JP3201782B2 - Manufacturing method of dust core - Google Patents
Manufacturing method of dust coreInfo
- Publication number
- JP3201782B2 JP3201782B2 JP18295391A JP18295391A JP3201782B2 JP 3201782 B2 JP3201782 B2 JP 3201782B2 JP 18295391 A JP18295391 A JP 18295391A JP 18295391 A JP18295391 A JP 18295391A JP 3201782 B2 JP3201782 B2 JP 3201782B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- powder
- permeability
- magnetic field
- flake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000428 dust Substances 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000006247 magnetic powder Substances 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 12
- 230000006835 compression Effects 0.000 claims description 10
- 238000007906 compression Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 230000035699 permeability Effects 0.000 description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000000465 moulding Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000012733 comparative method Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000001513 hot isostatic pressing Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910000889 permalloy Inorganic materials 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910000702 sendust Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000009702 powder compression Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14791—Fe-Si-Al based alloys, e.g. Sendust
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はチョークコイル,トラン
ス,磁気ヘッド等に使用される圧粉磁芯を製造する方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a dust core used for a choke coil, a transformer, a magnetic head and the like.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】フレー
ク形状を有する高透磁率磁性粉末を使用した圧粉磁芯
は、粒状形状を有する高透磁率粉末を使用した圧粉磁芯
と比較して粉末の長手方向の反磁界が小さいため透磁率
が高くなるとの予測から注目されている。しかし粉末形
状がフレーク状であるため、圧縮成形品の密度が上がら
ず、従って透磁率が低いのでその実用化を妨げてきた。2. Description of the Related Art A dust core using a high permeability magnetic powder having a flake shape is compared with a dust core using a high permeability powder having a granular shape. Attention has been paid to the prediction that the magnetic permeability will increase due to the small demagnetizing field in the longitudinal direction of the powder. However, since the powder is in the form of flakes, the density of the compression-molded product does not increase, and the magnetic permeability is low, which has hindered its practical use.
【0003】即ち図2に示すようにフレーク状高透磁率
磁性粉末を磁場なしで圧縮成形して、圧粉体(1) とした
磁芯においては、フレーク状磁性粉末はそのフレーク面
が圧縮方向(2) と直角面内にある程度揃った状態で圧粉
体となっているため、トロイダルコイルの磁路方向の透
磁率は高く、低密度の同一比重の粒状高透磁率磁性粉末
からなる圧粉磁芯と比較して透磁率は2倍程度高い。し
かし密度が十分上がらないため、高密度の透磁率100
程度の粒状高透磁率磁性粉末からなる圧粉磁芯と比較す
ると、どうしても透磁率は低くならざるを得なかった。That is, as shown in FIG. 2, in a magnetic core obtained by compacting a flake-like high-permeability magnetic powder without a magnetic field into a green compact (1), the flake-like magnetic powder has a flake surface in a compression direction. Since the green compact is formed in a state in which it is somewhat aligned in the plane perpendicular to (2), the magnetic permeability of the toroidal coil in the direction of the magnetic path is high, and the compact is made of low-density granular high magnetic permeability magnetic powder of the same specific gravity. The magnetic permeability is about twice as high as that of the magnetic core. However, since the density is not sufficiently increased, the high permeability 100
When compared with a dust core made of a granular high magnetic permeability magnetic powder, the magnetic permeability was inevitably low.
【0004】このことから図3に示すようにフレーク状
高透磁率磁性粉末の圧縮方向(2) に直角に磁場(3) を印
加しながら圧縮成形して圧粉体(1) とする方法が考えら
れた。しかしながら磁性粉末の長手方向の1軸のみが磁
場方向に揃うだけで、個々の粉末のフレーク面と圧縮方
向との位置関係には変化がなく、透磁率はほとんど改善
されることはなかった。From this fact, as shown in FIG. 3, a method of compressing and forming a flake-like high magnetic permeability magnetic powder while applying a magnetic field (3) perpendicularly to the compression direction (2) to obtain a green compact (1) is known. it was thought. However, only one axis in the longitudinal direction of the magnetic powder was aligned with the direction of the magnetic field, and there was no change in the positional relationship between the flake surface and the compression direction of each powder, and the magnetic permeability was hardly improved.
【0005】[0005]
【課題を解決するための手段】本発明はこれに鑑み種々
検討の結果、透磁率が著しく改善される圧粉磁芯の製造
方法を開発したものである。According to the present invention, as a result of various studies in view of the above, a method of manufacturing a dust core whose magnetic permeability is remarkably improved has been developed.
【0006】即ち本発明は、高透磁率磁性粉末を圧粉成
形して、又は前記圧粉成形体に焼結あるいは熱間静水圧
プレス(HIP)処理を施して高透磁率磁芯を製造する
方法において、アスペクト比2以上を有するフレーク状
高透磁率磁性粉末を用い、該磁性粉末の表面を絶縁処理
した後、圧縮方向と直行する方向に磁場を印加し、前記
粉末を充填した金型及び磁場のいずれか一方又は両者を
回転又は揺動させながら、該磁場中で圧粉成形すること
を特徴とするものである。That is, according to the present invention, a high-permeability magnetic core is produced by compacting a high-permeability magnetic powder, or by subjecting the compact to sintering or hot isostatic pressing (HIP). In the method, using a flake-shaped high magnetic permeability magnetic powder having an aspect ratio of 2 or more, after insulating the surface of the magnetic powder, applying a magnetic field in a direction perpendicular to the compression direction, a mold filled with the powder, and While one or both of the magnetic fields are rotated or rocked, compacting is performed in the magnetic field.
【0007】[0007]
【作用】本発明は図1に示すようにフレーク状高透磁率
磁性粉末の圧縮方向(2) に直交する方向に磁場(3) を動
かしながら、即ち磁場(3)を上記直交する面内で揺動も
しくは回転させながら、又は磁場(3) は固定して金型を
揺動もしくは回転させながらフレーク状高透磁率磁性粉
末を圧縮成形して圧粉体(1) とすることにより、圧縮方
向に直角な面内にこれらフレーク状磁性粉末のフレーク
面が揃った成形体が得られるので透磁率が著しく改善さ
れる。例えばセンダストのフレーク状高透磁率合金粉末
に有機バインダーを加えて本発明の回転磁場中で成形し
た圧粉磁芯は 100〜500 の高い透磁率が得られるので、
巻線の回数が少なくても十分なインダクタンスが得られ
て銅損が少なくなり、さらに透磁率の周波数特性が良好
になるので高い周波数での使用が可能となる。According to the present invention, as shown in FIG. 1, the magnetic field (3) is moved in a direction perpendicular to the compression direction (2) of the flake-shaped high magnetic permeability magnetic powder, that is, the magnetic field (3) is moved in the above-mentioned orthogonal plane. The flake-shaped high-permeability magnetic powder is compression-molded into a green compact (1) while rocking or rotating, or while the mold is rocked or rotated while the magnetic field (3) is fixed, so that the compaction direction is reduced. Thus, a molded body having the flake surfaces of these flake-like magnetic powders in a plane perpendicular to the plane is obtained, so that the magnetic permeability is remarkably improved. For example, a dust core obtained by adding an organic binder to Sendust's flake high magnetic permeability alloy powder and molding in a rotating magnetic field of the present invention can obtain a high magnetic permeability of 100 to 500.
Even if the number of windings is small, sufficient inductance can be obtained, copper loss is reduced, and frequency characteristics of magnetic permeability are improved, so that use at a high frequency is possible.
【0008】またフレーク状粉末に無機絶縁皮膜を施
し、無機バインダーを使用して上記回転磁場で成形した
後、焼結又は熱間静水圧プレスで処理することにより、
透磁率が2000以上を有する高透磁率磁芯が得られる。こ
れら磁芯は磁束密度がフェライトより大きいので、高周
波用トランス等の磁芯に使用した際にはトランスの小型
化が可能となる。また上記フレーク状センダスト合金粉
末を使用した磁芯はトランスだけに限らず磁気ヘッドに
も使用できるので、材料的にもフェライトにとってかわ
るものである。Further, an inorganic insulating film is applied to the flake-like powder, molded by the above-mentioned rotating magnetic field using an inorganic binder, and then subjected to sintering or hot isostatic pressing.
A high magnetic permeability core having a magnetic permeability of 2000 or more can be obtained. Since these magnetic cores have a higher magnetic flux density than ferrite, they can be downsized when used for magnetic cores such as high frequency transformers. Further, a magnetic core using the flake-shaped sendust alloy powder can be used not only for a transformer but also for a magnetic head, so that it also replaces ferrite in material.
【0009】本発明においてフレーク状高透磁率磁性粉
末のアスペクト比を2以上としたのは、アスペクト比が
2未満では回転磁場における成形の効果が十分に得られ
ず、且つ磁粉の反磁界が大きいため高い透磁率磁芯が得
られないからである。In the present invention, the aspect ratio of the flake-shaped high-permeability magnetic powder is set to 2 or more. If the aspect ratio is less than 2, the effect of molding in a rotating magnetic field cannot be sufficiently obtained, and the demagnetizing field of the magnetic powder is large. Therefore, a high magnetic permeability core cannot be obtained.
【0010】[0010]
【実施例】以下本発明の実施例について説明する。 (実施例1)厚さが約3μmでアスペクト比が約30のF
e−9.6 wt%Si−5.4 wt%Al合金、Fe−78wt%N
iパーマロイ合金、Fe−6.5 wt%Si合金、純鉄、F
e80Si13C7 アモルファス合金の各フレーク状磁性粉
末を、400℃で1時間大気中で加熱してフレーク状磁性
粉末の表面を酸化絶縁処理した。これらの粉末にそれぞ
れ5wt%粉末状フェノール(大日本印刷製フェノールT
D739)を配合した後、1回転/秒の回転磁場を印加
した場合(本発明法)、磁場を印加しない場合(比較
法)及び5kOeの固定磁場を印加した場合(比較法
)のそれぞれについて、圧力3ton/cm2 ,圧下速度 1
0mm/秒,金型温度は室温の条件で、外径9.8mm ×内径6.
2mm ×厚さ6mmの一次成形品を圧縮成形し、さらにそれ
ぞれ150℃の金型中で4ton/cm2 の圧力で外径10mm×内
径6mm×厚さ4mmのトロイダル形状に圧縮成形した後、
120 ℃で3時間のキュアを行って磁芯を作製した。なお
上記及びの場合は磁場の方向は粉末の圧縮方向に対
して常に直交する方向とした。Embodiments of the present invention will be described below. (Example 1) F having a thickness of about 3 μm and an aspect ratio of about 30
e-9.6 wt% Si-5.4 wt% Al alloy, Fe-78 wt% N
i-permalloy, Fe-6.5 wt% Si alloy, pure iron, F
Each flake-like magnetic powder of e 80 Si 13 C 7 amorphous alloy, and the 1 hour heating to the surface of the flaky magnetic powder in the air at 400 ° C. and oxidized insulated. Each of these powders is added to a 5 wt% powdered phenol (Phenol T manufactured by Dai Nippon Printing
D739), a rotating magnetic field of 1 revolution / second was applied (the method of the present invention), a magnetic field was not applied (the comparative method), and a fixed magnetic field of 5 kOe was applied (the comparative method). Pressure 3ton / cm 2 , rolling speed 1
0mm / sec, mold temperature is room temperature, outer diameter 9.8mm x inner diameter 6.
The primary molded product of 2 mm x 6 mm thickness is compression molded, and further compression molded into a toroidal shape of 10 mm outer diameter x 6 mm inner diameter x 4 mm thickness at a pressure of 4 ton / cm 2 in a mold at 150 ° C.
A magnetic core was prepared by curing at 120 ° C. for 3 hours. In the above and cases, the direction of the magnetic field was always perpendicular to the direction of powder compression.
【0011】これら磁芯についてそれぞれ飽和磁束密度
と、1MHzにおいて10mTまで磁場を印加した時の透
磁率及び鉄損を調べ、それらの結果を表1に示した。With respect to these magnetic cores, the saturation magnetic flux density, the magnetic permeability and the iron loss when a magnetic field was applied up to 10 mT at 1 MHz were examined, and the results are shown in Table 1.
【0012】[0012]
【表1】 [Table 1]
【0013】表1から明らかなように、固定磁場中で成
形しても磁気特性はほとんど改善されないが、本発明の
回転磁場中で成形したものは磁気特性は著しく改善され
ることが判る。このような本発明の磁芯によれば、スイ
ッチング周波数が1MHzのスイッチング電源のノーマ
ルモードチョークに使用可能である。As is apparent from Table 1, although the magnetic properties are hardly improved by molding in a fixed magnetic field, the magnetic properties of the article molded in a rotating magnetic field of the present invention are significantly improved. According to such a magnetic core of the present invention, it can be used for a normal mode choke of a switching power supply having a switching frequency of 1 MHz.
【0014】(実施例2)厚さが約3μmでアスペクト
比が約 500のFe−9.6 wt%Si−5.4 wt%Al合金、
Fe−78wt%Niパーマロイ合金、Fe−6.5 wt%Si
合金、純鉄の各フレーク状磁性粉末を、400 ℃で1時間
大気中で加熱してフレーク状磁性粉末の表面を酸化絶縁
処理した。これらの粉末にそれぞれ2wt%の水ガラスを
配合した後、1回転/秒の回転磁場を印加した場合(本
発明法)及び磁場を印加しない場合(比較法)のそ
れぞれについて、圧力3ton/cm2 ,圧下速度 10mm/秒,
金型温度は室温の条件で、外径9.8mm ×内径6.2mm ×厚
さ6mmの一次成形品を圧縮成形し、さらにそれぞれ150
℃の金型中で4ton/cm2 の圧力で外径10mm×内径6mm×
厚さ4mmのトロイダル形状に圧縮成形した後、400 ℃で
1時間焼鈍し、その後700 ℃×3時間で2000気圧の熱間
静水圧プレス処理を行って磁芯を作製した。なお本発明
法の場合は回転磁場は常に圧縮方向に対して直交する
方向に印加する。Example 2 An Fe-9.6 wt% Si-5.4 wt% Al alloy having a thickness of about 3 μm and an aspect ratio of about 500,
Fe-78wt% Ni permalloy, Fe-6.5wt% Si
The flake magnetic powder of the alloy and pure iron was heated in the air at 400 ° C. for 1 hour to oxidize and insulate the surface of the flake magnetic powder. After mixing 2 wt% of water glass with each of these powders, a pressure of 3 ton / cm 2 was applied in each of the case where a rotating magnetic field of 1 rotation / second was applied (the method of the present invention) and the case where no magnetic field was applied (the comparative method). , Rolling speed 10mm / sec,
The mold temperature is room temperature, and the primary molded product of outer diameter 9.8mm × inner diameter 6.2mm × thickness 6mm is compression-molded, and 150mm each.
℃ outer diameter 10 mm × inner diameter 6 mm × a pressure of 4 ton / cm 2 in a mold
After compression molding into a toroidal shape having a thickness of 4 mm, it was annealed at 400 ° C. for 1 hour, and then subjected to hot isostatic pressing at 2000 ° C. for 3 hours at 700 ° C. to produce a magnetic core. In the case of the method of the present invention, the rotating magnetic field is always applied in a direction perpendicular to the compression direction.
【0015】これら磁芯についてそれぞれ飽和磁束密度
と、1MHzにおいて10mTまで磁場を印加した時の透
磁率及び鉄損を調べ、それらの結果を表2に示した。For each of these magnetic cores, the saturation magnetic flux density and the magnetic permeability and iron loss when a magnetic field was applied up to 10 mT at 1 MHz were examined. The results are shown in Table 2.
【0016】[0016]
【表2】 [Table 2]
【0017】表2から明らかなように、回転磁場中で成
形した本発明法の磁芯は1MHzで1500以上と高い透磁
率を有しているので、1MHzのスイッチング電源トラ
ンス磁芯に使用可能である。また上記本発明のフレーク
状Fe−Al−Si合金粉末を使用した磁芯はハードデ
ィスクやVTR用ヘッド等MHz周波数帯域で使用する
磁気ヘッドに使用可能である。As is clear from Table 2, the magnetic core of the present invention molded in a rotating magnetic field has a high magnetic permeability of 1500 or more at 1 MHz, so that it can be used for a 1 MHz switching power transformer core. is there. The magnetic core using the flake Fe-Al-Si alloy powder of the present invention can be used for a magnetic head used in a MHz frequency band such as a hard disk or a VTR head.
【0018】[0018]
【発明の効果】このように本発明によれば、圧粉磁芯の
磁気特性を著しく改善し、特に高透磁率が得られる等顕
著な効果を奏するものである。As described above, according to the present invention, the magnetic properties of the dust core are remarkably improved, and a remarkable effect such as a high magnetic permeability can be obtained.
【図1】本発明に係る回転磁場中での成形方法を示す説
明図である。FIG. 1 is an explanatory view showing a molding method in a rotating magnetic field according to the present invention.
【図2】従来の磁場なし圧縮成形を示す説明図である。FIG. 2 is an explanatory view showing conventional compression molding without a magnetic field.
【図3】従来の固定磁場中での成形方法を示す説明図で
ある。FIG. 3 is an explanatory view showing a conventional molding method in a fixed magnetic field.
1 圧粉体 2 圧縮方向 3 磁場方向 1 Green compact 2 Compression direction 3 Magnetic field direction
Claims (1)
前記圧粉成形体に焼結あるいは熱間静水圧プレス(HI
P)処理を施して高透磁率磁芯を製造する方法におい
て、アスペクト比2以上を有するフレーク状高透磁率磁
性粉末を用い、該磁性粉末の表面を絶縁処理した後、圧
縮方向と直行する方向に磁場を印加し、前記粉末を充填
した金型及び磁場のいずれか一方又は両者を回転又は揺
動させながら、該磁場中で圧粉成形することを特徴とす
る圧粉磁芯の製造方法。1. A high-permeability magnetic powder is compacted or sintered or hot isostatically pressed on said compact.
P) In a method of producing a high-permeability magnetic core by performing a treatment, a flake-shaped high-permeability magnetic powder having an aspect ratio of 2 or more is used, the surface of the magnetic powder is insulated, and then a direction perpendicular to the compression direction. A method for producing a dust core, comprising: applying a magnetic field to the mold, and compacting in the magnetic field while rotating or swinging one or both of the mold and the magnetic field filled with the powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18295391A JP3201782B2 (en) | 1991-06-27 | 1991-06-27 | Manufacturing method of dust core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18295391A JP3201782B2 (en) | 1991-06-27 | 1991-06-27 | Manufacturing method of dust core |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH056830A JPH056830A (en) | 1993-01-14 |
JP3201782B2 true JP3201782B2 (en) | 2001-08-27 |
Family
ID=16127238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18295391A Expired - Fee Related JP3201782B2 (en) | 1991-06-27 | 1991-06-27 | Manufacturing method of dust core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3201782B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102189016B1 (en) * | 2018-08-01 | 2020-12-09 | (주) 텍스토머 | Structure that installs breathable fabric to the space |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6432159B1 (en) * | 1999-10-04 | 2002-08-13 | Daido Tokushuko Kabushiki Kaisha | Magnetic mixture |
JP4683178B2 (en) * | 2001-03-12 | 2011-05-11 | 株式会社安川電機 | Soft magnetic material and manufacturing method thereof |
JP2008181923A (en) * | 2007-01-23 | 2008-08-07 | Fuji Electric Device Technology Co Ltd | Magnetic component and manufacturing method thereof |
CN107210120B (en) * | 2015-02-16 | 2020-08-18 | 株式会社东芝 | Dust core, method for producing same, and magnetic component using same |
JP7254449B2 (en) * | 2018-04-27 | 2023-04-10 | 三菱製鋼株式会社 | Soft magnetic materials, dust cores, and inductors |
-
1991
- 1991-06-27 JP JP18295391A patent/JP3201782B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102189016B1 (en) * | 2018-08-01 | 2020-12-09 | (주) 텍스토머 | Structure that installs breathable fabric to the space |
Also Published As
Publication number | Publication date |
---|---|
JPH056830A (en) | 1993-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100545849B1 (en) | Manufacturing method of iron-based amorphous metal powder and manufacturing method of soft magnetic core using same | |
US4543208A (en) | Magnetic core and method of producing the same | |
JP2002246219A (en) | Dust core and its manufacturing method | |
JP7128439B2 (en) | Dust core and inductor element | |
JP2008135674A (en) | Soft magnetic alloy powder, compact, and inductance element | |
JP3181560B2 (en) | Ferrite oxide magnetic material | |
JP7246456B2 (en) | Alloy powder composition, compact, method for producing same, and inductor | |
JP2007214425A (en) | Powder magnetic core and inductor using it | |
JP3201782B2 (en) | Manufacturing method of dust core | |
JP4166460B2 (en) | Composite magnetic material, magnetic element using the same, and method of manufacturing the same | |
JP2006237153A (en) | Composite dust core and manufacturing method thereof | |
JP2006032907A (en) | High frequency magnetic core and inductance component using the same | |
JP4701531B2 (en) | Dust core | |
JP2004319652A (en) | Core and method of manufacturing the same | |
JPS61154014A (en) | Dust core | |
JP2006100292A (en) | Powder magnetic core manufacturing method and powder magnetic core using the same | |
JPH05326240A (en) | Dust core and manufacture thereof | |
JP2004158570A (en) | Choke coil and its manufacturing method | |
JPS62226603A (en) | Amophous dust core and manufacture thereof | |
JP2000003810A (en) | Dust core | |
JPH11260617A (en) | Dust core, manufacture of the same, and winding component | |
JP2001274029A (en) | Core for choke coil, its manufacturing method, and choke coil | |
JPH10270226A (en) | Powder-molded magnetic core and manufacture therefor | |
JPH11273926A (en) | Manufacture of dust core and pot-like dust core | |
JPH06342715A (en) | Dust core and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |