の断面の幅は、前記上壁の厚みより大きく、
前記接触面は、前記ケース体の内面に接合し、しかもこれにより前記自由端の前記接触面と前記ケース体の前記内面との間には、気室構造を形成することを特徴とする請求項1乃至7項の任意の一項に記載の安全ヘルメットの全方向衝撃防止構造。
The first section of the grid-like structure section forms an elastic column, the elastic column has a connecting end connected to the upper wall, and a free end extending in the direction of the case body,
The free end has a contact surface, the contact surface forms a concave arc surface structure, and forms a connecting surface between the connecting end and the upper wall,
The width of the cross section of the elastic column is larger than the thickness of the upper wall,
The contact surface is joined to an inner surface of the case body, and an air chamber structure is formed between the contact surface of the free end and the inner surface of the case body. The omnidirectional impact prevention structure for a safety helmet according to any one of 1 to 7.
井桁状構造区の第一区には、弾性柱を形成し、
前記弾性柱は、前記上壁に連接する連接端と前記ケース体の方向へと延伸する自由端を有し、
前記自由端は、接触面を有し、前記接触面には、凹弧面構造を形成し、
前記弾性柱の断面の幅は、上壁の厚みより大きく、
前記接触面は、前記ケース体の内面に接合し、しかもこれにより前記自由端の前記接触面と前記ケース体の前記内面との間には、気室構造を形成することを特徴とする請求項7に記載の安全ヘルメットの全方向衝撃防止構造。
In the first section of the cross-beam structure structure, an elastic column is formed,
The elastic column has a connecting end connected to the upper wall and a free end extending in the direction of the case body,
The free end has a contact surface, and the contact surface forms a concave arc surface structure;
The cross-sectional width of the elastic column is larger than the thickness of the upper wall,
The contact surface is joined to an inner surface of the case body, and an air chamber structure is formed between the contact surface of the free end and the inner surface of the case body. The safety helmet omnidirectional impact prevention structure according to 7.
JP2017002646U 2017-03-07 2017-06-13 Safety helmet omnidirectional impact prevention structure Active JP3212126U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW106107393 2017-03-07
TW106107393A TWI641325B (en) 2017-03-07 2017-03-07 Omnidirectional anti-collision structure for safety helmet

Publications (1)

Publication Number Publication Date
JP3212126U true JP3212126U (en) 2017-08-24

Family

ID=59093431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002646U Active JP3212126U (en) 2017-03-07 2017-06-13 Safety helmet omnidirectional impact prevention structure

Country Status (4)

Country Link
US (1) US20180255861A1 (en)
EP (1) EP3372101B1 (en)
JP (1) JP3212126U (en)
TW (1) TWI641325B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102438421B1 (en) * 2021-12-21 2022-08-30 박재홍 Safety Helmet Comprising a Built-In Structure Having a Guide Wall Formed Therein

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10271603B2 (en) 2016-04-12 2019-04-30 Bell Sports, Inc. Protective helmet with multiple pseudo-spherical energy management liners
GB2559807B (en) * 2017-02-21 2019-05-22 Pembroke Bow Ltd Helmet
TWI620514B (en) * 2017-03-07 2018-04-11 Multi-layer floating omnidirectional shock-absorbing structure of safety helmet
US11641902B2 (en) * 2017-06-14 2023-05-09 Mansour Zarreii Concussion reducing/energy transferring helmet and shoulder system
PL3858179T3 (en) * 2017-10-19 2025-02-17 Trek Bicycle Corporation Cycling helmet
US12145346B2 (en) 2018-11-13 2024-11-19 Vicis Ip, Llc Custom manufactured fit pods
CA3119617A1 (en) * 2018-11-13 2020-05-22 John Cagle Microlattice layers
US11606999B2 (en) 2019-07-01 2023-03-21 Vicis Ip, Llc Helmet system
EP3838043B1 (en) * 2019-12-18 2023-08-16 George TFE SCP Helmet
US11311068B2 (en) * 2020-04-16 2022-04-26 James Bernard Hilliard, Sr. Sonic wave reducing helmet
US12016417B2 (en) * 2020-04-27 2024-06-25 Honeywell International Inc. Protective helmet
EP4029683A1 (en) * 2021-01-14 2022-07-20 Vicis IP, LLC Custom manufactured fit pods
CN116982776A (en) * 2023-08-09 2023-11-03 东莞市益安运动用品有限公司 Sawdust helmet and manufacturing method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3447163A (en) * 1966-02-16 1969-06-03 Peter W Bothwell Safety helmets
US4484364A (en) * 1980-09-08 1984-11-27 A-T-O Inc. Shock attenuation system for headgear
DE8409316U1 (en) * 1984-03-27 1984-07-12 Miki S.p.A., Erba, Como Crash helmet, especially for sports
US5349893A (en) * 1992-02-20 1994-09-27 Dunn Eric S Impact absorbing armor
US6969548B1 (en) * 1999-08-30 2005-11-29 Goldfine Andrew A Impact absorbing composite
US7089602B2 (en) * 2003-06-30 2006-08-15 Srikrishna Talluri Multi-layered, impact absorbing, modular helmet
US9314062B2 (en) * 2010-10-06 2016-04-19 Cortex Armour Inc. Shock absorbing layer with independent elements, and protective helmet including same
US20140013492A1 (en) * 2012-07-11 2014-01-16 Apex Biomedical Company Llc Protective helmet for mitigation of linear and rotational acceleration
US20140223641A1 (en) * 2013-02-10 2014-08-14 Blake Henderson Helmet with custom foam liner and removable / replaceable layers of crushable energy absorption material
TW201507646A (en) * 2013-08-30 2015-03-01 Aegis Sports Inc Reinforcement structure of safety helmet and manufacturing method thereof
CN203492851U (en) * 2013-09-03 2014-03-26 李焕玲 Safety helmet reinforcement structure
US9814279B2 (en) * 2013-10-08 2017-11-14 Chang-Hsien Ho Integrally formed safety helmet structure
WO2015103634A2 (en) * 2014-01-06 2015-07-09 Lisa Ferrara Composite devices and methods for providing protection against traumatic tissue injury
US9468249B2 (en) * 2014-02-11 2016-10-18 Janice Geraldine Fraser Protective headgear
US9370214B1 (en) * 2014-03-10 2016-06-21 John E. Whitcomb Helmet having blunt force trauma protection
GB2534887B (en) * 2015-02-03 2017-03-29 George Lloyd John Protective eyewear
GB201501834D0 (en) * 2015-02-04 2015-03-18 Isis Innovation An impact absorbing structure
TWM519415U (en) * 2015-10-21 2016-04-01 Hopus Technology Inc Integrally-formed safety helmet structure
TWM546704U (en) * 2017-03-07 2017-08-11 Hopus Tech Inc Omni-directional anti-collision structure of safety helmet
TWI620514B (en) * 2017-03-07 2018-04-11 Multi-layer floating omnidirectional shock-absorbing structure of safety helmet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102438421B1 (en) * 2021-12-21 2022-08-30 박재홍 Safety Helmet Comprising a Built-In Structure Having a Guide Wall Formed Therein

Also Published As

Publication number Publication date
TW201832678A (en) 2018-09-16
EP3372101A1 (en) 2018-09-12
US20180255861A1 (en) 2018-09-13
TWI641325B (en) 2018-11-21
EP3372101B1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP3212126U (en) Safety helmet omnidirectional impact prevention structure
TWI620514B (en) Multi-layer floating omnidirectional shock-absorbing structure of safety helmet
TWI419792B (en) Gas cushion
US10980306B2 (en) Helmet omnidirectional energy management systems
TW201507646A (en) Reinforcement structure of safety helmet and manufacturing method thereof
WO2018216306A1 (en) Helmet
JP2004076167A (en) Head protection for safety helmet
CN108567192B (en) Omnidirectional anti-collision structure of safety helmet
TWI730453B (en) Pad, helmet, method of assembling a pad for mounting to a helmet, and method of manufacturing a helmet
US20030140400A1 (en) Integral complex buffing structure of safety helmet
TW201922128A (en) helmet
US11766085B2 (en) Omnidirectional energy management systems and methods
EP0770338B1 (en) Cap body of a helmet
CN205409842U (en) One-piece safety helmet structure
JP2022505077A (en) Impact protection helmet
JP7026265B2 (en) Improved multi-layer safety helmet
JP2006500485A (en) Helmets, especially racing driver helmets
CN206659224U (en) Omnidirectional anti-collision structure of safety helmet
JPH1072719A (en) Safety cap
TWM546704U (en) Omni-directional anti-collision structure of safety helmet
JP3563044B2 (en) Helmet
TWM474363U (en) Reinforcing structure of safety helmet
CN108567191A (en) Multi-layer floatable omnidirectional shock absorbing structure of safety helmet
JP2021147731A (en) Helmet
JP3825106B2 (en) Head protector for safety helmet

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3212126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250