[go: up one dir, main page]

JP3209297B2 - 表面疵判別装置 - Google Patents

表面疵判別装置

Info

Publication number
JP3209297B2
JP3209297B2 JP09740093A JP9740093A JP3209297B2 JP 3209297 B2 JP3209297 B2 JP 3209297B2 JP 09740093 A JP09740093 A JP 09740093A JP 9740093 A JP9740093 A JP 9740093A JP 3209297 B2 JP3209297 B2 JP 3209297B2
Authority
JP
Japan
Prior art keywords
flaw
type
detection device
signal
optical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09740093A
Other languages
English (en)
Other versions
JPH06308049A (ja
Inventor
勇人 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09740093A priority Critical patent/JP3209297B2/ja
Publication of JPH06308049A publication Critical patent/JPH06308049A/ja
Application granted granted Critical
Publication of JP3209297B2 publication Critical patent/JP3209297B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、鋼板等の帯状板材の表
面に発生する表面疵のグレード判定を行う表面疵判別装
置に関するものである。
【0002】
【従来の技術】一般に、鋼帯の表面に発生する表面疵の
グレードは、疵の深さの他、疵種によっても大きく左右
される。つまり疵種によって被害度合が異なるため、疵
種を正確に判別しなければならない。そこで特開平4−
142412号公報に示されるように、光学式の表面疵
検出装置により検出された検出信号から疵種を判別する
第1のニューラルネットと、前記光学式の表面疵検出装
置の検出信号及び第1のニューラルネットからの疵種の
判定信号より疵グレードを判定する第2のニューラルネ
ットとよりなるものが知られている。
【0003】しかし光学式の表面疵検出装置の検出信
号に基づき、鋼板表面に発生した疵がどの疵種に含まれ
るかを一台のニューラルネットにより判別するため、ニ
ューラルネットが大規模なものとなって疵種判別のため
の学習に時間がかかるうえに、場合によっては学習が収
束しないこともある。また新たな疵種をニューラルネ
ットに追加させる場合、再学習を行わねばならず膨大な
学習時間がかかることとなり、一台の大規模ニューラル
ネットで全ての疵種判別を網羅しようとする場合、最適
解が得られる保証のないニューラルネットでは有限時間
内に学習が収束せず実用不可能になりかねないという
問題があり、しかも一台のニューラルネットで全ての疵
種を判別するため、コンピュータの負荷が大きく疵種判
別に時間がかかるという問題もあった。
【0004】
【発明が解決しようとする課題】本発明の解決すべき課
題は、前記のような問題をなくし、疵種判別の時間を短
縮するとともに、疵種判別ニューラルネットの学習が確
実に収束し、且つ新たな疵種の追加に伴う疵種判別ニュ
ーラルネットの再学習をなくすことにある。
【0005】
【課題を解決するための手段】本発明は、表面疵を検出
する光学式表面疵検出装置に接続されて該光学式表面疵
検出装置の検出信号から演算して疵信号強度を出力する
演算部と、前記光学式表面疵検出装置に接続される判別
疵種別毎に当該種別の疵か否かの判別を行う多数の疵種
判別ニューラルネットとを疵グレード判定部に接続した
ことを特徴とするものである。
【0006】
【作用】本発明は、走行する帯状板材の表面を光学式表
面疵検出装置により走査し、該帯状板材に表面疵が検出
されると、判別疵種別毎に判別を行う多数の疵種判別ニ
ューラルネットは検出された表面疵信号がそれぞれ学習
された疵種パターンと同一か否かを判別して判別信号を
疵グレード判定部に出力する。このとき光学式表面疵検
出装置の検出信号から疵の強度を演算して疵信号強度を
出力する演算部により、疵グレード判別部に疵信号強度
が入力される。そして疵グレード判定部は疵種判別ニュ
ーラルネットより出力された疵種の判別信号と演算部か
らの疵信号強度とから疵種に応じた被害度や表面疵の大
きさを総合判断して帯状板材Wの疵グレードの判定を行
うものである。
【0007】
【実施例】次に、本発明を図示の実施例に基づいて詳細
に説明する。1は光学式表面疵検出装置であり、該光学
式表面疵検出装置1はレーザ発振器2と、該レーザ発振
器2からのレーザ光を帯状板材表面に走査させる回転ミ
ラー4と、該帯状板材Wから反射される反射光が入射さ
れる光電変換装置5と、該光電変換装置5により電気信
号に変換された検出信号のフィルタリング処理を行う信
号前処理部6と、信号前処理部6より出力される検出信
号をディジタル化するアナログ・ディジタル変換装置7
及び該アナログ・ディジタル変換装置7のディジタル信
号を取り込むメモリ8とからなるものである。
【0008】101 〜10n は光学式表面疵検出装置1
のメモリ8に接続される疵種判別ニューラルネットであ
り、該各疵種判別ニューラルネット10にはそれぞれ
別疵種別に対応する疵種パターンが学習記憶されてい
る。11は光学式表面疵検出装置1のメモリ8に取り込
まれた検出信号から疵の強度を演算して疵信号強度を出
力する演算部である。12は演算部11と疵種判別ニュ
ーラルネット10に接続される疵グレード判定部で、該
疵グレード判定部12は光学式表面疵検出装置1のメモ
リ8から演算部11を介して入力される疵信号強度と疵
種判別ニューラルネット10より入力される疵種の判別
信号とから被害度や疵の大きさを総合判断して帯状板材
の疵グレードの判定を行うものである。13は回転ミラ
ー4を回転させるモータである。
【0009】このように構成されたものは、走行する帯
状板材に、レーザ発振器2より照射されるレーザ光を回
転ミラー4により走査させ、該帯状板材より反射された
反射光を光電変換装置5により電気信号に変換するとと
もに、電気信号に変換された検出信号を信号前処理部6
によりフィルタリング処理を行う。表面疵が存在すれば
反射光が乱されるので、このフィルタリング処理された
検出信号には疵種に応じた特定の波形が現れる。このよ
うにして得られた表面疵信号をアナログ・ディジタル変
換装置7によりディジタル化し、光学式表面疵検出装置
1のメモリ8に取り込む。そして光学式表面疵検出装置
1のメモリ8に入力された表面疵信号を、判別疵種別毎
に疵種パターンが学習されているそれぞれの疵種判別ニ
ューラルネット10に入力すれば、各疵種判別ニューラ
ルネット10は並行して同時に学習記憶された疵種パタ
ーンと表面疵信号パターンが同一か否かを判定すること
となる。
【0010】そして疵種判別ニューラルネット10によ
り疵種が特定され、疵種の判定信号が疵グレード判定部
12に入力される。このとき光学式表面疵検出装置1の
メモリ8に取り込まれた検出信号が演算部11により演
算され、疵信号強度として疵グレード判定部12に入力
されるので、疵グレード判定部12は疵種判別ニューラ
ルネット10からの疵種の判別信号と演算部11からの
疵信号強度から疵種に応じた被害度や疵の大きさを総合
判断する。
【0011】
【発明の効果】本発明は前記説明によって明らかなよう
に、光学式表面疵検出装置の検出信号を判別疵種別毎
判別を行う多数の疵種判別ニューラルネットを設けたか
ら、各疵種判別ニューラルネットは小規模でよく、学習
を確実に収束させることができ、しかも新たに疵種を追
加する場合には、新たな疵種の判別を行う新たな疵種判
別ニューラルネットを光学式表面疵検出装置と疵グレー
ド判定部間に接続させて既存の疵種判別ニューラルネッ
トと並設させ、新たに追加された疵種判別ニューラルネ
ットだけに追加される疵種の学習を行えばよいので、従
来に比較して学習時間を大幅に短縮することができるこ
ととなり、極めて柔軟性に富んだ表面疵判別装置とする
ことができる。さらに各疵種判別ニューラルネットは並
行して同時に疵種の判別を行うため判別処理時間を短縮
することができる。しかも疵種判別ニューラルネットを
用いなくとも判別できる疵信号強度は、疵種判別ニュー
ラルネットと並列に光学式表面疵検出装置と接続された
演算部により行うため、演算部による時間的遅れを生じ
ることなく、疵種判別ニューラルネットの負荷を低減す
ることができるので、判別処理時間をさらに短縮できる
こととなる。従って、本発明は従来の問題点を解決した
表面疵判別装置として業界にもたらすところ極めて大な
ものである。
【図面の簡単な説明】
【図1】本発明の実施例を示す説明図である。
【図2】本発明の光学式表面疵検出装置を示す説明図で
ある。
【符号の説明】
1 光学式表面疵検出装置 10 疵種判別ニューラルネット 11 演算部 12 疵グレード判定部
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 21/84 - 21/958

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】 表面疵を検出する光学式表面疵検出装置
    (1) に接続されて該光学式表面疵検出装置(1) の検出信
    号から演算して疵信号強度を出力する演算部(11)と、前
    記光学式表面疵検出装置(1) に接続される判別疵種別
    に当該種別の疵か否かの判別を行う多数の疵種判別ニュ
    ーラルネット(10)とを疵グレード判定部(12)に接続した
    ことを特徴とする表面疵判別装置。
JP09740093A 1993-04-23 1993-04-23 表面疵判別装置 Expired - Fee Related JP3209297B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09740093A JP3209297B2 (ja) 1993-04-23 1993-04-23 表面疵判別装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09740093A JP3209297B2 (ja) 1993-04-23 1993-04-23 表面疵判別装置

Publications (2)

Publication Number Publication Date
JPH06308049A JPH06308049A (ja) 1994-11-04
JP3209297B2 true JP3209297B2 (ja) 2001-09-17

Family

ID=14191473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09740093A Expired - Fee Related JP3209297B2 (ja) 1993-04-23 1993-04-23 表面疵判別装置

Country Status (1)

Country Link
JP (1) JP3209297B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111598827A (zh) * 2019-02-19 2020-08-28 富泰华精密电子(郑州)有限公司 外观瑕疵检测方法、电子装置及存储介质
JP7052778B2 (ja) * 2019-07-17 2022-04-12 Jfeスチール株式会社 ベルトコンベアのベルト異常監視方法及びベルト異常監視装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2940933B2 (ja) * 1989-05-20 1999-08-25 株式会社リコー パターン認識方式
JPH0695076B2 (ja) * 1989-10-31 1994-11-24 新日本製鐵株式会社 神経回路網による鋼板表面疵検査方法
JP2758260B2 (ja) * 1990-10-04 1998-05-28 株式会社東芝 欠陥検査装置
JPH04238207A (ja) * 1991-01-22 1992-08-26 Toshiba Corp 欠陥検査装置
JPH0785013B2 (ja) * 1991-05-14 1995-09-13 川崎製鉄株式会社 鋼板の表面等級判別方法

Also Published As

Publication number Publication date
JPH06308049A (ja) 1994-11-04

Similar Documents

Publication Publication Date Title
US5963654A (en) Apparatus and method for monitoring performance of an image capture device
EP0563897A1 (en) Defect inspection system
JPH01239439A (ja) 表面検査装置
JPH05280960A (ja) 欠陥検査装置
JP3209297B2 (ja) 表面疵判別装置
Hu et al. Automatic detection of sound knots and loose knots on sugi using gray level co-occurrence matrix parameters
JP2019530096A (ja) 不要部分を除去するためのデジタル画像の処理
EP0008010B1 (en) Method of detecting flaws on surfaces
JP3490809B2 (ja) 金属帯の表面疵検査方法および装置
Batchelor et al. Defect detection on the internal surfaces of hydraulics cylinders for motor vehicles
CN112485329A (zh) 基于热成像与超声相结合检测排污口的方法、装置及系统
JP3202330B2 (ja) 欠陥検査装置
JPH0829145A (ja) 表面欠陥検査方法
JP3523945B2 (ja) 表面検査方法
JPH04238207A (ja) 欠陥検査装置
JPS6256974B2 (ja)
JPH05280959A (ja) 欠陥検査装置
JP3297945B2 (ja) 鋼板表面欠陥検出方法
JPH06347415A (ja) パーティクル検査装置およびその検査方法
JPH05164701A (ja) 表面検査方法
JPS59180451A (ja) 表面検査装置
JPH06138055A (ja) 表面疵検査方法
JPH0469331B2 (ja)
JPH0627037A (ja) 欠陥検査装置
JPH0815178A (ja) 鋼板表面疵判別方法

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010622

LAPS Cancellation because of no payment of annual fees