[go: up one dir, main page]

JP3207412B2 - Method for producing powdered phenolic resin - Google Patents

Method for producing powdered phenolic resin

Info

Publication number
JP3207412B2
JP3207412B2 JP06409790A JP6409790A JP3207412B2 JP 3207412 B2 JP3207412 B2 JP 3207412B2 JP 06409790 A JP06409790 A JP 06409790A JP 6409790 A JP6409790 A JP 6409790A JP 3207412 B2 JP3207412 B2 JP 3207412B2
Authority
JP
Japan
Prior art keywords
phenol
reaction
phenolic resin
compound
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06409790A
Other languages
Japanese (ja)
Other versions
JPH03265619A (en
Inventor
文一郎 富田
清人 土井
敦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP06409790A priority Critical patent/JP3207412B2/en
Publication of JPH03265619A publication Critical patent/JPH03265619A/en
Application granted granted Critical
Publication of JP3207412B2 publication Critical patent/JP3207412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な熱硬化性を有する粉状のフェノール
系共縮合樹脂の製造方法に関するものである。更に詳し
くはフェノール類とアミノ化合物の共縮合体であって優
れた耐久性、耐熱性、耐加水分解性、速硬化性、保存安
定性を有し、成型材料、接着剤、積層板、発泡体等とし
て工業上有用なフェノール系共縮合樹脂に関するもので
ある。
The present invention relates to a method for producing a novel thermosetting powdery phenolic co-condensation resin. More specifically, it is a co-condensate of phenols and amino compounds and has excellent durability, heat resistance, hydrolysis resistance, fast curing, storage stability, molding materials, adhesives, laminates, foams The present invention relates to a phenolic co-condensation resin which is industrially useful as such.

〔従来の技術〕[Conventional technology]

従来、熱硬化性樹脂であるフェノールとホルムアルデ
ヒドの縮合してなるフェノール樹脂やアミノ化合物とホ
ルムアルデヒドの縮合してなる尿素樹脂、メラミン樹脂
等は、成型材料、接着剤等として工業上広く用いられて
いる。一般にフェノール樹脂は優れた耐久性、耐熱性、
耐加水分解性を有するが硬化が遅いという欠点を有す
る。尿素樹脂、メラミン樹脂等のアミノ系樹脂は硬化性
はよいが、耐久性、耐熱性、耐加水分解性は、不十分で
ある。例えば尿素樹脂は、屋外の使用に耐えない。そこ
で両者の長所を合わせ持つ共縮合樹脂が、望まれてい
た。
Conventionally, phenol resins formed by condensation of phenol and formaldehyde, which are thermosetting resins, urea resins formed by condensation of formaldehyde with amino compounds, and melamine resins have been widely used industrially as molding materials, adhesives, and the like. . Generally, phenolic resin has excellent durability, heat resistance,
It has hydrolysis resistance, but has the disadvantage of slow curing. Amino resins such as urea resins and melamine resins have good curability, but have insufficient durability, heat resistance and hydrolysis resistance. For example, urea resins do not withstand outdoor use. Therefore, a co-condensation resin having both advantages has been desired.

しかし、単なる混合物では性能の向上は、少なく保存
安定性も悪く比較的短時間でゲル化や分離してしまう欠
点があった。そしてアミノ化合物どうしの縮合反応は、
フェノール類とアミノ化合物の共縮合反応に優先するの
で共縮合率の高い樹脂の製造は困難であった。そしてア
ミノ化合物どうしの結合はフェノール類とアミノ化合物
の結合やフェノール類どうしの結合にくらべ一般に耐熱
性、耐加水分解性に劣るので、アミノ化合物間の結合の
存在するような共縮合樹脂は、耐久性がアミノ系樹脂の
それに近くなってしまい十分に改良された共縮合樹脂と
はならない。近年の機器分析技術の飛躍的発展によって
フェノール・アミノ化合物共縮合樹脂中のフェノールや
アミノ化合物の自己縮合とフェノールとアミノ化合物間
の共縮合の存在割合を定量的に知る事が出来るようにな
ったが従来公知の製造方法では共縮合の存在割合は、0
−2%と低かった。
However, a mere mixture has little improvement in performance and poor storage stability, and has a drawback that it gels and separates in a relatively short time. And the condensation reaction between amino compounds is
It has been difficult to produce a resin having a high cocondensation rate because it has priority over the cocondensation reaction between a phenol and an amino compound. Since the bond between amino compounds is generally inferior in heat resistance and hydrolysis resistance to the bond between phenols and amino compounds or the bond between phenols, co-condensation resins in which bonds between amino compounds exist are durable. The properties are close to those of amino-based resins, and it is not a sufficiently improved co-condensation resin. The rapid development of instrumental analysis technology in recent years has made it possible to quantitatively determine the self-condensation ratio of phenol and amino compounds and the co-condensation between phenol and amino compounds in phenol-amino compound co-condensation resins. However, in the conventionally known production method, the co-condensation ratio is 0%.
It was as low as -2%.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、フェノールとアミノ化合物の共縮合に
ついて鋭意検討の結果、フェノール類とアルデヒド類の
初期縮合物と、尿素類を酸性水系溶媒中で反応させるこ
とで容易に共縮合率が向上し硬化性と耐久性に優れたフ
ェノール類とアミノ化合物の共縮合物が得られることを
見いだし、新規フェノール誘導体及びその製造方法につ
いて出願した(特開平3−95152号)。しかしこの方法
では得られる共縮合樹脂は粘稠性液体であった。該樹脂
は、アセトン等の溶剤には易溶であり溶解させれば低粘
度の溶液になり取扱が容易になるが健康上の問題から溶
剤の使用は好ましくない。そこで取扱上粒状が粉状にす
ることが望ましいが、該樹脂の水分を除去し安定な粒状
または粉状の固形物として取り出すことは出来なかっ
た。
The present inventors have conducted intensive studies on the cocondensation of phenol and amino compounds, and as a result, the cocondensation rate was easily improved by reacting an initial condensate of phenols and aldehydes with urea in an acidic aqueous solvent. They have found that a co-condensate of a phenol and an amino compound having excellent curability and durability can be obtained, and have filed an application for a novel phenol derivative and a method for producing the same (Japanese Patent Application Laid-Open No. 3-95152). However, the co-condensation resin obtained by this method was a viscous liquid. The resin is easily soluble in a solvent such as acetone. If dissolved, the resin becomes a low-viscosity solution and is easy to handle. However, use of a solvent is not preferred due to health problems. For this reason, it is desirable that the particles be powdery for handling, but it was not possible to remove water from the resin and take out the resin as stable granular or powdery solids.

そこでこれらの難点を克服するためさらに検討を重ね
た結果、全く新規な方法で共縮合率の高い、粉状で保存
安定性に優れたフェノール系共縮合樹脂を製造でき、そ
の目的を満足しうることを見いだし、この知見に基づき
本発明を完成するに至った。
Therefore, as a result of further studies to overcome these difficulties, a phenolic co-condensation resin having a high co-condensation rate, a powdery form and excellent storage stability can be produced by a completely novel method, and the object can be satisfied. The present invention has been completed based on this finding.

すなわち本発明は、 フェノール類と、フェノール類とアルデヒド類を反応
させてなる化合物Aから成る群より選ばれた1種または
2種以上と、 アミノ化合物(ただしメラミンは除く)と、アミノ化
合物(ただしメラミンは除く)とアルデヒド類を反応さ
せてなる化合物Bから成る群より選ばれた1種または2
種以上、 を必ず化合物Bを含むように選んで、酸性下で反応させ
た後中性またはアルカリ性で反応させるに当り、 該とに含まれるアルデヒド類と、フェノール類とア
ミノ化合物の合計モル比が1〜5:1であり、 その任意の反応段階でフッ化ナトリウム、フッ化カ
リウム及びフッ化アンモニウムからなる群から選ばれる
少なくとも1つのアルカリ金属塩もしくはアンモニウム
塩と、 カルシウム、マグネシウム及びストロンチウムからな
る群より選ばれた少なくとも1つのアルカリ土類金属の
塩より選ばれた1種または2種以上、 を添加することを特徴とする粉末フェノール系樹脂の製
造方法である。該とに含まれるアルデヒド類と、フ
ェノール類とアミノ化合物の合計モル比が1〜5:1であ
ると、とは、初期縮合物の場合には、初期縮合物を原料
組成に戻して上記比率を計算したときに上記範囲にある
ことをいう。
That is, the present invention relates to a phenol, one or more compounds selected from the group consisting of compounds A obtained by reacting phenols and aldehydes, an amino compound (excluding melamine), and an amino compound ( One or two selected from the group consisting of compound B obtained by reacting aldehydes with melamine)
At least one kind is selected so as to always contain the compound B, and after reacting under acidic or neutral or alkaline conditions, the total molar ratio of aldehydes, phenols and amino compounds contained therein is At least one alkali metal salt or ammonium salt selected from the group consisting of sodium fluoride, potassium fluoride and ammonium fluoride, and a group consisting of calcium, magnesium and strontium. A method for producing a powdered phenolic resin, comprising adding one or more selected from at least one salt of an alkaline earth metal selected from the group consisting of: When the total molar ratio of the aldehydes and phenols to the amino compound contained in the above is 1 to 5: 1, in the case of the initial condensate, the initial condensate is returned to the raw material composition, and Is in the above range when is calculated.

本発明により得られる粉末フェノール系樹脂は、好ま
しくは、 フェノール類とアミノ化合物とアルデヒド類の縮合体
であって全メチレン基に占めるフェノール類−アミノ化
合物の共縮合由来のメチレン基の割合(共縮合率)が20
%以上である付加縮合反応生成物を含む粉末フェノール
系共縮合樹脂である。
The powdered phenolic resin obtained according to the present invention is preferably a condensate of a phenol, an amino compound and an aldehyde, and a ratio of a methylene group derived from a co-condensation of the phenol-amino compound to all methylene groups (co-condensation). Rate) is 20
% Phenol-based co-condensation resin containing an addition condensation reaction product of at least 10%.

本発明の共縮合樹脂において共縮合率が20%以上、好
ましくは20%〜90%であり、20%未満では性能の改良が
不十分であり、90%を越えると、反応工程が複雑になり
経済的に不利になることがある。
In the co-condensation resin of the present invention, the co-condensation ratio is 20% or more, preferably 20% to 90%. When the co-condensation ratio is less than 20%, the performance is insufficiently improved, and when it exceeds 90%, the reaction process becomes complicated. May be economically disadvantaged.

この共縮合の割合は13C−NMRの分析で容易に知る事が
出来る。フェノール類とアミノ化合物は−CH2−、−CH2
−O−CH2−等を介して結合しているが、メチレン基
(−CH2−)のシグナルの存在位置は30−100ppmであ
る。その中で共縮合に基づくシグナルは40.5、44.2、4
6.2、49.2ppm付近に存在する。つまり30−100ppmの積分
強度に対する40.5、44.2、46.2、49.2ppm付近のシグナ
ル強度の合計の比率が共縮合率である。
The rate of this co-condensation can be easily known by 13 C-NMR analysis. Phenol and amino compounds -CH 2 -, - CH 2
Although they are bonded via —O—CH 2 — or the like, the position of the signal of the methylene group (—CH 2 —) is 30 to 100 ppm. Among them, the signals based on co-condensation are 40.5, 44.2, 4
Present at around 6.2 and 49.2 ppm. That is, the ratio of the sum of the signal intensities around 40.5, 44.2, 46.2, and 49.2 ppm to the integrated intensity of 30 to 100 ppm is the cocondensation rate.

本発明により得られる粉末フェノール系共縮合樹脂は
黄色から茶色の微細な10〜400ミクロンの粉末であり良
好な流れ特性を有し、取扱いは極めて容易である。しか
し本発明により得られる樹脂粉末の粒径は上記範囲に限
定されるものではない。
The powdered phenolic co-condensation resin obtained according to the present invention is a fine powder of 10 to 400 microns in yellow to brown color, has good flow characteristics, and is extremely easy to handle. However, the particle size of the resin powder obtained by the present invention is not limited to the above range.

以下、本発明の熱硬化性樹脂である粉末フェノール系
共縮合樹脂の効率的な製造方法について具体的に説明す
る。
Hereinafter, a method for efficiently producing the powdered phenolic co-condensation resin which is the thermosetting resin of the present invention will be specifically described.

本発明において反応成分との混合物及び/又は反
応物に成分とを分割又は一括して添加し反応させる
ことで得られる。
In the present invention, it can be obtained by dividing or adding the components to the mixture with the reaction components and / or the reaction product and reacting them.

本発明に用いられるフェノール類とは、フェノール、
レソルシノール、カテコール、フェニルフェノール、ア
ルキルフェノールから成る群より選ばれた1種または2
種以上である。アルキルフェノールとは炭素数12以下の
アルキル基の置換したフェノールであり、具体的にはク
レゾール、キシレノール、p−ターシャリーブチルフェ
ノール、p−オクチルフェノール、メシトール、メチル
フェノール、イソプロピルフェノール、イソアミルフェ
ノール等を例示できる。
The phenols used in the present invention are phenol,
One or two selected from the group consisting of resorcinol, catechol, phenylphenol, and alkylphenol
More than a species. The alkylphenol is a phenol substituted with an alkyl group having 12 or less carbon atoms, and specific examples thereof include cresol, xylenol, p-tert-butylphenol, p-octylphenol, mesitol, methylphenol, isopropylphenol, and isoamylphenol.

アミノ化合物とは、尿素、チオ尿素、グアナミン類、
グアニジン類、ヒダントイン類からなる群より選ばれた
1種または2種以上である。グアナミン類とは、メラミ
ンの一つのアミノ基を水素原子、脂肪族・芳香族炭化水
素またはその誘導体で置換した化合物でありホルモグア
ナミン、アセトグアナミン、ベンゾグアナミン、フェニ
ルアセトグアナミン等を例示できる。グアニジン類と
は、グアニジン及びその塩類であり塩酸グアニジン、酢
酸グアニジン等を例示できる。ヒダントイン類とは、ヒ
ダントイン及びヒダントイン誘導体であり、ヒダントイ
ン誘導体とはジメチルヒダントイン、ジエチルヒダント
イン、ヒダントイン酢酸等を例示できる。
Amino compounds include urea, thiourea, guanamines,
One or more selected from the group consisting of guanidines and hydantoins. Guanamines are compounds in which one amino group of melamine is substituted with a hydrogen atom, an aliphatic / aromatic hydrocarbon or a derivative thereof, and examples thereof include formomoguanamine, acetoguanamine, benzoguanamine, and phenylacetoguanamine. Guanidines are guanidine and its salts, and examples thereof include guanidine hydrochloride and guanidine acetate. Hydantoins are hydantoin and hydantoin derivatives, and examples of hydantoin derivatives include dimethylhydantoin, diethylhydantoin, and hydantoin acetic acid.

アルデヒド類とは、ホルムアルデヒド、アセトアルデ
ヒド、n−ブチルアルデヒド、パラホルムアルデヒド、
トリオキサン等である。
Aldehydes are formaldehyde, acetaldehyde, n-butyraldehyde, paraformaldehyde,
And trioxane.

反応成分において化合物Aは、アルデヒド類とフェ
ノール類を好ましくはモル比0.5〜2.0:1で反応させて得
られる。反応モル比が0.5より低い場合は共縮合樹脂の
物理的強度が不十分となることがあり、2.0を越えると
共縮合樹脂の粒径が大きくなり保存中に凝集しやすくな
る。反応pHは、8.0〜13.0が望ましい。8.0より低いと分
子量が高くなりやすく、13を越えると塩基性触媒量が多
くなりすぎ微粒子の形成に悪影響を及ぼす。塩基性触媒
としては、アルカリ金属の水酸化物、酸化物等のアルカ
リ金属化合物やアルカリ土類金属の水酸化物、酸化物等
のアルカリ土類金属化合物やアミン系化合物が使用され
る。例えばNaOH、KOH、Ca(OH)、CaO、Mg(OH)
アンモニア等を例示できる。化合物Aの重量平均分子量
は1000以下であることが望ましい。1000以上ではとの
反応の際にゲル状物を生じやすく好ましくない。
In the reaction components, compound A is obtained by reacting aldehydes and phenols, preferably in a molar ratio of 0.5 to 2.0: 1. When the reaction molar ratio is lower than 0.5, the physical strength of the co-condensation resin may be insufficient, and when it exceeds 2.0, the particle size of the co-condensation resin becomes large and the co-condensation resin tends to aggregate during storage. The reaction pH is desirably 8.0 to 13.0. If it is less than 8.0, the molecular weight tends to be high, and if it exceeds 13, the amount of the basic catalyst becomes too large and adversely affects the formation of fine particles. Examples of the basic catalyst include alkali metal compounds such as hydroxides and oxides of alkali metals, alkaline earth metal compounds such as hydroxides and oxides of alkaline earth metals, and amine compounds. For example, NaOH, KOH, Ca (OH) 2 , CaO, Mg (OH) 2 ,
Ammonia and the like can be exemplified. The weight average molecular weight of compound A is desirably 1000 or less. If it is more than 1000, a gel-like substance is apt to be formed during the reaction with the above, which is not preferable.

反応成分において化合物Bは、本発明の必須成分で
ありアルデヒド類とアミノ化合物を好ましくはモル比2.
0〜10.0:1、pH1〜3.9で反応させて得られる。pHが1.0よ
り低いと後の反応工程で必要とされるアルカリ触媒が多
くなり好ましくない。3.9を越えると反応中に硬化する
場合があるので好ましくない。化合物Bの重量平均分子
量は、500以下であることが望ましい。500以上では、ゲ
ル状物を生じる可能性があるので好ましくない。
In the reaction components, compound B is an essential component of the present invention, and preferably contains aldehydes and amino compounds in a molar ratio of 2.
It is obtained by reacting at 0 to 10.0: 1 at pH 1 to 3.9. If the pH is lower than 1.0, an alkali catalyst required in the subsequent reaction step increases, which is not preferable. If it exceeds 3.9, it may be hardened during the reaction, which is not preferable. The compound B preferably has a weight average molecular weight of 500 or less. If it is more than 500, a gel-like substance may be generated, which is not preferable.

反応成分はフェノール類と化合物Aから成る群より
選ばれた1種または2種以上でありフェノール類の比率
の大きい事が望ましい。化合物Aの比率が大きいと、粉
末状とはならずにゲル状物を生じやすくなる。化合物A
の比率は好ましくは混合物全体の50wt%以下とする。
The reaction components are one or more selected from the group consisting of phenols and compound A, and it is desirable that the ratio of phenols is large. When the ratio of the compound A is large, a gel-like substance is likely to be formed without forming a powder-like substance. Compound A
Is preferably not more than 50% by weight of the whole mixture.

反応成分はアミノ化合物と化合物Bから成る群より
選ばれた1種または2種以上であり化合物Bは必須成分
である。化合物Bの比率は混合物全体の50wt%以上であ
る事が望ましい。
The reaction component is one or more selected from the group consisting of an amino compound and a compound B, and the compound B is an essential component. It is desirable that the ratio of the compound B is 50% by weight or more of the whole mixture.

反応成分との反応は2段階で行われる。1段目
は、実質的に共縮合が起こる反応であり、2段目は、共
縮合と一部自己縮合が起こる反応である。第1段階は酸
性下で行わなければならず、pH1.0−5.5が好ましく、更
に好ましくは2.0−5.0である。1.0より低いと反応が早
すぎて反応のコントロールが困難である。5.5より高い
と、反応時間が長すぎる。酸性触媒としては、塩酸、硫
酸、硝酸、リン酸等の鉱酸や酢酸、ギ酸、フタル酸、マ
レイン酸、シュウ酸等の有機酸及び反応液を酸性とでき
るそれらの塩を用いることが出来る。第2段階は中性ま
たはアルカリ性で行わなければならない。反応pHは、8.
0〜13.0が望ましい。触媒としては、アルカリ金属の水
酸化物、酸化物等のアルカリ金属化合物やアルカリ土類
金属の水酸化物、酸化物等のアルカリ土類金属化合物や
アミン系化合物が使用される。例えばNaOH、KOH、Ca(O
H)、CaO、Mg(OH)、アンモニア等を例示できる。
反応時間は、反応温度、反応pH等により異なり特に制限
はないが第1段は通常数分以上であり、実質的に共縮合
させる。その後、第2段を共縮合と一部自己縮合が起こ
るに十分な時間行うことができる。反応温度は100℃以
下が好ましい。
The reaction with the reaction components takes place in two stages. The first stage is a reaction in which co-condensation substantially occurs, and the second stage is a reaction in which co-condensation and partial self-condensation occur. The first step must be carried out under acidic conditions, preferably at pH 1.0-5.5, more preferably at 2.0-5.0. If it is lower than 1.0, the reaction is too fast to control the reaction. If it is higher than 5.5, the reaction time is too long. Examples of the acidic catalyst include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, organic acids such as acetic acid, formic acid, phthalic acid, maleic acid, and oxalic acid, and salts thereof that can make the reaction solution acidic. The second step must be performed neutral or alkaline. The reaction pH is 8.
0 to 13.0 is desirable. As the catalyst, alkali metal compounds such as hydroxides and oxides of alkali metals, alkaline earth metal compounds such as hydroxides and oxides of alkaline earth metals, and amine compounds are used. For example, NaOH, KOH, Ca (O
H) 2 , CaO, Mg (OH) 2 , ammonia and the like.
The reaction time varies depending on the reaction temperature, the reaction pH and the like, and is not particularly limited. Thereafter, the second stage can be performed for a time sufficient for co-condensation and partial self-condensation to occur. The reaction temperature is preferably 100 ° C or lower.

との反応比率は、フェノール類とアミノ化合物の
モル比で1:10〜10:1である。この場合のフェノール類と
は、化合物Aに含まれるフェノール類も含む。また同様
にアミノ化合物も化合物Bに含まれるものも含む。フェ
ノール類が多すぎると硬化性が低下し、アミノ化合物が
多すぎると耐久性が低下する。そしてとに含まれる
アルデヒド類と、フェノール類とアミノ化合物の合計の
モル比が1〜5:1である事が必要である。
Is from 1:10 to 10: 1 in molar ratio of phenols to amino compounds. In this case, the phenols include the phenols contained in the compound A. Similarly, amino compounds include those contained in compound B. If the amount of phenols is too large, the curability decreases, and if the amount of the amino compound is too large, the durability decreases. It is necessary that the total molar ratio of the aldehydes, the phenols, and the amino compounds contained therein is 1 to 5: 1.

反応成分との反応中に、及びの添加により粉
末の共縮合樹脂が得られる。その理論的背景は定かでな
いが、との反応で生じた水不溶の塩類とフェノール
系樹脂が適当に凝集して微小な粉末が得られるものと推
定される。
During the reaction with the reaction components, and by the addition, a powdered co-condensation resin is obtained. Although the theoretical background is not clear, it is presumed that water-insoluble salts produced by the reaction with phenolic resin are appropriately aggregated to obtain fine powder.

成分の添加量は、に対して0.1〜7wt%である。0.
1wt%未満では、保存安定性が低下し、7wt%を越えると
硬化した粉末フェノール系共縮合樹脂の強度が低下す
る。
The addition amount of the component is 0.1 to 7% by weight. 0.
If the amount is less than 1% by weight, the storage stability decreases, and if it exceeds 7% by weight, the strength of the cured powdery phenolic co-condensation resin decreases.

成分の添加量は、中のアルカリ金属塩又はアンモ
ニウム塩と中のアルカリ土類金属塩のモル比として好
ましくは1.0〜3.0:1である。
The addition amount of the component is preferably 1.0 to 3.0: 1 as a molar ratio of the alkali metal salt or ammonium salt therein to the alkaline earth metal salt therein.

成分との添加は、との反応における任意の段
階に行えばよいが、との反応の第2段階の初期で加
えることが望ましい。との反応生成物は水溶性であ
るが、とを加えることにより微細な沈殿を生じる。
The addition of the component may be performed at any stage in the reaction with, but is preferably added at the beginning of the second stage of the reaction with. The reaction product with is water-soluble, but the addition of produces a fine precipitate.

反応成分とととの反応は、水系溶媒中で行わ
れることが望ましいが、メタノール、エタノール、アセ
トン、イソプロピルアルコール、ジオキサン等の水と可
溶な有機溶媒を1−20%含んでもかまわない。とと
とを反応させると淡黄色または淡褐色の直径10−40
0ミクロンの球状のフェノール系樹脂が沈殿物として得
られる。この球状のフェノール系樹脂を通常の方法でろ
過かし、水で洗浄し常圧または減圧下で乾燥して、目的
の粉末状樹脂とする。乾燥するとき100℃以上に加熱す
ると粒子が融着しやすいので好ましくない。
The reaction with the reaction component is desirably performed in an aqueous solvent, but may contain 1 to 20% of a water-soluble organic solvent such as methanol, ethanol, acetone, isopropyl alcohol, and dioxane. When reacted with and, light yellow or light brown diameter of 10-40
A 0 micron spherical phenolic resin is obtained as a precipitate. The spherical phenolic resin is filtered by a usual method, washed with water, and dried under normal pressure or reduced pressure to obtain a target powdery resin. Heating to 100 ° C. or more during drying is not preferred because the particles tend to fuse.

本発明の粉末フェノール系樹脂の、実際の使用に際し
ては従来のアルカリレソール樹脂とほぼ同様に行えばよ
いが、硬化性が向上しているので加熱時間は、短くてか
まわない。
When the powdered phenolic resin of the present invention is actually used, it may be performed in substantially the same manner as the conventional alkali resole resin, but the heating time may be short because the curability is improved.

本発明の粉末フェノール共縮合樹脂の主たる用途は成
型材料用であるが通常のフェノール樹脂が使用できる全
ての用途に使用可能である。さらに要求される耐水性能
等によって従来の尿素ホルムアルデヒド樹脂、フェノー
ルホルムアルデヒド樹脂等と混合して使用しても構わな
い。
Although the main use of the powdered phenol co-condensation resin of the present invention is for molding materials, it can be used for all applications in which ordinary phenol resins can be used. Further, depending on the required water resistance and the like, a conventional urea formaldehyde resin, a phenol formaldehyde resin or the like may be used as a mixture.

また、必要に応じて熱可塑性樹脂、帯電防止剤、充填
剤、増量剤、防腐剤、着色剤等の添加剤を加えることが
出来る。
If necessary, additives such as a thermoplastic resin, an antistatic agent, a filler, a bulking agent, a preservative, and a coloring agent can be added.

〔作用〕[Action]

所定の反応比率のフェノール系共縮合樹脂の反応工程
に特定の無機塩類を添加することで粉末フェノール系共
縮合樹脂がえられた。この樹脂は淡色のサラサラとした
融着のない粉末であるので取扱が容易で、従来技術でと
うてい達成できなかった安価で硬化の早い耐久性、耐加
水分解性、保存安定性に優れた樹脂である。
A powdered phenol-based co-condensation resin was obtained by adding specific inorganic salts to the reaction step of the phenol-based co-condensation resin at a predetermined reaction ratio. This resin is a light-colored, smooth, non-fused powder that is easy to handle, and is an inexpensive, fast-curing resin with excellent durability, hydrolysis resistance, and storage stability that could not be achieved by conventional techniques. is there.

〔実施例〕〔Example〕

本発明を一層具体的に示すために次の実施例を示す
が、本発明はこれらの実施例により何ら限定されるもの
ではない。
The following examples are shown in order to more specifically illustrate the present invention, but the present invention is not limited to these examples.

実施例1(粉末フェノール尿素共縮合樹脂) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコに尿素120g、37%ホルマリン486g、を仕込み
溶解させた後50%硫酸を加えpHを2.0に調整した後、90
℃で30分間反応させた。さらにフェノールを190g加え90
℃で、60分反応させた。ついで25%水酸化ナトリウムを
加えpHを9.4に調整し、塩化カルシウム15gとフッ化ナト
リウム6gを加え90℃で60分間反応させ冷却した後1000ml
の水に投入し、ろ過、洗浄、真空乾燥を行い淡黄色の粉
末フェノール系樹脂を得た。この樹脂の共縮合率は56%
だった。この樹脂を温度35℃湿度80%の恒温恒湿槽に6
ケ月間保存したが、融着など起こさず変化は無かった。
Example 1 (Powder phenol urea co-condensation resin) 120 g of urea and 486 g of 37% formalin were charged and dissolved in a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel. After adjusting to 2.0, 90
The reaction was carried out at 30 ° C for 30 minutes. Add 190 g of phenol and 90
The reaction was carried out at 60 ° C for 60 minutes. Then, 25% sodium hydroxide was added to adjust the pH to 9.4, 15 g of calcium chloride and 6 g of sodium fluoride were added, reacted at 90 ° C. for 60 minutes, cooled, and then cooled to 1000 ml.
, And filtered, washed and dried under vacuum to obtain a pale yellow powdery phenolic resin. The co-condensation rate of this resin is 56%
was. Put this resin in a thermo-hygrostat at 35 ° C and 80% humidity.
It was stored for a period of 5 months, but there was no change without fusing.

実施例2(粉末フェノールチオ尿素共縮合樹脂) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにチオ尿素152g、37%ホルマリン486gを仕込
み溶解させた後50%硫酸を加えpHを2.0に調整した後、9
0℃で30分間反応させた。さらに80%フェノールを200
g、硫酸カルシウム9g、フッ化ナトリウム4gを加え90℃
でさらに60分反応させた。ついで25%水酸化ナトリウム
を加えpHを9.4に調整し90℃で60分間反応させ冷却し100
0mlの水に投入し、ろ過、洗浄、真空乾燥を行い淡黄色
の粉末フェノール系樹脂を得た。この樹脂の共縮合率は
53%だった。この樹脂を温度35℃湿度80%の恒温恒湿槽
に6ケ月間保存したが、融着などを起こさず、変化は無
かった。
Example 2 (Powder phenol thiourea co-condensation resin) 152 g of thiourea and 486 g of 37% formalin were charged and dissolved in a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel. After adjusting to 2.0, 9
The reaction was performed at 0 ° C. for 30 minutes. Add 80% phenol to 200
g, 9 g of calcium sulfate and 4 g of sodium fluoride at 90 ° C
For an additional 60 minutes. Then, the pH was adjusted to 9.4 by adding 25% sodium hydroxide, reacted at 90 ° C for 60 minutes, and cooled to 100
Poured into 0 ml of water, filtered, washed and dried under vacuum to obtain a pale yellow powdery phenolic resin. The co-condensation rate of this resin is
53%. This resin was stored in a thermo-hygrostat at a temperature of 35 ° C. and a humidity of 80% for 6 months, but there was no fusion and no change.

実施例3(粉末フェノールベンゾグアナミン共縮合樹
脂) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにベンゾグアナミン152gと37%ホルマリン48
6g、水150gを仕込み溶解させた後50%硫酸を加えpHを2.
5に調整した後、90℃で30分間反応させた。さらに硫酸
ストロンチウム23gとフッ化アンモニウム10gを加え80%
フェノールを234gを加え90℃でさらに60分反応させた。
ついで25%水酸化ナトリウムを加えpHを9.4に調整し90
℃で120分間反応させた。樹脂液を冷却し、1000mlの水
に投入し、ろ過、洗浄、真空乾燥を行い淡黄色の粉末フ
ェノール系樹脂を得た。この樹脂の共縮合率は45%だっ
た。この樹脂を温度35℃湿度80%の恒温恒湿槽に6ケ月
間保存したが、変化は無かった。
Example 3 (Powder phenol benzoguanamine co-condensation resin) In a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, 152 g of benzoguanamine and 37% formalin 48 were added.
After 6 g and 150 g of water were charged and dissolved, 50% sulfuric acid was added to adjust the pH to 2.
After adjusting to 5, the reaction was carried out at 90 ° C. for 30 minutes. Further add 23g of strontium sulfate and 10g of ammonium fluoride to 80%
234 g of phenol was added and reacted at 90 ° C. for another 60 minutes.
Then, the pH was adjusted to 9.4 by adding 25% sodium hydroxide, and 90
The reaction was performed at 120 ° C. for 120 minutes. The resin solution was cooled, poured into 1000 ml of water, filtered, washed and vacuum dried to obtain a pale yellow powdery phenolic resin. The cocondensation rate of this resin was 45%. This resin was stored in a thermo-hygrostat at a temperature of 35 ° C. and a humidity of 80% for 6 months, but there was no change.

参考例1(初期縮合物A−1) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにフェノール188g、37%ホルマリン405g、25
%NaOH35.4gを仕込み冷却しながら溶解させた後75℃で
4時間反応させた後35℃まで冷却した。これを初期縮合
物A−1とする。
Reference Example 1 (Initial condensate A-1) In a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, 188 g of phenol, 405 g of 37% formalin, 25
35.4 g of NaOH was dissolved while cooling, and then reacted at 75 ° C. for 4 hours, and then cooled to 35 ° C. This is designated as initial condensate A-1.

参考例2(初期縮合物A−2) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにレゾルシノール220g、37%ホルマリン405
g、25%NaOH22.4gを仕込み冷却しながら溶解させた後70
℃で2時間反応させた後35℃まで冷却した。これを初期
縮合物A−2とする。
Reference Example 2 (Initial condensate A-2) In a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, 220 g of resorcinol, 37% formalin 405 were added.
g, 25% NaOH (22.4 g)
After reacting at 35 ° C for 2 hours, it was cooled to 35 ° C. This is designated as initial condensate A-2.

参考例3(初期縮合物B−1) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにチオ尿素130g、37%ホルマリン486g、50%
硫酸20.0gを仕込み溶解させた後70℃で1時間反応させ
た後35℃まで冷却した。これを初期縮合物B−1とす
る。
Reference Example 3 (Initial condensate B-1) In a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, 130 g of thiourea, 486 g of 37% formalin, and 50% of thiourea were added.
20.0 g of sulfuric acid was charged and dissolved, reacted at 70 ° C. for 1 hour, and cooled to 35 ° C. This is designated as an initial condensate B-1.

参考例4(初期縮合物B−2) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコに塩酸グアニジン191g、37%ホルマリン486
g、50%硫酸7gを仕込み溶解させた後70℃で1時間反応
させた後40℃まで冷却した。これを初期縮合物B−2と
する。
Reference Example 4 (Initial condensate B-2) A reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel was charged with 191 g of guanidine hydrochloride and 486 of 37% formalin.
g and 50 g of sulfuric acid (7 g) were dissolved therein, reacted at 70 ° C. for 1 hour, and cooled to 40 ° C. This is referred to as an initial condensate B-2.

参考例5(初期縮合物B−3) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにベンゾグアナミン、374g、37%ホルマリン
486g、50%硫酸22.0gを仕込み冷却しながら溶解させた
後70℃で1時間反応させた後35℃まで冷却した。これを
初期縮合物B−3とする。
Reference Example 5 (Initial condensate B-3) Benzoguanamine, 374 g, 37% formalin was placed in a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel.
486 g and 22.0 g of 50% sulfuric acid were charged and dissolved while cooling. After reacting at 70 ° C. for 1 hour, the mixture was cooled to 35 ° C. This is referred to as an initial condensate B-3.

実施例4 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコに初期縮合物A−1、30gとフェノール100g
と初期縮合物B−1、350g硝酸カルシウム8gとフッ化ナ
トリウム3gを加え90gと尿素6gを仕込み50%硫酸を加えp
Hを2.0に調整した後90℃で30分間反応させた。ついで25
%水酸化ナトリウムを加えpHを9.4に調整し85℃で60分
反応させた。35℃まで冷却し、1000mlの水に投入し、ろ
過、洗浄、真空乾燥を行い淡黄色の粉末フェノール系樹
脂を得た。この樹脂を温度35℃湿度80%の恒温恒湿槽に
6カ月間保存したが、変化は無かった。
Example 4 A reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel was charged with 30 g of the initial condensate A-1 and 100 g of phenol.
And initial condensate B-1, 350 g, 8 g of calcium nitrate and 3 g of sodium fluoride, 90 g and 6 g of urea were added, and 50% sulfuric acid was added.
After adjusting H to 2.0, the reaction was carried out at 90 ° C. for 30 minutes. Then 25
% Sodium hydroxide was added to adjust the pH to 9.4, and the mixture was reacted at 85 ° C. for 60 minutes. The mixture was cooled to 35 ° C., poured into 1000 ml of water, filtered, washed, and vacuum dried to obtain a pale yellow powdery phenolic resin. This resin was stored in a thermo-hygrostat at a temperature of 35 ° C. and a humidity of 80% for 6 months, but there was no change.

実施例5 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコに初期縮合物A−2、30gとフェノール100g
と初期縮合物B−2、350g塩酸グアニジン6gを仕込50%
硫酸を加えpHを2.0に調整した後90℃で30分間反応させ
た。ついで25%水酸化ナトリウムを加え塩化カルシウム
10gとフッ化ナトリウム5gを加えpHを9.4に調整し90℃で
60分間反応させた。35℃まで冷却し、1000mlの水に投入
し、ろ過、洗浄、真空乾燥を行い淡黄色の粉末フェノー
ル系樹脂を得た。この樹脂を温度35℃湿度80%の恒温恒
湿槽に6ケ月間保存したが、変化は無かった。
Example 5 30 g of initial condensate A-2 and 100 g of phenol were placed in a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel.
And initial condensate B-2, 350g guanidine hydrochloride 6g 50%
After adjusting the pH to 2.0 by adding sulfuric acid, the mixture was reacted at 90 ° C. for 30 minutes. Then add 25% sodium hydroxide and add calcium chloride
Adjust pH to 9.4 by adding 10 g and 5 g of sodium fluoride, and at 90 ° C
The reaction was performed for 60 minutes. The mixture was cooled to 35 ° C., poured into 1000 ml of water, filtered, washed, and vacuum dried to obtain a pale yellow powdery phenolic resin. This resin was stored in a thermo-hygrostat at a temperature of 35 ° C. and a humidity of 80% for 6 months, but there was no change.

比較例1 還流冷却器、温度計、撹拌器、滴下ロートを備えた三
角フラスコにフェノール200g,37%ホルマリン200g,水10
0g、ヘキサメチレンテトラミン20g,塩化カルシウム8.4
g,7%フッ化ナトリウム溶液40gを添加し85℃で90分間反
応させ35℃まで冷却し、1000mlの水に投入し、ろ過、洗
浄、真空乾燥を行い淡黄色の粉末フェノール樹脂を得
た。この樹脂を温度35℃湿度、80%の恒温恒湿槽に6カ
月間保存したが、変化は無かった。
Comparative Example 1 A conical flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel was charged with 200 g of phenol, 200 g of 37% formalin, and 10 g of water.
0 g, hexamethylenetetramine 20 g, calcium chloride 8.4
g, 40 g of a 7% sodium fluoride solution, reacted at 85 ° C. for 90 minutes, cooled to 35 ° C., poured into 1000 ml of water, filtered, washed, and vacuum dried to obtain a pale yellow powder phenol resin. This resin was stored in a thermo-hygrostat at a temperature of 35 ° C. and a humidity of 80% for 6 months, but there was no change.

比較例2 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにベンゾグアナミン152gと37%ホルマリン35
0g,水150gを仕込み溶解させた後50%硫酸を加えpHを2.5
に調整した後、90℃で30分間反応させた。さらに塩化カ
ルシウム1gとフッ化ナトリウム0.1gを加え80%フェノー
ルを334g加え90℃でさらに60分反応させた。ついで25%
水酸化ナトリウムを加えpHを9.4に調整し90℃で120分間
反応させた。樹脂液を冷却し粒状フェノール系共縮合樹
脂を得た。1000mlの水に投入し、ろ過、洗浄、真空乾燥
を行い淡黄色の粒状フェノール系樹脂を得た。この樹脂
の共縮合率は56%だった。この樹脂を温度35℃、湿度80
%の恒温恒湿槽に1.5ケ月間保存したが、粒状樹脂が融
着した。
Comparative Example 2 In a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, 152 g of benzoguanamine and 35% of 37% formalin were added.
0 g and water 150 g were added and dissolved, and then 50% sulfuric acid was added to adjust the pH to 2.5.
Then, the reaction was carried out at 90 ° C. for 30 minutes. Further, 1 g of calcium chloride and 0.1 g of sodium fluoride were added, 334 g of 80% phenol was added, and the mixture was further reacted at 90 ° C. for 60 minutes. Then 25%
The pH was adjusted to 9.4 by adding sodium hydroxide, and the mixture was reacted at 90 ° C. for 120 minutes. The resin liquid was cooled to obtain a granular phenolic co-condensation resin. Poured into 1000 ml of water, filtered, washed and vacuum dried to obtain pale yellow granular phenolic resin. The cocondensation rate of this resin was 56%. This resin is heated to a temperature of 35 ° C and a humidity of 80
% For 1.5 months, but the granular resin was fused.

比較例3 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにフェノール200g,37%ホルマリン517g,NaOH
を42.4gを仕込み冷却しながら溶解させた後50℃で8時
間反応させた。45℃まで冷却した後、メラミン127g、塩
化マグネシウム15gとフッ化カリウム7gを加え85℃で60
分間反応させ冷却した。得られた反応物は、赤褐色で粘
土状であり共縮合率は1%であった。粉末の樹脂として
分離することはできなかった。
Comparative Example 3 A reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel was charged with 200 g of phenol, 517 g of 37% formalin, and NaOH.
Was dissolved while cooling, and then reacted at 50 ° C. for 8 hours. After cooling to 45 ° C, add 127 g of melamine, 15 g of magnesium chloride and 7 g of potassium fluoride, and add 60 g at 85 ° C.
Allowed to react for 5 minutes and cooled. The obtained reaction product was red-brown and clay-like, and had a cocondensation rate of 1%. It could not be separated as a powdered resin.

比較例4 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにフェノール200g,37%ホルマリン517g,Ca
(OH)を11.8gを仕込み冷却しながら溶解させた後50
℃で8時間反応させた。35℃まで冷却した後50%硫酸30
gを滴下ロートより滴下させた。この時pHは3.5だった。
そしてメラミン127gを加え85℃で60分間反応させた。塩
化カルシウム12g,フッ化ナトリウム4gを加え35℃まで冷
却しNaOH 10%を加えさらに冷却した。得られた樹脂液
は赤褐色で共縮合は35%だった。1000mlの水に投入し、
ろ過、洗浄、真空乾燥を行い淡黄色の直径数ミリのフェ
ノール系樹脂を得た。この樹脂の共縮合率は56%だっ
た。この樹脂を温度35℃、湿度80%の恒温恒湿槽に1カ
月間保存すると粒子が融着した。
Comparative Example 4 A reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel was charged with 200 g of phenol, 517 g of 37% formalin,
After charging 11.8 g of (OH) 2 and dissolving while cooling, 50
The reaction was performed at 8 ° C. for 8 hours. After cooling to 35 ° C, 50% sulfuric acid 30
g was dropped from the dropping funnel. At this time, the pH was 3.5.
Then, 127 g of melamine was added and reacted at 85 ° C. for 60 minutes. 12 g of calcium chloride and 4 g of sodium fluoride were added, and the mixture was cooled to 35 ° C., and 10% of NaOH was added, followed by further cooling. The resin solution obtained was reddish brown and the cocondensation was 35%. Put into 1000ml of water,
Filtration, washing and vacuum drying were performed to obtain a pale yellow phenolic resin having a diameter of several millimeters. The cocondensation rate of this resin was 56%. When this resin was stored in a thermo-hygrostat at a temperature of 35 ° C. and a humidity of 80% for one month, particles were fused.

(硬化速度の測定) 以上のように合成した樹脂の硬化挙動をTBA(Torsion
al Braid Analisis:東洋精機製、レオログラフTBA)を
用いて測定した。その結果を表1に示す。
(Measurement of curing speed) The curing behavior of the resin synthesized as described above was measured using TBA (Torsion
al Braid Analisis: manufactured by Toyo Seiki Co., Ltd., rheograph TBA). Table 1 shows the results.

(流れ特性) 上記実施例1〜5及び比較例1〜4で得られた樹脂に
ついて、JIS K−6911に準じて樹脂の流れ特性を測定し
た。その結果を表2に示す。
(Flow characteristics) The flow characteristics of the resins obtained in Examples 1 to 5 and Comparative Examples 1 to 4 were measured according to JIS K-6911. Table 2 shows the results.

(成型試験) 得られた各樹脂を150℃に加熱した金型を50kg/cm2
加圧下に30分処理し、10mm角で厚み3.5mmの試験片を作
製した。各試験片をJIS K−6911に準じて圧縮強度を測
定した。その結果を表2に示す。
(Molding Test) Each of the obtained resins was heated at 150 ° C. in a mold for 30 minutes under a pressure of 50 kg / cm 2 to prepare a 10 mm square test piece having a thickness of 3.5 mm. Each test piece was measured for compressive strength according to JIS K-6911. Table 2 shows the results.

(発明の効果) 本発明方法により得られるフェノールアミノ共縮合樹
脂は、表1、表2に示すように従来のアミノ樹脂と同等
以上の速硬化性を有し、従来のフェノール樹脂と同等の
耐熱性を示す。さらに保存安定性に優れ、流れ特性にも
優れる。また成型品の物性も優れる。
(Effect of the Invention) As shown in Tables 1 and 2, the phenol-amino co-condensation resin obtained by the method of the present invention has a rapid curing property equal to or higher than that of the conventional amino resin, and a heat resistance equivalent to that of the conventional phenol resin. Shows sex. Furthermore, it has excellent storage stability and excellent flow characteristics. Also, the physical properties of the molded product are excellent.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−8695(JP,A) 特開 昭56−95918(JP,A) 特開 昭58−142907(JP,A) 特開 昭49−34997(JP,A) 特開 昭49−34998(JP,A) 特開 平3−95152(JP,A) 特開 平3−243613(JP,A) 特開 平3−265618(JP,A) 特開 昭61−51019(JP,A) 特開 昭61−127719(JP,A) 特公 昭43−28479(JP,B1) 米国特許3364167(US,A) 英国特許1057400(GB,B) (58)調査した分野(Int.Cl.7,DB名) C08G 14/00 - 14/14 C08G 8/00 - 8/38 C08G 12/00 - 12/46 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-53-8695 (JP, A) JP-A-56-95918 (JP, A) JP-A-58-142907 (JP, A) JP-A-49-149 JP-A-49-34998 (JP, A) JP-A-3-95152 (JP, A) JP-A-3-243613 (JP, A) JP-A-3-265618 (JP, A) JP-A-61-51019 (JP, A) JP-A-61-127719 (JP, A) JP-B-43-28479 (JP, B1) US Patent 3,364,167 (US, A) UK Patent 1,057,400 (GB, B) ( 58) Field surveyed (Int.Cl. 7 , DB name) C08G 14/00-14/14 C08G 8/00-8/38 C08G 12/00-12/46 CA (STN) REGISTRY (STN)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】フェノール類と、フェノール類とアルデ
ヒド類を反応させてなる化合物Aから成る群より選ばれ
た1種または2種以上と、 アミノ化合物(ただしメラミンは除く)と、アミノ化
合物(ただしメラミンは除く)とアルデヒド類を反応さ
せてなる化合物Bから成る群より選ばれた1種または2
種以上、 を必ず化合物Bを含むように選んで、酸性下で反応させ
た後中性またはアルカリ性で反応させるに当り、 該とに含まれるアルデヒド類と、フェノール類とア
ミノ化合物の合計モル比が1〜5:1であり、 その任意の反応段階でフッ化ナトリウム、フッ化カリ
ウム及びフッ化アンモニウムからなる群から選ばれる少
なくとも1つのアルカリ金属塩もしくはアンモニウム塩
と、 カルシウム、マグネシウム及びストロンチウムからな
る群より選ばれた少なくとも1つのアルカリ土類金属の
塩より選ばれた1種または2種以上、 を添加し、かつ、反応成分がに対して0.1〜7wt%で
あることを特徴とする粉末フェノール系樹脂の製造方
法。
1. A phenol, one or more compounds selected from the group consisting of compounds A obtained by reacting a phenol and an aldehyde, an amino compound (excluding melamine), and an amino compound (excluding melamine). One or two selected from the group consisting of compound B obtained by reacting aldehydes with melamine)
At least one kind is selected so as to always contain the compound B, and after reacting under acidic or neutral or alkaline conditions, the total molar ratio of aldehydes, phenols and amino compounds contained therein is At least one alkali metal salt or ammonium salt selected from the group consisting of sodium fluoride, potassium fluoride and ammonium fluoride, and a group consisting of calcium, magnesium and strontium. One or more selected from at least one salt of an alkaline earth metal selected from the group consisting of: and a reactive component is 0.1 to 7% by weight based on the weight of the phenol powder. Method of manufacturing resin.
【請求項2】フェノール類がフェノール、レゾルシノー
ル、カテコール、フェニルフェノール及びアルキルフェ
ノールから成る群より選ばれた1種または2種以上であ
る請求項(1)の粉末フェノール系樹脂の製造方法。
2. The method according to claim 1, wherein the phenol is at least one member selected from the group consisting of phenol, resorcinol, catechol, phenylphenol and alkylphenol.
【請求項3】アミノ化合物が、尿素、チオ尿素、グアニ
ジン類、グアナミン類及びヒダントイン類から成る群よ
り選ばれた1種または2種以上である請求項(1)の粉
末フェノール系樹脂の製造方法。
3. The method according to claim 1, wherein the amino compound is at least one member selected from the group consisting of urea, thiourea, guanidines, guanamines and hydantoins. .
【請求項4】アルデヒド類が、ホルムアルデヒド、アセ
トアルデヒド、n−ブチルアルデヒド、パラホルムアル
デヒド及びトリオキサンより選ばれた1種または2種以
上である請求項(1)の粉末フェノール系樹脂の製造方
法。
4. The method according to claim 1, wherein the aldehyde is at least one selected from formaldehyde, acetaldehyde, n-butyraldehyde, paraformaldehyde and trioxane.
【請求項5】化合物Bが、アミノ化合物とアルデヒド類
をpH1.0〜3.9で反応させてなる生成物である請求項
(1)の粉末フェノール系樹脂の製造方法。
5. The method according to claim 1, wherein the compound B is a product obtained by reacting an amino compound with an aldehyde at a pH of 1.0 to 3.9.
【請求項6】化合物Bのアミノ化合物とアルデヒド類の
反応モル比が、1:2〜10である請求項(1)又は(5)
の粉末フェノール系樹脂の製造方法。
6. The method according to claim 1, wherein the reaction molar ratio between the amino compound of compound B and the aldehyde is 1: 2 to 10.
A method for producing a powdered phenolic resin.
【請求項7】反応の任意の段階でアルデヒド類を添加す
る請求項(1)の粉末フェノール系樹脂の製造方法。
7. The method for producing a powdered phenolic resin according to claim 1, wherein an aldehyde is added at any stage of the reaction.
【請求項8】反応成分とに含まれるフェノール類と
アミノ化合物のモル比が10:1〜1:10である請求項(1)
の粉末フェノール系樹脂の製造方法。
8. The method according to claim 1, wherein the molar ratio of the phenols to the amino compound contained in the reaction components is 10: 1 to 1:10.
A method for producing a powdered phenolic resin.
【請求項9】成分中のアルカリ金属塩又はアンモニウ
ム塩と中のアルカリ土類金属塩のモル比が1.0〜3.0:1
である請求項(1)の粉末フェノール系樹脂の製造方
法。
9. The molar ratio of the alkali metal salt or ammonium salt in the component to the alkaline earth metal salt in the component is 1.0 to 3.0: 1.
The method for producing a powdered phenolic resin according to claim (1).
【請求項10】成分及び/又はを分割して添加し反
応させることを特徴とする請求項(1)の粉末フェノー
ル系樹脂の製造方法。
10. The method for producing a powdery phenolic resin according to claim 1, wherein the components and / or the components are added and reacted.
【請求項11】前記粉末フェノール系樹脂が、フェノー
ル類とアミノ化合物とアルデヒド類の縮合体であって全
メチレン基に占めるフェノール類−アミノ化合物の共縮
合由来のメチレン基の割合が20%以上である付加縮合反
応生成物である請求項(1)の粉末フェノール系樹脂の
製造方法。
11. The powdery phenolic resin is a condensate of a phenol, an amino compound and an aldehyde, and the proportion of methylene groups derived from co-condensation of the phenol-amino compound in all methylene groups is 20% or more. The method for producing a powdered phenolic resin according to claim 1, which is a product of an addition condensation reaction.
JP06409790A 1990-03-16 1990-03-16 Method for producing powdered phenolic resin Expired - Fee Related JP3207412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06409790A JP3207412B2 (en) 1990-03-16 1990-03-16 Method for producing powdered phenolic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06409790A JP3207412B2 (en) 1990-03-16 1990-03-16 Method for producing powdered phenolic resin

Publications (2)

Publication Number Publication Date
JPH03265619A JPH03265619A (en) 1991-11-26
JP3207412B2 true JP3207412B2 (en) 2001-09-10

Family

ID=13248235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06409790A Expired - Fee Related JP3207412B2 (en) 1990-03-16 1990-03-16 Method for producing powdered phenolic resin

Country Status (1)

Country Link
JP (1) JP3207412B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597001B (en) * 2011-06-14 2016-04-06 旭有机材工业株式会社 The manufacture method of urea-modified novolak phenolics and the urea-modified novolak phenolics obtained by the method and the coated sand obtained with it
CN111607052B (en) * 2019-02-26 2021-04-13 江南大学 A kind of preparation method of melanin-like particles and melanin-like particles

Also Published As

Publication number Publication date
JPH03265619A (en) 1991-11-26

Similar Documents

Publication Publication Date Title
AU2003230556A1 (en) Spray-dried phenol formaldehyde resins
US5910521A (en) Benzoxazine polymer composition
JPS6117848B2 (en)
US4640971A (en) Microspherical particles of resole resins and process for producing the same
JPH11508307A (en) Strongly basic tertiary amino alcohols as catalysts
JP3207412B2 (en) Method for producing powdered phenolic resin
JPS61258819A (en) Production of spherulitic cured phenolic resin particle
US6372878B1 (en) Resols, process for their production and use
JP3190055B2 (en) Novel phenolic co-condensation resin with improved water solubility and its production method
JP3207411B2 (en) Method for producing phenolic co-condensation resin
JP3207410B2 (en) Method for producing phenol melamine co-condensation resin
US2524079A (en) Production of a copolymer monohydric phenol-dihydric phenol-aldehyde resin in the presence of an alkaline catalyst
CA1049174A (en) Process for the production of phenol-acetone formaldehyde binders for weather-proof wood materials and product
JP4013111B2 (en) Method for producing resole resin
JP3159443B2 (en) Manufacturing method of spherical phenol resin
JP4661087B2 (en) Method for producing solid resol type phenolic resin
JPS62230815A (en) Quick-curing novolak type phenolic resin and production thereof
JPH02167327A (en) Production of fine powdery phenolic resin
JP2646464B2 (en) Thermosetting phenolic resin composition
JP2832458B2 (en) Novel phenol derivatives and their preparation
JPH06184405A (en) Phenol resin composition
JPS58104918A (en) Solid phenolic resin modified with triazine
JPH1180300A (en) Production of microspherical cured phenolic resin particle
JP2005239949A (en) Phenolic resin composition and cured product thereof
WO2000009579A1 (en) Phenol/triazine derivative co-condensate resin and process for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees