[go: up one dir, main page]

JP3203149B2 - Emitter / receiver for spectrometer - Google Patents

Emitter / receiver for spectrometer

Info

Publication number
JP3203149B2
JP3203149B2 JP09842195A JP9842195A JP3203149B2 JP 3203149 B2 JP3203149 B2 JP 3203149B2 JP 09842195 A JP09842195 A JP 09842195A JP 9842195 A JP9842195 A JP 9842195A JP 3203149 B2 JP3203149 B2 JP 3203149B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
irradiation
section
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09842195A
Other languages
Japanese (ja)
Other versions
JPH08292147A (en
Inventor
精一 瀧澤
千明 酒井
慶介 五十嵐
良吾 山内
信矢 森本
進 上中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP09842195A priority Critical patent/JP3203149B2/en
Publication of JPH08292147A publication Critical patent/JPH08292147A/en
Application granted granted Critical
Publication of JP3203149B2 publication Critical patent/JP3203149B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、分光分析装置用の投受
光装置に関し、詳しくは、測定用光線を試料に照射する
照射部、及び、試料からの反射光を受光する受光部の構
成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting / receiving device for a spectroscopic analyzer, and more particularly, to an irradiation unit for irradiating a sample with a measuring light beam and a light receiving unit for receiving reflected light from the sample. .

【0002】[0002]

【従来の技術】かかる分光分析装置用の投受光装置にお
いて、従来は、照射用光ファイバ及び受光用光ファイバ
を、少なくとも先端部では、一方が環状に形成され、そ
の内部に他方が近接して位置する同軸部に形成し、照射
用光ファイバの先端面を照射部として、及び、受光用光
ファイバの先端面を受光部として夫々機能させるように
構成していた。同軸部を、外側の環状の光ファイバとそ
の内部に位置する光ファイバとを近接させて形成するこ
とにより、同軸部の太さを細くするとともに同軸部にフ
レキシブル性を備えさせて、操作性が優れたものにして
いた。
2. Description of the Related Art Conventionally, in such a light emitting / receiving device for a spectrometer, one of an irradiation optical fiber and a light receiving optical fiber is formed in a ring at least at a tip portion, and the other is close to the inside thereof. It is formed in a coaxial portion located so that the tip end surface of the irradiation optical fiber functions as an irradiation portion and the tip end surface of the light receiving optical fiber functions as a light receiving portion. By forming the coaxial part close to the outer annular optical fiber and the optical fiber located inside, the thickness of the coaxial part is reduced and the coaxial part is provided with flexibility, which improves operability. It was excellent.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
分光分析装置用の投受光装置では、照射部と受光部とが
近接しているため、受光部は、照射部から照射された測
定用光線が試料の表面で反射した表面反射光しか受光で
きず、試料の内部で拡散反射した拡散反射光は受光でき
なかった。従って、試料の内部の成分の分析ができなか
った。ちなみに、同軸部を、外側の環状の光ファイバと
その内部に位置する光ファイバとの間隔を広くして形成
することが想定されるが、この場合、同軸部の太さが太
くなるとともに、フレキシブル性が低下するので、操作
性が悪くなり、実用的でない。
However, in the conventional light emitting / receiving device for a spectroscopic analyzer, the irradiating section and the light receiving section are close to each other. Only the surface reflection light reflected on the surface of the sample could be received, and the diffuse reflection light diffusely reflected inside the sample could not be received. Therefore, the components inside the sample could not be analyzed. By the way, it is supposed that the coaxial portion is formed by widening the interval between the outer annular optical fiber and the optical fiber located inside the outer coaxial portion. Since the operability is reduced, the operability is deteriorated, which is not practical.

【0004】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、試料からの拡散反射光の受光が
可能で、しかも、操作性に優れた分光分析装置用の投受
光装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light emitting / receiving device for a spectroscopic analyzer capable of receiving diffuse reflected light from a sample and having excellent operability. To provide.

【0005】[0005]

【課題を解決するための手段】本発明による分光分析装
置用の投受光装置の第1の特徴構成は、測定用光線を試
料に照射する照射部、及び、前記試料からの反射光を受
光する受光部とを、前記照射部の照射方向視において、
一方が環状に形成されて、その内部に他方が位置する状
態で備えた検出部が設けられ、その検出部に、光源から
の測定用光線を前記照射部に導く照射用光ファイバと、
前記受光部が受光した光を導く受光用光ファイバが接続
され、前記検出部は、その先端部において、前記照射部
と前記受光部とを間隔を隔てて備え、前記照射部及び前
記受光部のうちの外側に位置する方のものは、その先端
部の外径が、それに接続される光ファイバーよりも大径
に形成されている点にある。
According to a first aspect of the present invention, there is provided an irradiating section for irradiating a sample with a measuring light beam and receiving reflected light from the sample. A light-receiving unit, in the irradiation direction of the irradiation unit,
One is formed in an annular shape, and a detection unit provided in a state where the other is located inside is provided, and in the detection unit, an irradiation optical fiber for guiding a measurement light beam from a light source to the irradiation unit,
A light-receiving optical fiber for guiding light received by the light-receiving unit is connected, and the detection unit includes, at a distal end thereof, the irradiation unit and the light-receiving unit at an interval, the detection unit including the irradiation unit and the light-receiving unit. The one located on the outer side is characterized in that the outer diameter of the tip is formed to be larger than the optical fiber connected to it.

【0006】第2の特徴構成は、前記照射用光ファイバ
及び前記受光用光ファイバは、一方が環状に形成され
て、その内部に他方が位置する同軸状に形成されている
点にある。
A second characteristic configuration is that one of the irradiation optical fiber and the light receiving optical fiber is formed in a ring shape, and the other is formed coaxially in which the other is located.

【0007】第3の特徴構成は、前記照射部及び前記受
光部のうちの外側に位置する方のものは、基端側のファ
イバ接続部に近づくほど小径となる光通路を備えている
点にある。
A third characteristic configuration is that one of the irradiating portion and the light receiving portion which is located on the outside has an optical path whose diameter becomes smaller as approaching the fiber connection portion on the base end side. is there.

【0008】第4の特徴構成は、前記照射部が内側に、
前記受光部が外側に位置するように、前記検出部が構成
され、前記照射部は、基端側のファイバ接続部に近づく
ほど小径となる光通路を備えている点にある。
[0008] A fourth characteristic configuration is that the irradiating section is located inside,
The detection unit is configured such that the light receiving unit is located outside, and the irradiation unit includes an optical path having a smaller diameter as approaching the fiber connection unit on the base end side.

【0009】第5の特徴構成は、前記光通路は、前記検
出部内に光通路形成用光ファイバを挿通することにより
形成されている点にある。
A fifth characteristic configuration is that the optical path is formed by inserting an optical path forming optical fiber into the detecting section.

【0010】第6の特徴構成は、前記検出部の先端部
は、中央部が最も深くなる凹曲面状に形成されている点
にある。
A sixth characteristic configuration is that the distal end of the detection section is formed in a concave curved shape in which the center is the deepest.

【0011】[0011]

【作用】第1の特徴構成による作用は、以下の通りであ
る。照射用光ファイバ及び受光用光ファイバに接続され
る検出部は、照射部及び受光部のうちの外側に位置する
方のものを、その先端部の外径がそれに接続される光フ
ァイバーよりも大径に形成してある。従って、検出部と
の接続部分である、照射用光ファイバ及び受光用光ファ
イバの同軸部を、外側の環状の光ファイバとその内部に
位置する光ファイバとを近接させて形成しても、検出部
は、その先端部においては、照射部と受光部とを間隔を
隔てて備えさせることができるのである。
The operation of the first characteristic configuration is as follows. The detecting unit connected to the irradiation optical fiber and the light receiving optical fiber is the outer one of the irradiation unit and the light receiving unit, and the outer diameter of the tip is larger than the optical fiber connected to it. It is formed in. Therefore, even if the coaxial portion of the irradiation optical fiber and the light receiving optical fiber, which is the connection portion with the detection portion, is formed by making the outer annular optical fiber and the optical fiber located inside thereof close to each other, the detection can be performed. The part can be provided with an irradiating part and a light receiving part at an end thereof at an interval.

【0012】第2の特徴構成によれば、検出部には、照
射用光ファイバ及び受光用光ファイバが同軸状に形成さ
れた一本の同軸プローブが接続される。
According to the second characteristic configuration, one coaxial probe in which an irradiation optical fiber and a light receiving optical fiber are formed coaxially is connected to the detection unit.

【0013】第3の特徴構成による作用は、以下の通り
である。照射部及び受光部のうちの外側に位置する方の
ものが備える光通路は、基端側のファイバ接続部に近づ
くほど小径となっている。その光通路の基端側のファイ
バ接続部の直径を、例えば、それに接続される光ファイ
バの外径と同一あるいは略同一とすると、照射部及び受
光部のうちの外側に位置する方のものを、その先端部の
外径がそれに接続される光ファイバーよりも大径に形成
しながらも、検出部と照射用光ファイバ及び受光用光フ
ァイバとの接続構成が簡単なものとなる。
The operation of the third characteristic configuration is as follows. The light path provided on the outer one of the irradiation unit and the light receiving unit has a smaller diameter as it approaches the fiber connection unit on the base end side. If the diameter of the fiber connection portion on the proximal end side of the optical path is, for example, the same or substantially the same as the outer diameter of the optical fiber connected to it, the outer one of the irradiation portion and the light receiving portion is determined. Although the outer diameter of the distal end portion is formed larger than the optical fiber connected to the distal end portion, the connection configuration between the detecting section, the irradiation optical fiber, and the light receiving optical fiber is simplified.

【0014】第4の特徴構成による作用は、以下の通り
である。内側に位置する照射部から、試料に対して測定
用光線を照射し、試料から拡散反射してきた拡散反射光
を、照射部の外側に位置する受光部で受光するので、拡
散反射光を効率よく受光することができる。従って、試
料に照射する測定用光線の光量を低減することができ
る。又、測定用光線は、先端ほど大径となる光通路から
試料に対して照射されるので、試料に対する測定用光線
の照射面積が広くなる。
The operation of the fourth characteristic configuration is as follows. A measuring light beam is irradiated to the sample from the irradiation unit located inside, and the diffuse reflection light diffusely reflected from the sample is received by the light receiving unit located outside the irradiation unit. Light can be received. Therefore, it is possible to reduce the light amount of the measuring light beam irradiated on the sample. Further, since the measurement light beam is applied to the sample from an optical path having a larger diameter at the tip, the irradiation area of the measurement light beam to the sample is increased.

【0015】第5の特徴構成によれば、光通路は、単
に、検出部内に光通路形成用光ファイバを挿通すること
により形成するので、例えば、筒状体の内周面を光の反
射が可能なように鏡面に仕上げることにより、光通路を
形成するのと比べて、光通路を簡単に形成することがで
き、その結果、検出部を簡単に製作することができる。
更に、樹脂により、光通路形成用光ファイバを光通路を
形成する状態で保形保持するようにすれば、検出部その
ものを樹脂成形にて製作することができるので、検出部
を更に簡単に製作することができる。
According to the fifth characteristic configuration, since the light path is formed simply by inserting the optical path forming optical fiber into the detecting portion, for example, the inner peripheral surface of the cylindrical body reflects light. By finishing the mirror as much as possible, the light path can be formed more easily than forming the light path, and as a result, the detector can be easily manufactured.
Further, if the optical fiber for forming the optical path is held in a state where the optical path is formed with resin, the detecting section itself can be manufactured by resin molding, so that the detecting section can be more easily manufactured. can do.

【0016】第6の特徴構成によれば、検出部の先端部
が凹曲面状であるので、リンゴやミカン等のように分析
対象の試料の外形が凸曲面状であっても、検出部の先端
部の周縁部を全周にわたって試料の表面に密着させるこ
とができるので、試料からの拡散反射光が外部に逃げる
のを抑制して効率よく受光することができる。
According to the sixth characteristic configuration, since the tip of the detection section has a concave curved surface, even if the outer shape of the sample to be analyzed such as apples or oranges has a convex curved surface, the detection section has a curved surface. Since the periphery of the tip can be brought into close contact with the surface of the sample over the entire circumference, it is possible to suppress diffused reflected light from the sample from escaping to the outside and receive light efficiently.

【0017】[0017]

【発明の効果】第1の特徴構成によれば、照射用光ファ
イバ及び受光用光ファイバの同軸部を、外側の環状の光
ファイバとその内部に位置する光ファイバとを近接させ
て形成することにより、同軸部の太さを細くするととも
に同軸部にフレキシブル性を備えさせながらも、検出部
の先端部においては、照射部と受光部とを間隔を隔てて
備えさせることができる。その結果、試料からの拡散反
射光の受光が可能で、しかも、操作性に優れた分光分析
装置用の投受光装置を提供することができるようになっ
た。
According to the first characteristic configuration, the coaxial portion of the irradiation optical fiber and the light receiving optical fiber is formed by bringing the outer annular optical fiber and the optical fiber located inside thereof into close proximity. Accordingly, while the thickness of the coaxial portion is reduced and the coaxial portion is provided with flexibility, the irradiating portion and the light receiving portion can be provided at an interval at the distal end portion of the detecting portion. As a result, it has become possible to provide a light emitting / receiving device for a spectroscopic analyzer that is capable of receiving diffuse reflected light from a sample and has excellent operability.

【0018】第2の特徴構成によれば、検出部には一本
の同軸プローブが接続されるだけであるので、操作性を
一層向上することができるようになった。
According to the second characteristic configuration, since only one coaxial probe is connected to the detection unit, the operability can be further improved.

【0019】第3の特徴構成によれば、検出部と照射用
光ファイバ及び受光用光ファイバとの接続構成を簡単に
することができるので、本発明を低コストにて実施する
ことができるようになった。
According to the third characteristic configuration, the connection structure between the detection unit and the irradiation optical fiber and the light receiving optical fiber can be simplified, so that the present invention can be implemented at low cost. Became.

【0020】第4の特徴構成によれば、試料に照射する
測定用光線の光量を低減することができること、及び、
試料に対する測定用光線の照射面積を広くすることがで
きることとの相乗作用により、試料に対する熱の影響を
可及的に抑制することができるようになった。
According to the fourth characteristic configuration, it is possible to reduce the amount of the measuring light beam irradiated on the sample, and
The synergistic effect with the fact that the irradiation area of the measurement light beam to the sample can be made large can suppress the influence of heat on the sample as much as possible.

【0021】第5の特徴構成によれば、検出部を簡単に
製作することができるので、本発明を更に低コストにて
実施することができるようになった。
According to the fifth characteristic configuration, since the detector can be easily manufactured, the present invention can be implemented at a lower cost.

【0022】第6の特徴構成によれば、試料の外形形状
にかかわらず、試料からの拡散反射光を効率よく受光す
ることができるようになった。
According to the sixth characteristic configuration, diffuse reflection light from the sample can be efficiently received regardless of the external shape of the sample.

【0023】[0023]

【実施例】以下、青果物に含まれる成分を分析する分光
分析装置用の投受光装置に本発明を適用した場合の実施
例について、図1ないし図5に基づいて説明する。図1
に示すように、分光分析装置は、光源部1と、その光源
部1からの測定用光線を試料Sに照射するとともに、試
料Sからの拡散反射光を受光する投受光装置M、その投
受光装置Mが受光した拡散反射光の分光スペクトルを得
る分光部7と、その分光部7にて得られた分光スペクト
ルに基づいて試料Sに含有される成分量を算出する信号
処理部8と、信号処理部8の算出結果を出力する出力部
9を主な構成要素として構成してある。投受光装置M
は、光源部1からの測定用光線を導く照射用光ファイバ
2と、その照射用光ファイバ2にて導かれた測定用光線
を試料Sに照射する照射部3及び試料Sからの拡散反射
光を受光する受光部4とを備えた検出部としての試料接
触アダプタ5と、受光部4が受光した光を分光部7に導
く受光用光ファイバ6とを備えて構成してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a light emitting and receiving device for a spectroscopic analyzer for analyzing components contained in fruits and vegetables will be described below with reference to FIGS. FIG.
As shown in FIG. 1, the spectroscopic analyzer includes a light source unit 1 and a light emitting / receiving device M that irradiates a sample S with a measurement light beam from the light source unit 1 and receives diffuse reflected light from the sample S. A spectroscopy unit 7 for obtaining a spectrum of the diffuse reflection light received by the apparatus M, a signal processing unit 8 for calculating the amount of components contained in the sample S based on the spectrum obtained by the spectroscopy unit 7, The output unit 9 that outputs the calculation result of the processing unit 8 is configured as a main component. Emitter / receiver M
Is an irradiation optical fiber 2 for guiding a measurement light beam from the light source unit 1, an irradiation unit 3 for irradiating the sample S with the measurement light beam guided by the irradiation optical fiber 2, and diffuse reflection light from the sample S. A sample contact adapter 5 as a detection unit having a light receiving unit 4 for receiving light; and a light receiving optical fiber 6 for guiding the light received by the light receiving unit 4 to the spectroscopic unit 7.

【0024】図1に示すように、光源部1は、赤外線光
を測定用光線として放射する光源としてのタングステン
−ハロゲンランプ11と、そのタングステン−ハロゲン
ランプ11からの測定用光線を平行光線束に成形するレ
ンズ12により構成してある。
As shown in FIG. 1, a light source unit 1 includes a tungsten-halogen lamp 11 as a light source that emits infrared light as a measuring light beam, and a measuring light beam from the tungsten-halogen lamp 11 into a parallel light beam. It is constituted by a lens 12 to be molded.

【0025】図1に示すように、照射用光ファイバ2と
受光用光ファイバ6とは、照射用光ファイバ2における
測定用光線の入射端部及び受光用光ファイバ6における
拡散反射光の出射端部を除いた部分を、環状の受光用光
ファイバ6の内部に照射用光ファイバ2が位置する同軸
プローブPに形成してある。図2及び図3に示すよう
に、同軸プローブPの先端面では、受光用光ファイバ6
の環状の先端面と照射用光ファイバ2の円状の先端面と
が面一となっている。
As shown in FIG. 1, the irradiating optical fiber 2 and the receiving optical fiber 6 are the incident end of the measuring light beam in the irradiating optical fiber 2 and the emitting end of the diffusely reflected light in the receiving optical fiber 6. The portion excluding the portion is formed on the coaxial probe P in which the irradiation optical fiber 2 is located inside the annular light receiving optical fiber 6. As shown in FIGS. 2 and 3, the light receiving optical fiber 6
And the circular end surface of the irradiation optical fiber 2 are flush with each other.

【0026】次に、図2ないし図5に基づいて、試料接
触アダプタ5について説明を加える。試料接触アダプタ
5は、外筒体51と、その外筒体51の内部にその外筒
体51と間隔を隔てて同軸状に位置する内筒体52と、
外筒体51と内筒体52とを連結する連結部材53と、
外筒体51の一端部に外嵌状に固着した取り付け筒体5
4と、その取り付け筒体54に螺挿したネジ55を備え
て構成してある。そして、取り付け筒体54を同軸プロ
ーブPに外嵌してネジ55を締め付けることにより、試
料接触アダプタ5を同軸プローブPに接続する。逆に、
試料接触アダプタ5を同軸プローブPから取り外すとき
は、ネジ55を緩めればよい。
Next, the sample contact adapter 5 will be described with reference to FIGS. The sample contact adapter 5 includes an outer cylinder 51, an inner cylinder 52 coaxially located inside the outer cylinder 51 at a distance from the outer cylinder 51,
A connecting member 53 for connecting the outer cylinder 51 and the inner cylinder 52,
Attachment cylinder 5 fixed to one end of outer cylinder 51 so as to fit externally
4 and a screw 55 screwed into the mounting cylinder 54. Then, the sample contact adapter 5 is connected to the coaxial probe P by externally fitting the mounting cylinder 54 to the coaxial probe P and tightening the screw 55. vice versa,
When removing the sample contact adapter 5 from the coaxial probe P, the screw 55 may be loosened.

【0027】内筒体52は、筒内径及び筒外径が基端側
のファイバ接続部に近づくほど小径となる截頭円錐形状
に形成するとともに、周壁の厚みが同軸プローブPに近
づくほど小となるように形成してある。更に、内筒体5
2は、その基端側のファイバ接続部においては、内径を
照射用光ファイバ2の円状の先端面の直径と略同一と
し、周壁の厚みを照射用光ファイバ2の先端面と受光用
光ファイバ6の先端面との間隔と略同一としてある。
又、内筒体52の先端部の周壁の厚みdは、20mmに
してある。又、内筒体52の内周面及び外周面は光の反
射が可能な鏡面に仕上げてある。外筒体51は、筒内径
及び筒外径が基端側のファイバ接続部に近づくほど小径
となる截頭円錐形状に形成してある。更に、外筒体51
は、その基端側のファイバ接続部においては、内径を受
光用光ファイバ6の環状の先端面の外径と略同一として
ある。又、外筒体51の内周面は、光の反射が可能な鏡
面に仕上げてある。
The inner cylindrical body 52 is formed in a truncated conical shape in which the inner diameter and the outer diameter of the cylinder become smaller as approaching the fiber connection portion on the base end side, and the thickness of the peripheral wall becomes smaller as approaching the coaxial probe P. It is formed so that it becomes. Furthermore, the inner cylinder 5
In the fiber connection portion on the base end side, the inner diameter is substantially the same as the diameter of the circular distal end surface of the irradiation optical fiber 2, and the thickness of the peripheral wall is equal to the distal end surface of the irradiation optical fiber 2 and the light receiving light. The distance from the distal end surface of the fiber 6 is substantially the same.
The thickness d of the peripheral wall at the distal end of the inner cylinder 52 is set to 20 mm. The inner peripheral surface and the outer peripheral surface of the inner cylindrical body 52 are finished to mirror surfaces capable of reflecting light. The outer cylinder body 51 is formed in a truncated cone shape in which the inner diameter and the outer diameter of the cylinder become smaller as they approach the fiber connection portion on the base end side. Further, the outer cylinder 51
In the fiber connection portion on the base end side, the inner diameter is made substantially the same as the outer diameter of the annular distal end surface of the optical fiber 6 for light reception. The inner peripheral surface of the outer cylinder 51 is finished to a mirror surface capable of reflecting light.

【0028】つまり、内筒体52における基端側のファ
イバ接続部の開口部の形状が照射用光ファイバ2の先端
面の形状と略同一となるとともに、内筒体52の基端部
と外筒体51の基端部により形成される環状の開口部の
形状が、受光用光ファイバ6の環状の先端面の形状と略
同一となるようにしてある。又、試料接触アダプタ5を
同軸プローブPの先端に接続すると、内筒体52の開口
部が照射用光ファイバ2の先端面と対向した状態で位置
し、且つ、内筒体52と外筒体51とに形成される開口
部が受光用光ファイバ6の先端面と対向した状態で位置
するように構成してある。更に、試料接触アダプタ5の
先端部は、中央部が最も深くなる凹曲面状に形成してあ
る。
That is, the shape of the opening of the fiber connection portion on the proximal end side of the inner cylindrical body 52 becomes substantially the same as the shape of the distal end surface of the irradiation optical fiber 2, and the shape of the opening of the inner cylindrical body 52 is the same as that of the inner cylindrical body 52. The shape of the annular opening formed by the base end of the cylindrical body 51 is substantially the same as the shape of the annular distal end surface of the light-receiving optical fiber 6. When the sample contact adapter 5 is connected to the distal end of the coaxial probe P, the opening of the inner cylindrical body 52 is located in a state facing the distal end surface of the irradiation optical fiber 2, and the inner cylindrical body 52 and the outer cylindrical body The opening formed in the optical fiber 51 is positioned so as to face the distal end surface of the light receiving optical fiber 6. Further, the distal end portion of the sample contact adapter 5 is formed in a concave curved shape in which the central portion is the deepest.

【0029】そして、試料接触アダプタ5の先端部を試
料Sに接触させて、タングステン−ハロゲンランプ11
を点灯する。すると、測定用光線は照射用光ファイバ2
の先端面から内筒体52内に入射して、内筒体52内を
通過し、内筒体52の先端開口部から試料Sに対して出
射する。そして、試料Sからの拡散反射光は、内筒体5
2の先端部と外筒体51の先端部とにより形成される環
状の開口部から、内筒体52と外筒体51の間の空間内
に入射して、前記空間内を通過し、内筒体52の基端部
と外筒体51の基端部とにより形成される開口部から、
受光用光ファイバ6の先端面に対して出射する。
Then, the tip of the sample contact adapter 5 is brought into contact with the sample S, and the tungsten-halogen lamp 11
Lights up. Then, the measuring light beam is applied to the irradiation optical fiber 2.
The light enters the inner cylindrical body 52 from the front end surface thereof, passes through the inner cylindrical body 52, and emerges from the front end opening of the inner cylindrical body 52 to the sample S. Then, the diffusely reflected light from the sample S is
2 enters the space between the inner cylinder 52 and the outer cylinder 51 from an annular opening formed by the tip of the second cylinder and the tip of the outer cylinder 51, passes through the space, and From the opening formed by the base end of the cylinder 52 and the base end of the outer cylinder 51,
The light is emitted to the distal end surface of the light receiving optical fiber 6.

【0030】従って、試料接触アダプタ5を上述のよう
に構成することにより、内筒体52の内部空間を、基端
側のファイバ接続部に近づくほど小径となる光通路L1
として機能させ、内筒体52と外筒体51の間の空間
を、基端側のファイバ接続部に近づくほど小径となる光
通路L2として機能させるように構成してある。又、照
射部3は、光通路L1により構成し、受光部4は、光通
路L2により構成してある。そして、試料接触アダプタ
5は、測定用光線を試料Sに照射する照射部3、及び、
試料Sからの拡散反射光を受光する受光部4とを、照射
部3の照射方向視において、受光部4が環状に形成され
て、その内部に照射部3が位置する状態で備えるように
構成してある。又、試料接触アダプタ5は、その先端部
において、照射部3と受光部4とを20mmの間隔を隔
てて備え、照射部3及び受光部4のうちの外側に位置す
る受光部4は、その先端部の外径を、それに接続される
受光用光ファイバー6よりも大径に形成してある。
Therefore, by configuring the sample contact adapter 5 as described above, the inner space of the inner cylindrical body 52 is made smaller in the optical path L1 as the closer to the fiber connection portion on the base end side.
, And the space between the inner cylindrical body 52 and the outer cylindrical body 51 is configured to function as an optical path L2 having a smaller diameter as approaching the fiber connection portion on the base end side. The irradiating section 3 is constituted by an optical path L1, and the light receiving section 4 is constituted by an optical path L2. The sample contact adapter 5 is configured to irradiate the sample S with a measurement light beam, and
A light receiving unit 4 for receiving diffusely reflected light from the sample S is provided in a state where the light receiving unit 4 is formed in a ring shape and the irradiation unit 3 is located inside the light receiving unit 4 when viewed in the irradiation direction of the irradiation unit 3. I have. In addition, the sample contact adapter 5 has an irradiation unit 3 and a light receiving unit 4 at a distal end thereof at an interval of 20 mm, and the light receiving unit 4 located outside of the irradiation unit 3 and the light receiving unit 4 has The outer diameter of the tip is formed larger than the light receiving optical fiber 6 connected to the tip.

【0031】次に、図1に基づいて、分光部7について
説明を加える。分光部7は、受光用光ファイバ6により
導かれた拡散反射光を反射する反射鏡71と、反射鏡7
1により反射された拡散反射光を分光反射する凹面回折
格子72と、凹面回折格子72により分光反射された各
波長毎の光線束強度を検出するアレイ型受光素子73と
を備えている。アレイ型受光素子73は、凹面回折格子
72にて分光反射された拡散反射光を、同時に波長毎に
受光するとともに波長毎の信号に変換して出力する。反
射鏡71、凹面回折格子72及びアレイ型受光素子73
は、外部からの光を遮光するアルミニウム製の暗箱74
内に配置してあり、受光用光ファイバ6により導かれた
拡散反射光は、暗箱74に形成した入射孔75を通じて
暗箱74内に導くように構成してある。図中のRは、光
源部1からアレイ型受光素子73に至る光路を示してい
る。但し、同軸プローブPにおける光路Rは図示を省略
している。
Next, the spectroscopic section 7 will be described with reference to FIG. The spectroscopy unit 7 includes a reflecting mirror 71 that reflects the diffusely reflected light guided by the light receiving optical fiber 6, and a reflecting mirror 7.
A concave diffraction grating 72 that spectrally reflects the diffusely reflected light reflected by 1 and an array-type light receiving element 73 that detects the light flux intensity for each wavelength spectrally reflected by the concave diffraction grating 72 are provided. The array-type light receiving element 73 receives diffusely reflected light spectrally reflected by the concave diffraction grating 72 at the same time for each wavelength, and converts and outputs the signal for each wavelength. Reflecting mirror 71, concave diffraction grating 72, and array type light receiving element 73
Is an aluminum dark box 74 that shields external light.
The diffused reflected light guided by the light receiving optical fiber 6 is configured to be guided into the dark box 74 through an incident hole 75 formed in the dark box 74. R in the drawing indicates an optical path from the light source unit 1 to the array type light receiving element 73. However, the optical path R in the coaxial probe P is not shown.

【0032】次に、信号処理部8について説明を加え
る。信号処理部8は、マイクロコンピュータを利用して
構成してある。信号処理部8は、アレイ型受光素子73
からの出力信号を処理して、吸光度スペクトル、及び、
吸光度スペクトルの波長領域での二次微分値を得るとと
もに、その二次微分値に基づいて試料Sに含まれる成分
量を算出する。吸光度は、光源の照射光量(基準光量)
をI、透過光の光量をTとすると、 Log(I/T) で定義される。信号処理部8は、下記の式(以下、成分
量算出式と称する)による重回帰分析に基づいて、試料
Sに含まれる成分量を算出する。 Y=K0 +K1 ×A(λ1 )+K2 ×A(λ2 )+K3
×A(λ3 )…… 但し、 Y ;成分量 K0 ,K1 ,K2 ,K3 …… ;係数 A(λ1 ),A(λ2 ),A(λ3 )……;特定波長λ
における吸光度スペクトルの二次微分値
Next, the signal processing unit 8 will be described. The signal processing unit 8 is configured using a microcomputer. The signal processing unit 8 includes an array type light receiving element 73
Processing the output signal from
The second derivative in the wavelength region of the absorbance spectrum is obtained, and the amount of the component contained in the sample S is calculated based on the second derivative. Absorbance is the amount of light emitted from the light source (reference light amount)
Is defined as I and the amount of transmitted light is defined as T, and is defined as Log (I / T). The signal processing unit 8 calculates the component amount included in the sample S based on the multiple regression analysis using the following equation (hereinafter, referred to as a component amount calculation equation). Y = K 0 + K 1 × A (λ 1 ) + K 2 × A (λ 2 ) + K 3
× A (λ 3 ) where Y: component amount K 0 , K 1 , K 2 , K 3 …; coefficient A (λ 1 ), A (λ 2 ), A (λ 3 ) ……; Wavelength λ
Derivative of absorbance spectrum at

【0033】信号処理部8には、試料Sとなる青果物の
品種夫々について、成分量を算出する成分毎に、特定の
成分量算出式を設定してある。つまり、上記成分量算出
式において、青果物の品種夫々について、成分毎に特定
の係数K0 ,K1 ,K2 ,K 3 ……、波長λ1 ,λ2
λ3 ……を設定してある。そして、信号処理部8は、分
析条件設定部(図示せず)にて設定された青果物の品種
に応じて、成分毎に特定の成分量算出式を用いて、各成
分の成分量を算出する。
The signal processing section 8 includes a sample S
For each component, calculate the amount of component
The component amount calculation formula is set. That is, the above component amount calculation
In the formula, for each fruit and vegetable variety, specify for each ingredient
Coefficient K0, K1, KTwo, K Three……, wavelength λ1, ΛTwo,
λThree…… is set. Then, the signal processing unit 8
Vegetables and varieties set in analysis condition setting section (not shown)
Each component is calculated using a specific component amount calculation formula for each component according to
Calculate the component amount of the minute.

【0034】〔別実施例〕次に別実施例を説明する。 試料接触アダプタ5を構成するに、上記実施例で
は、照射部3及び受光部4とを、照射部3の照射方向視
において、環状の受光部4の内部に照射部3が位置する
状態で備えるように構成する場合について例示したが、
これに代えて、照射部3の照射方向視において、環状の
照射部3の内部に受光部4が位置する状態で備えるよう
に構成してもよい。この場合、同軸プローブPは、照射
用光ファイバ2が環状で、その内部に受光用光ファイバ
6が位置する同軸状に形成する。 照射用光ファイバ2と受光用光ファイバ6とは、試
料接触アダプタ5との接続部分のみ、受光用光ファイバ
6が環状で、その内部に照射用光ファイバ2が位置する
同軸状に形成し、その他の部分は別体に構成してもよ
い。 試料接触アダプタ5の先端部は、上記実施例のよう
に凹曲面に形成する以外に、平面状や、あるいは、分析
対象の青果物の外形形状に適合した種々の形状に形成す
ることができる。 試料接触アダプタ5の先端部における、受光部4と
照射部3との間の間隔dは、上記実施例では20mmに
設定したが、20mm以上であれば試料Sからの拡散反
射光を受光することができるので、間隔dは20mm以
上であれば種々変更可能である。 図6及び図7に示すように、同軸プローブPにおい
て、環状の受光用光ファイバ6の内部に位置する照射用
光ファイバ2は、その横断面(軸芯に直交する面)形状
を矩形状に形成してもよい。この場合、図6及び図8に
示すように、試料接触アダプタ5の内筒体52は、基端
側のファイバ接続部の開口部の形状が照射用光ファイバ
2の先端面の形状と略同一の矩形状になるように形成す
る。 図9及び図10に示すように、光通路L1,L2
は、試料接触アダプタ5内に光通路形成用光ファイバ1
0を挿通することにより形成してもよい。尚、この場
合、試料接触アダプタ5は、光通路形成用光ファイバ1
0を保形して保持した状態で、樹脂56を成形すること
により形成する。又、図9及び図10に示す別実施例に
おいて、外側の光通路L2を照射部3として機能させ、
内側の光通路L1を受光部4として機能させてもよい。 外側の光通路L2は、図11に示すように、横断面
(照射部3の照射方向に直交する面)形状が円弧形状の
単位光通路L2aの複数を、照射部3の照射方向視にお
いて、環状に配置して構成してもよい。又、外側の光通
路L2は、図12に示すように、横断面(照射部3の照
射方向に直交する面)形状が円形状の単位光通路L2b
の複数を、照射部3の照射方向視において、環状に配置
して構成してもよい。尚、図示しないが、複数の単位光
通路L2a夫々は、基端側のファイバ接続部では、環状
に一連に連なった状態としてもよいし、互いに分離した
状態としてもよい。同様に、複数の単位光通路L2b夫
々も、基端側のファイバ接続部では、環状に一連に連な
った状態としてもよいし、互いに分離した状態としても
よい。又、図11及び図12に示す別実施例において、
外側の光通路L2を照射部3として機能させ、内側の光
通路L1を受光部4として機能させてもよい。
[Another Embodiment] Next, another embodiment will be described. In the above embodiment, the sample contact adapter 5 includes the irradiation unit 3 and the light receiving unit 4 in a state where the irradiation unit 3 is located inside the annular light receiving unit 4 when viewed in the irradiation direction of the irradiation unit 3. Although the case where it is configured as shown above is exemplified,
Instead of this, when viewed in the irradiation direction of the irradiation unit 3, the light receiving unit 4 may be provided in a state where the light receiving unit 4 is located inside the annular irradiation unit 3. In this case, the coaxial probe P is formed coaxially so that the irradiation optical fiber 2 is annular and the light receiving optical fiber 6 is located inside. The irradiation optical fiber 2 and the light receiving optical fiber 6 are formed in a coaxial shape in which the light receiving optical fiber 6 is annular and the irradiation optical fiber 2 is located inside only the connection portion with the sample contact adapter 5, Other parts may be configured separately. The distal end of the sample contact adapter 5 can be formed in a flat shape or various shapes suitable for the outer shape of the fruits and vegetables to be analyzed, in addition to the concave shape as in the above embodiment. The distance d between the light receiving section 4 and the irradiating section 3 at the tip of the sample contact adapter 5 is set to 20 mm in the above embodiment, but if it is 20 mm or more, the diffused reflected light from the sample S can be received. Therefore, if the distance d is 20 mm or more, various changes can be made. As shown in FIGS. 6 and 7, in the coaxial probe P, the irradiation optical fiber 2 located inside the annular light receiving optical fiber 6 has a rectangular cross section (a surface orthogonal to the axis). It may be formed. In this case, as shown in FIGS. 6 and 8, in the inner cylindrical body 52 of the sample contact adapter 5, the shape of the opening of the fiber connection portion on the base end side is substantially the same as the shape of the distal end surface of the irradiation optical fiber 2. Is formed to have a rectangular shape. As shown in FIGS. 9 and 10, the light paths L1, L2
Is an optical fiber 1 for forming an optical path in a sample contact adapter 5.
It may be formed by inserting 0. Note that, in this case, the sample contact adapter 5 is an optical fiber 1 for forming an optical path.
The resin 56 is formed by molding the resin 56 in a state where 0 is kept and held. Further, in another embodiment shown in FIGS. 9 and 10, the outer light path L2 is made to function as the irradiation unit 3,
The inner light path L1 may function as the light receiving unit 4. As shown in FIG. 11, the outer light path L <b> 2 includes a plurality of unit light paths L <b> 2 a having an arc-shaped cross section (a surface orthogonal to the irradiation direction of the irradiation unit 3) when viewed in the irradiation direction of the irradiation unit 3. It may be arranged in a ring shape. As shown in FIG. 12, the outer light path L2 has a unit light path L2b having a circular cross section (a plane orthogonal to the irradiation direction of the irradiation unit 3).
May be arranged annularly in the irradiation direction of the irradiation unit 3. Although not shown, each of the plurality of unit optical paths L2a may be in a state of being continuously connected to each other in a ring at the fiber connection portion on the base end side, or may be separated from each other. Similarly, each of the plurality of unit light paths L2b may be in a state of being continuously connected in a ring shape or separated from each other at the fiber connection portion on the base end side. In another embodiment shown in FIGS. 11 and 12,
The outer light path L2 may function as the irradiation unit 3 and the inner light path L1 may function as the light receiving unit 4.

【0035】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
Incidentally, reference numerals are written in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the entry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】分光分析装置のブロック図FIG. 1 is a block diagram of a spectroscopic analyzer.

【図2】試料接触アダプタの軸芯方向に沿った面での断
面図
FIG. 2 is a cross-sectional view of the sample contact adapter taken along a plane along the axial direction.

【図3】図2におけるイ−イ矢視図FIG. 3 is a view taken in the direction of the arrow II in FIG. 2;

【図4】図2におけるロ−ロ矢視図FIG. 4 is a view as viewed from the direction of the arrow in FIG. 2;

【図5】図2におけるハ−ハ矢視図FIG. 5 is a view as viewed from the direction indicated by the arrows in FIG. 2;

【図6】別実施例における試料接触アダプタの軸芯方向
に沿った面での断面図
FIG. 6 is a cross-sectional view of a sample contact adapter according to another embodiment, taken along a plane along the axial direction.

【図7】図6におけるニ−ニ矢視図FIG. 7 is a view as seen from the direction of the arrows in FIG. 6;

【図8】図6におけるホ−ホ矢視図FIG. 8 is a view taken in the direction of an arrow E in FIG. 6;

【図9】別実施例における試料接触アダプタの軸芯方向
に沿った面での断面図
FIG. 9 is a cross-sectional view of a sample contact adapter in another example taken along a plane along the axial center direction.

【図10】図9におけるヘ−ヘ矢視図FIG. 10 is a view taken in the direction of an arrow in FIG. 9;

【図11】別実施例における試料接触アダプタの照射部
の正面図
FIG. 11 is a front view of an irradiation unit of a sample contact adapter according to another embodiment.

【図12】別実施例における試料接触アダプタの照射部
の正面図
FIG. 12 is a front view of an irradiation unit of a sample contact adapter according to another embodiment.

【符号の説明】[Explanation of symbols]

2 照射用光ファイバ 3 照射部 4 受光部 5 検出部 6 受光用光ファイバ 10 光通路形成用光ファイバ 11 光源 L1,L2 光通路 2 irradiating optical fiber 3 irradiating unit 4 light receiving unit 5 detecting unit 6 light receiving optical fiber 10 optical fiber for forming optical path 11 light source L1, L2 optical path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山内 良吾 兵庫県尼崎市浜1丁目1番1号 株式会 社クボタ 技術開発研究所内 (72)発明者 森本 信矢 兵庫県尼崎市浜1丁目1番1号 株式会 社クボタ 技術開発研究所内 (72)発明者 上中 進 兵庫県尼崎市浜1丁目1番1号 株式会 社クボタ 技術開発研究所内 (56)参考文献 特開 昭58−33153(JP,A) 特開 平6−160272(JP,A) 特開 昭57−190254(JP,A) 特開 平1−165936(JP,A) 特開 平5−288674(JP,A) 実開 昭63−50044(JP,U) 米国特許4379225(US,A) (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 G01J 3/00 - 3/52 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Ryogo Yamauchi 1-1-1, Hama, Amagasaki-shi, Hyogo Prefecture Inside Kubota Technology Development Laboratory Co., Ltd. (72) Shinya Morimoto 1-1-1, Hama, Amagasaki-shi, Hyogo Prefecture Inside the Kubota Technology Development Laboratory Co., Ltd. (72) Inventor Susumu Kaminaka 1-1-1, Hama, Amagasaki-shi, Hyogo Prefecture Inside the Kubota Technology Development Laboratory Co., Ltd. (56) References JP-A-58-33153 (JP, A) JP-A-6-160272 (JP, A) JP-A-57-190254 (JP, A) JP-A-1-165936 (JP, A) JP-A-5-288674 (JP, A) (JP, U) US Patent 4,379,225 (US, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 21/00-21/01 G01N 21/17-21/61 G01J 3/00- 3/52

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定用光線を試料に照射する照射部
(3)、及び、前記試料からの反射光を受光する受光部
(4)とを、前記照射部(3)の照射方向視において、
一方が環状に形成されて、その内部に他方が位置する状
態で備えた検出部(5)が設けられ、 その検出部(5)に、光源(11)からの測定用光線を
前記照射部(3)に導く照射用光ファイバ(2)と、前
記受光部(4)が受光した光を導く受光用光ファイバ
(6)が接続され、 前記検出部(5)は、その先端部において、前記照射部
(3)と前記受光部(4)とを間隔を隔てて備え、前記
照射部(3)及び前記受光部(4)のうちの外側に位置
する方のものは、その先端部の外径が、それに接続され
る光ファイバー(2),(6)よりも大径に形成されて
いる分光分析装置用の投受光装置。
1. An irradiation unit (3) for irradiating a sample with a measuring light beam and a light receiving unit (4) for receiving reflected light from the sample, when viewed in an irradiation direction of the irradiation unit (3).
A detector (5) is provided, one of which is formed in an annular shape and the other is positioned inside the detector. The detector (5) is provided with a measuring light beam from a light source (11). An irradiation optical fiber (2) for guiding to 3) and a light receiving optical fiber (6) for guiding the light received by the light receiving section (4) are connected. An irradiating section (3) and the light receiving section (4) are provided at an interval, and the outer one of the irradiating section (3) and the light receiving section (4) is located outside its tip. A light emitting / receiving device for a spectroscopic analyzer having a diameter larger than the optical fibers (2) and (6) connected thereto.
【請求項2】 前記照射用光ファイバ(2)及び前記受
光用光ファイバ(6)は、一方が環状に形成されて、そ
の内部に他方が位置する同軸状に形成されている請求項
1記載の分光分析装置用の投受光装置。
2. The optical fiber for irradiation (2) and the optical fiber for light reception (6), one of which is formed in an annular shape, and the other of which is formed coaxially in which the other is located. Light emitting and receiving device for spectroscopic analyzers.
【請求項3】 前記照射部(3)及び前記受光部(4)
のうちの外側に位置する方のものは、基端側のファイバ
接続部に近づくほど小径となる光通路(L2)を備えて
いる請求項1又は2記載の分光分析装置用の投受光装
置。
3. The irradiation section (3) and the light receiving section (4).
3. The light-emitting / receiving device for a spectroscopic analyzer according to claim 1, wherein an outer one of the light-emitting and light-emitting devices has an optical path (L2) whose diameter becomes smaller as approaching the fiber connection portion on the proximal end side.
【請求項4】 前記照射部(3)が内側に、前記受光部
(4)が外側に位置するように、前記検出部(5)が構
成され、前記照射部(3)は、基端側のファイバ接続部
に近づくほど小径となる光通路(L1)を備えている請
求項3記載の分光分析装置用の投受光装置。
4. The detection section (5) is configured such that the irradiation section (3) is located inside and the light receiving section (4) is located outside, and the irradiation section (3) is located on the proximal side. 4. The light emitting and receiving device for a spectroscopic analyzer according to claim 3, further comprising an optical path (L1) having a smaller diameter as approaching the fiber connection portion.
【請求項5】 前記光通路(L1),(L2)は、前記
検出部(5)内に光通路形成用光ファイバ(10)を挿
通することにより形成されている請求項3又は4記載の
分光分析装置用の投受光装置。
5. The optical path (L1), (L2) according to claim 3 or 4, wherein the optical path forming optical fiber (10) is inserted into the detection section (5). Light emitting and receiving device for spectrometer.
【請求項6】 前記検出部(5)の先端部は、中央部が
最も深くなる凹曲面状に形成されている請求項1、2、
3、4又は5記載の分光分析装置用の投受光装置。
6. A tip portion of the detection portion (5) is formed in a concave curved surface with a center portion being deepest.
6. The light emitting and receiving device for a spectroscopic analyzer according to 3, 4, or 5.
JP09842195A 1995-04-24 1995-04-24 Emitter / receiver for spectrometer Expired - Lifetime JP3203149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09842195A JP3203149B2 (en) 1995-04-24 1995-04-24 Emitter / receiver for spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09842195A JP3203149B2 (en) 1995-04-24 1995-04-24 Emitter / receiver for spectrometer

Publications (2)

Publication Number Publication Date
JPH08292147A JPH08292147A (en) 1996-11-05
JP3203149B2 true JP3203149B2 (en) 2001-08-27

Family

ID=14219361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09842195A Expired - Lifetime JP3203149B2 (en) 1995-04-24 1995-04-24 Emitter / receiver for spectrometer

Country Status (1)

Country Link
JP (1) JP3203149B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL158392A0 (en) * 2001-04-25 2004-05-12 Handy internal quality inspection instrument
JP2004347326A (en) * 2003-05-20 2004-12-09 Hitachi Ltd Non-destructive diagnostic equipment
JP4589808B2 (en) * 2005-06-03 2010-12-01 ヤンマー株式会社 Non-destructive pesticide residue analyzer
US20070194239A1 (en) * 2006-01-31 2007-08-23 Mcallister Abraham Apparatus and method providing a hand-held spectrometer
ITRE20060010A1 (en) * 2006-02-01 2007-08-02 Sacmi PORTABLE DEVICE FOR PRODUCT QUALITY CONTROL
JP4714822B2 (en) * 2006-03-31 2011-06-29 長崎県 Non-destructive measuring device for light scatterers
SE532397C2 (en) * 2008-10-09 2010-01-12 Microfluid Ab Fluid Film Gauges
JP5326105B2 (en) * 2008-11-26 2013-10-30 有限会社ラルゴ Optical sensor device and sugar content meter using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379225A (en) 1980-07-03 1983-04-05 Kontes Glass Company Fiberoptic head with fiber bundles having different numerical apertures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379225A (en) 1980-07-03 1983-04-05 Kontes Glass Company Fiberoptic head with fiber bundles having different numerical apertures

Also Published As

Publication number Publication date
JPH08292147A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
US5844239A (en) Optical measuring apparatus for light scattering
US6507022B1 (en) Optical apparatus
US10620046B2 (en) Lens assembly with integrated light source and spectroscopic analizer including the same
US7397566B2 (en) Method and apparatus for optical interactance and transmittance measurements
JP2003513236A (en) Built-in optical probe for spectroscopic analysis
CA2422683A1 (en) A pulse oximeter and a method of its operation
JP3203149B2 (en) Emitter / receiver for spectrometer
US10969569B2 (en) Light source-integrated lens assembly and optical apparatus including the same
CN102854168A (en) Device for referenced measurement of reflected light and method for calibrating such a device
JP2000186998A (en) Living body spectrum measuring device
JPS61292043A (en) Photodetecting probe for spectocolorimeter
JP7565431B2 (en) Absorption spectroscopic analyzer and method of use
CN107991286B (en) Raman spectrum detection equipment and method based on reflected light power
US6737649B2 (en) Infrared analysis instrument with offset probe for particulate sample
US12188860B2 (en) Device and method for spectral analysis of a compound specimen
JPH10123047A (en) Spectrometer
EP0316442A4 (en) Near infrared measurement apparatus for organic materials
JP2001041882A (en) Egg inspection equipment
JPH1096689A (en) Spectrometer
JP5774551B2 (en) Photometric device
US20080068598A1 (en) Grating photometer
JP2000234997A (en) Emitter / receiver for spectrometer
JP2000221134A (en) Emitter / receiver for spectrometer
AU746079B2 (en) An optical apparatus
JPH1048123A (en) Spectrometer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140622

Year of fee payment: 13

EXPY Cancellation because of completion of term