JP3187903B2 - Glass optical element molding equipment - Google Patents
Glass optical element molding equipmentInfo
- Publication number
- JP3187903B2 JP3187903B2 JP35494491A JP35494491A JP3187903B2 JP 3187903 B2 JP3187903 B2 JP 3187903B2 JP 35494491 A JP35494491 A JP 35494491A JP 35494491 A JP35494491 A JP 35494491A JP 3187903 B2 JP3187903 B2 JP 3187903B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- heat transfer
- optical element
- die
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/12—Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、上型及び下型からなる
成形型の間に加熱したガラス素材を配置し、そのガラス
素材を押圧成形してガラス光学素子を製造するガラス光
学素子の成形装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to molding of a glass optical element in which a heated glass material is placed between a mold having an upper mold and a lower mold, and the glass material is pressed to produce a glass optical element. Related to the device.
【0002】[0002]
【従来の技術】上記成形装置にあっては、特に肉厚差の
大きいガラス成形品を成形する場合、厚肉部と薄肉部と
の冷却温度勾配の違いによって収縮量が異なるため、成
形品に均一な圧力を成形型で加えつつ冷却することがで
きず、形状精度を阻害する等の不具合が生じるため、特
開平2−55235号公報及び特開平2−111635
号公報の成形型が提案されている。2. Description of the Related Art In the above molding apparatus, particularly when molding a glass molded article having a large difference in wall thickness, the amount of shrinkage differs due to a difference in cooling temperature gradient between a thick section and a thin section. It is not possible to cool while applying a uniform pressure with a molding die, which causes problems such as impairing the shape accuracy. Therefore, JP-A-2-55235 and JP-A-2-111635
A molding die has been proposed.
【0003】特開平2−55235号公報の成形金型
は、一対の凸面成形型と胴型からなる精密ガラスプレス
用成形型で、熱源に接する型の一部にくりぬき部を設
け、凹状レンズの光学面部中心の温度を非光学面部の温
度より高く保ちつつ加圧冷却し得るように構成されてい
る。この成形型にあっては、成形型のくりぬき部により
空気断熱層を介在することで、加圧冷却時に収縮量の小
さいレンズ光学面中心の温度を高く保ち、収縮量の大き
い非光学面側との収縮差を縮めながら冷却することによ
り、形状精度の良好な高精度の成形レンズを得るようと
するものである。A molding die disclosed in Japanese Patent Application Laid-Open No. 2-55235 is a molding die for precision glass press comprising a pair of a convex molding die and a body die, in which a hollow portion is provided in a part of a die which is in contact with a heat source to form a concave lens. It is configured such that pressure cooling can be performed while maintaining the temperature at the center of the optical surface portion higher than the temperature of the non-optical surface portion. In this mold, the air heat insulation layer is interposed by the hollow part of the mold, so that the temperature at the center of the lens optical surface where the amount of shrinkage is small during pressurized cooling is kept high, and the non-optical surface side where the amount of shrinkage is large is By cooling while reducing the difference in shrinkage, a molded lens having good shape accuracy and high accuracy is obtained.
【0004】特開平2−111635号公報の成形金型
は、凹状の第1の光学面を有する第1の成形型と、凹状
の第2の光学面を有する第2の成形型と、前記第1およ
び第2の成形型を案内する胴型とを具備し、前記第1お
よび第2の成形型の少なくとも一方の光学面の背面の外
周部に凹部を設けて構成されている。また、前記成形型
の外周部に凹部を設けず、前記胴型より熱伝導率の低い
材料からなる第2の胴型を前記胴型の外側に設けて構成
されている。さらに、凸状の第1の光学面を有する第1
の成形型と、凸状の第2の光学面を有する第2の成形型
と、前記第1および第2の成形型を案内する胴型とを具
備し、前記第1および第2の成形型の少なくとも一方の
光学面の背面の中心部に凹部を設けて構成されている。
この成形金型にあっては、各工程における加熱ステージ
と成形型の凹部とは接触せず、熱伝達が制御されて成形
型間のガラス内部に温度差を生じにくくすることができ
る。また、胴型の外側に第2の胴型を設けることによ
り、レンズの外側周辺から熱が奪われるのを防ぎ、ガラ
ス内部に温度差を生じにくくすることができる。そし
て、凹状の光学面を有する成形型および第2の胴型を用
いた成形金型は凸レンズおよび凸メニスカスレンズの成
形に用い、一方、凸状の光学面を有する成形型は凹レン
ズおよび凹メニスカスレンズの成形に用いることによ
り、高精度のプレスレンズを製造しようとするものであ
る。[0004] A molding die disclosed in Japanese Patent Application Laid-Open No. 2-111635 has a first molding die having a concave first optical surface, a second molding die having a concave second optical surface, and And a body die for guiding the first and second molding dies, and a concave portion is provided on the outer peripheral portion of the back surface of at least one of the optical surfaces of the first and second molding dies. Further, a concave portion is not provided in an outer peripheral portion of the molding die, and a second trunk die made of a material having lower thermal conductivity than the trunk die is provided outside the trunk die. In addition, a first optical surface having a convex first optical surface
, A second mold having a convex second optical surface, and a body mold for guiding the first and second molds, wherein the first and second molds are provided. A concave portion is provided at the center of the back surface of at least one of the optical surfaces.
In this molding die, the heating stage in each step does not come into contact with the concave portion of the molding die, and the heat transfer is controlled, so that a temperature difference is hardly generated in the glass between the molding dies. Further, by providing the second body die outside the body die, it is possible to prevent heat from being taken away from the outer periphery of the lens, thereby making it difficult to generate a temperature difference inside the glass. The mold having the concave optical surface and the mold using the second body mold are used for molding the convex lens and the convex meniscus lens, while the mold having the convex optical surface is the concave lens and the concave meniscus lens. It is intended to manufacture a high-precision press lens by using it for molding.
【0005】[0005]
【発明が解決しようとする課題】しかし、特開平2−5
5235号公報の成形型にあっては、成形型の一部にく
りぬき部を設けなければならず、成形型の構造が複雑に
なり、成形型の加工コストの上昇を招いていた。また、
ガラス素材の加圧冷却時の温度制御をするための、くり
ぬき部の形状が複雑となる場合、成形型は難加工材であ
るために成形型の加工が大変になり更にコストが上昇す
るとともに、形状によっては加工が不可能なこともあっ
た。更に、成形する光学素子の形状に応じて、成形型に
それぞれくりぬき部を設けなければならず、成形型の作
成に多大な時間を要していた。However, Japanese Patent Application Laid-Open No. 2-5 / 1990
In the mold described in Japanese Patent No. 5235, a hollow portion must be provided in a part of the mold, and the structure of the mold becomes complicated, resulting in an increase in processing cost of the mold. Also,
In order to control the temperature at the time of pressurized cooling of the glass material, when the shape of the hollow part becomes complicated, the processing of the molding die becomes difficult because the molding die is difficult to process, and the cost further increases, In some cases, processing was not possible depending on the shape. Further, it is necessary to provide a cutout portion in each of the molds according to the shape of the optical element to be molded, and it takes a lot of time to create the molds.
【0006】一方、特開平2−111635号公報に成
形金型にあっても、上記成形型と同様にくりぬき部を設
けなければならず、上記と同様な問題点があった。ま
た、胴型の外側に第2の胴型を設けた場合、ガラス素材
の外周部からの放熱を抑えつつ加圧冷却されるので、冷
却効率が悪く、冷却に長時間を必要としていた。[0006] On the other hand, even in the molding die disclosed in Japanese Patent Application Laid-Open No. Hei 2-111635, a cut-out portion must be provided in the same manner as in the above-mentioned molding die, and thus has the same problem as described above. Further, when the second body die is provided outside the body die, the cooling is performed under pressure while suppressing the heat radiation from the outer peripheral portion of the glass material, so that the cooling efficiency is poor and the cooling requires a long time.
【0007】本発明は、上記従来の問題点に鑑みてなさ
れたもので、成形型にくりぬき部を設けることなく、肉
厚差の大きいガラス光学素子を、外周部と中心部との収
縮する速度を等しくして短時間で、安価にかつ高精度に
成形できるガラス光学素子の成形装置を提供することを
目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and provides a method for shrinking a glass optical element having a large thickness difference between an outer peripheral portion and a central portion without providing a hollow portion in a molding die. It is an object of the present invention to provide a molding apparatus for a glass optical element, which can be molded in a short time, at low cost and with high precision by making equal.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、上型及び下型からなる成形型を一対の型
マウントにそれぞれ位置決めして取付けたガラス光学素
子の成形装置において、前記成形型から型マウントに流
れる熱量を制御する伝熱部材を成形型と型マウントとの
間に設けて構成した。また、伝熱部材は、上型と下型と
の間のガラス光学素子の薄肉部に対応する位置に空洞部
を有する構成としてもよい。さらに、前記伝熱部材は、
熱伝導電率の異なる複合材料から構成してもよい。In order to achieve the above object, the present invention relates to a glass optical element forming apparatus in which a forming die comprising an upper die and a lower die is positioned and mounted on a pair of die mounts, respectively. A heat transfer member for controlling the amount of heat flowing from the mold to the mold mount is provided between the mold and the mold mount. Further, the heat transfer member may be configured to have a cavity at a position corresponding to the thin portion of the glass optical element between the upper mold and the lower mold. Further, the heat transfer member is
It may be composed of composite materials having different thermal conductivity.
【0009】[0009]
【作用】上記構成にあっては、加熱軟化され上型と下型
によりプレスされたガラス素材は、成形型での冷却加圧
時に、ガラス素材の熱量は成形型から型マウントへと熱
伝導していくことによって冷却される。よって、成形型
と型マウントとの間に、伝導する熱量に分布を与える伝
熱部材に空気断熱層を設け、冷却中のガラス薄肉部の粘
度の上昇を遅延させることができる。また、伝熱部材を
成形型と別体とすることにより、加工性の比較的良好な
材料で伝熱部材を形成できる。さらに、熱伝導率の異な
る複合材料で伝熱部材を構成することにより、簡単な形
状で伝熱部材を構成できる。In the above construction, the glass material pressed by the upper mold and the lower mold after being softened by heating, the amount of heat of the glass material is transferred from the mold to the mold mount when cooled and pressed by the mold. Cooled by going. Therefore, an air heat insulating layer can be provided between the mold and the mold mount to provide a distribution of the amount of heat conducted to the heat transfer member, thereby delaying an increase in the viscosity of the thin glass portion during cooling. Further, by forming the heat transfer member separately from the mold, the heat transfer member can be formed of a material having relatively good workability. Further, by forming the heat transfer member with composite materials having different thermal conductivity, the heat transfer member can be formed with a simple shape.
【0010】[0010]
【実施例1】図1は、本発明の実施例1のガラス光学素
子の成形装置における金型部を示す断面図、図2は、本
発明の実施例1のガラス光学素子の成形装置を示す断面
図で、凸レンズの成形装置を示してある。図2において
1で示すのは成形部で、加熱ヒータ2aを備えた加熱炉
2が隣接されている。成形部1及び加熱炉2の周辺は、
石英ガラス管又はステンレス製管からなるカバー3及び
上ベース4,下ベース5により閉塞されており、カバー
3,上ベース4及び下ベース5により成形室6が形成さ
れている。上、下ベース4,5には、雰囲気ガス供給装
置(図示省略)に接続したガスノズル7が貫設され、こ
のガスノズル7を介して成形室6内に供給される窒素ガ
ス、不活性ガス又は還元性ガスにより成形室6内部の酸
化を防止している。上ベース4と下ベース5とは、図示
を省略してある部材を介して結合されており、上ベース
4と下ベース5との間の相互の距離、位置が変化しない
ように構成されている。Embodiment 1 FIG. 1 is a sectional view showing a mold part in a glass optical element forming apparatus according to Embodiment 1 of the present invention, and FIG. 2 shows a glass optical element forming apparatus according to Embodiment 1 of the present invention. In a sectional view, a convex lens forming apparatus is shown. In FIG. 2, reference numeral 1 denotes a forming section, and a heating furnace 2 having a heater 2a is adjacent to the forming section. The periphery of the forming part 1 and the heating furnace 2
A cover 3 made of a quartz glass tube or a stainless steel tube is closed by an upper base 4 and a lower base 5, and a molding chamber 6 is formed by the cover 3, the upper base 4 and the lower base 5. A gas nozzle 7 connected to an atmosphere gas supply device (not shown) is provided through the upper and lower bases 4 and 5, and nitrogen gas, inert gas or reduction gas supplied into the molding chamber 6 via the gas nozzle 7 is provided. The oxidizing gas prevents the inside of the molding chamber 6 from being oxidized. The upper base 4 and the lower base 5 are connected via a member (not shown), and are configured so that the mutual distance and position between the upper base 4 and the lower base 5 do not change. .
【0011】成形室6内には、上金型部8と下金型部9
とが同一軸線上で相対的に接近・離反自在に対向配置さ
れている。上金型部8は上ベース4に固定され、下金型
部9はプレス軸10の先端に固定されている。プレス軸
10は、下ベース5に固定したハウジング11内で軸受
け(摺動用軸受け)12により軸方向へ摺動自在に保持
されるとともに、その下端で連結した駆動用シリンダ1
3によって昇降駆動自在に設けられている。In the molding chamber 6, an upper mold section 8 and a lower mold section 9 are provided.
Are opposed to each other on the same axis so that they can approach and separate relatively. The upper mold part 8 is fixed to the upper base 4, and the lower mold part 9 is fixed to the tip of the press shaft 10. The press shaft 10 is held slidably in the axial direction by a bearing (sliding bearing) 12 in a housing 11 fixed to the lower base 5, and the driving cylinder 1 connected at its lower end.
3 is provided so as to be vertically movable.
【0012】上金型部8は、図1に示すように、上型マ
ウント14,上型ヒータ15,伝熱盤16及び上型17
より構成されている。上型マウント14は、Si3 N4
−Al2 O3 系セラミックス(線膨張係数3.5×10
-6)からなり、その上端が上ベース4に固定されるとと
もに、その下端面(先端面)には上型17を位置決めし
て固定するための凹部14aが設けられており、この凹
部14aの底面は平面仕上げされている。上型ヒータ1
5は、上型マウント14内で凹部14aの底面付近に埋
設され、図示しない温度制御装置に接続されて所定の温
度に制御自在となっている。As shown in FIG. 1, the upper mold section 8 includes an upper mold mount 14, an upper mold heater 15, a heat transfer plate 16 and an upper mold 17.
It is composed of The upper die mount 14 is made of Si 3 N 4
-Al 2 O 3 ceramics (linear expansion coefficient 3.5 × 10
-6 ), the upper end of which is fixed to the upper base 4 and the lower end surface (tip surface) thereof is provided with a concave portion 14a for positioning and fixing the upper die 17. The bottom surface is flat. Upper heater 1
Numeral 5 is embedded near the bottom surface of the concave portion 14a in the upper die mount 14, is connected to a temperature control device (not shown), and can be controlled to a predetermined temperature.
【0013】伝熱盤16は、耐熱性ステンレス(熱伝導
率0.04cal/cm・sec・℃,ビッカース硬度
196)からなり、下部(図において上側)外周に段部
16aを備えた平行な端面を有する凸形状で、全体の高
さ(端面間の距離)が上型マウント14の凹部14aの
深さよりも小さく形成されている。この伝熱盤16は、
凹部14aの底面と下部端面(以下、下端面という)を
接した状態で凹部14a内に配置されている。The heat transfer plate 16 is made of a heat-resistant stainless steel (thermal conductivity: 0.04 cal / cm · sec · ° C., Vickers hardness: 196), and has a parallel end face provided with a step 16a on the outer periphery of the lower part (upper side in the figure). And the entire height (distance between the end faces) is formed smaller than the depth of the concave portion 14a of the upper die mount 14. This heat transfer panel 16
The recess 14a is arranged in the recess 14a such that the bottom surface of the recess 14a is in contact with the lower end surface (hereinafter, referred to as the lower end surface).
【0014】上型17は、超硬合金(熱伝導率0.3c
al/cm・sec・℃,ビッカース硬度1450,線
膨張係数4.8×10-6)からなり、その成形面17a
は所定の凹状に鏡面仕上げされるとともに、成形面17
aの反対側の端面(以下、下端面という)は平面仕上げ
されている。この上型17は、上型マウント14の先端
に設けられるとともに、その下部が凹部14a内に収納
されている。凹部14a内に収納された上型17の下部
外周面の外径は、上型17が上型ヒータ15によって所
定の温度に加熱された時に、下部外周面が凹部14aの
内周面と密着し固定されるように、凹部14aの内周面
間で所定のクリアランスを有するように線膨張係数を考
慮した寸法に形成されている。また、この時、上型マウ
ント14、伝熱盤16及び上型17は、熱伝導が良好に
行われるように互いに密着するとともに、伝熱盤16の
段部16aと上型17の下端面との間に空洞部18が形
成される。The upper die 17 is made of a cemented carbide (having a thermal conductivity of 0.3 c).
al / cm · sec · ° C., Vickers hardness 1450, coefficient of linear expansion 4.8 × 10 −6 ), and its molding surface 17a
Is mirror-finished in a predetermined concave shape, and
An end face on the opposite side of a (hereinafter referred to as a lower end face) is flat-finished. The upper mold 17 is provided at the tip of the upper mold mount 14, and the lower part thereof is housed in the recess 14a. The outer diameter of the lower outer peripheral surface of the upper die 17 housed in the concave portion 14a is such that when the upper die 17 is heated to a predetermined temperature by the upper die heater 15, the lower outer peripheral surface is in close contact with the inner peripheral surface of the concave portion 14a. In order to be fixed, it is formed to have a predetermined clearance between the inner peripheral surfaces of the concave portions 14a and to have a dimension in consideration of a linear expansion coefficient. At this time, the upper die mount 14, the heat transfer plate 16 and the upper die 17 are in close contact with each other so that heat conduction is performed well, and the step 16a of the heat transfer plate 16 and the lower end surface of the upper die 17 are in contact with each other. A cavity 18 is formed therebetween.
【0015】下金型部9は、前記上金型部8と同様に下
型マウント19,下型ヒータ20,伝熱盤21及び下型
22からなり、その配置、構造等の構成は上金型部8と
同様であるので説明を省略する。The lower mold section 9 is composed of a lower mold mount 19, a lower mold heater 20, a heat transfer panel 21 and a lower mold 22 in the same manner as the upper mold section 8. The description is omitted because it is the same as the mold portion 8.
【0016】図において23で示すのは、光学ガラス素
材24及びプレス成形後の光学素子を載置、搬送するキ
ャリアで、このキャリア23はキャリア搬送用アーム2
5により保持され、加熱炉2内及び上、下型17,22
間に搬送されるように制御構成されている。In FIG. 1, reference numeral 23 denotes a carrier on which the optical glass material 24 and the optical element after press molding are mounted and transported.
5 inside the heating furnace 2 and the upper and lower dies 17, 22
It is configured to be conveyed in between.
【0017】次に、本実施例の成形装置の作用を説明す
る。まず、成形室6内に上、下ベース4,5のガスノズ
ル7から窒素ガス等を供給し、成形室6内部の酸素濃度
を1%以下に置換する。次に、加熱ヒータ2a,上型ヒ
ータ15及び下型ヒータ20により、加熱炉2,上金型
部8及び下金型部9を所定の温度に加熱する。この状態
において、キャリア23内に光学ガラス素材24を載置
し、キャリア搬送用アーム25を加熱炉2内に搬送し、
上下のヒータ2aにより光学ガラス素材24を成形可能
状態(軟化点)になるまで加熱軟化処理する。Next, the operation of the molding apparatus of this embodiment will be described. First, nitrogen gas or the like is supplied from the gas nozzles 7 of the upper and lower bases 4 and 5 into the molding chamber 6 to replace the oxygen concentration inside the molding chamber 6 with 1% or less. Next, the heating furnace 2, the upper mold part 8, and the lower mold part 9 are heated to a predetermined temperature by the heater 2a, the upper heater 15, and the lower heater 20. In this state, the optical glass material 24 is placed in the carrier 23, and the carrier transport arm 25 is transported into the heating furnace 2;
The heating and softening treatment is performed by the upper and lower heaters 2a until the optical glass material 24 becomes a moldable state (softening point).
【0018】次に、搬送用アーム25を前進させ、キャ
リア23と共に光学ガラス素材24を上型17、下型2
2間に搬送する。そして、下型22をシリンダ13によ
りプレス軸10を介して上動し、上、下型17,22の
各成形面17a,22aにより軟化状態の光学ガラス素
材24をプレス成形する。このとき、上、下型17,2
2の下端面外周部には、空洞部18により空気断熱層が
形成されるため、プレス成形されている光学ガラス素材
24の光学面部24a外周の冷却速度は鈍化する。一
方、光学面部24aの中央及びその近傍は、伝熱盤1
6,21を通じて上、下型マウント14,19へ熱が逃
げるので、急速に冷却する。従って、光学ガラス素材2
4の薄肉部である外周温度を厚肉部である中央部より高
い状態に保ちつつ光学ガラス素材24が加圧冷却され、
均等に収縮する結果、所望の形状精度の光学素子を容易
に成形できる。Next, the transfer arm 25 is advanced, and the optical glass material 24 is moved together with the carrier 23 into the upper mold 17 and the lower mold 2.
Convey between two. Then, the lower mold 22 is moved upward by the cylinder 13 via the press shaft 10, and the optical glass material 24 in a softened state is press-molded by the molding surfaces 17 a and 22 a of the upper and lower molds 17 and 22. At this time, the upper and lower dies 17, 2
Since the air heat insulating layer is formed by the hollow portion 18 on the outer peripheral portion of the lower end surface of 2, the cooling rate of the outer peripheral surface of the optical surface portion 24a of the press-molded optical glass material 24 is slowed down. On the other hand, the center of the optical surface portion 24a and its vicinity are located on the heat transfer plate 1.
The heat escapes to the upper and lower mounts 14 and 19 through 6, 21 so that they cool rapidly. Therefore, the optical glass material 2
The optical glass material 24 is pressurized and cooled while keeping the outer peripheral temperature, which is the thin portion, of the sample 4 higher than the central portion, which is the thick portion,
As a result of the uniform shrinkage, an optical element having a desired shape accuracy can be easily formed.
【0019】上、下型17,22間でのプレス成形が終
了した後、下型22を下降して離型し、加熱炉2と反対
側の成形室6側面に設けた徐冷炉(図示省略)中に搬送
アーム25により搬送して、プレス成形された光学素子
を徐冷する。そして、徐冷が終了した後、徐冷炉内から
光学素子を取り出す。After the press forming between the upper and lower dies 17 and 22 is completed, the lower dies 22 are lowered and released, and a lehr is provided on the side of the forming chamber 6 opposite to the heating furnace 2 (not shown). The press-formed optical element is conveyed by the transfer arm 25 and gradually cooled. After the completion of the slow cooling, the optical element is taken out of the slow cooling furnace.
【0020】本実施例によれば、耐熱性ステンレス等の
加工性の比較的良好な材料によって伝熱盤16,21を
上、下型17,22とは別体で形成できるので、伝熱盤
16,21の形状を任意かつ容易に加工でき、安価に形
状精度の良好な光学素子を得ることができる。According to the present embodiment, the heat transfer plates 16 and 21 can be formed separately from the upper and lower dies 17 and 22 using a material having relatively good workability such as heat-resistant stainless steel. The shapes 16 and 21 can be arbitrarily and easily processed, and an optical element having good shape accuracy can be obtained at low cost.
【0021】図3は、実施例1における伝熱盤16,2
1の変形例を示す伝熱盤25の断面図である。伝熱盤2
5は、コバ部から中心に向かって空間部25aを設けて
構成されている。この伝熱盤25にあっても実施例1と
同様な作用、効果を得ることができる。なお、実施例
1,変形例においては、伝熱盤16,21,25の材料
として耐熱性ステンレスを例に挙げて説明したが、これ
に限定されず、例えば快削性セラミックス、耐熱性金属
を用いて実施することができる。また、以下の実施例に
おいても同様である。FIG. 3 shows the heat transfer plates 16 and 2 in the first embodiment.
It is sectional drawing of the heat transfer board 25 which shows the modification of 1. Heat transfer panel 2
5 is configured by providing a space 25a from the edge to the center. Even with this heat transfer plate 25, the same operation and effect as those of the first embodiment can be obtained. In the first embodiment and the modified examples, the heat-transfer panels 16, 21, and 25 are described by taking heat-resistant stainless steel as an example. However, the present invention is not limited thereto. For example, free-cutting ceramics and heat-resistant metal may be used. It can be implemented using The same applies to the following embodiments.
【0022】[0022]
【実施例2】図4は、本発明の実施例2のガラス光学素
子の成形装置における伝熱盤の平面図、図5は、伝熱盤
の断面図である。本実施例の伝熱盤26は、両平面部に
開口した貫通孔からなる複数の断熱孔26aを外周部ほ
ど多く分布させて構成してある。この断熱孔26aはそ
の直径を変化させ、その総面積を変化させても良く、ま
た、貫通孔とせずに片面あるいは両面に開口した凹部に
形成して実施できる。その他の構成は実施例1の成形装
置の構成と同様である。Embodiment 2 FIG. 4 is a plan view of a heat transfer plate in a glass optical element forming apparatus according to a second embodiment of the present invention, and FIG. 5 is a sectional view of the heat transfer plate. The heat transfer plate 26 of the present embodiment is configured such that a plurality of heat insulating holes 26a formed of through holes opened in both flat portions are distributed more toward the outer peripheral portion. The diameter of the heat insulating hole 26a may be changed and the total area thereof may be changed. Further, the heat insulating hole 26a may be formed in a concave portion opened on one surface or both surfaces without forming a through hole. Other configurations are the same as the configuration of the molding apparatus of the first embodiment.
【0023】本実施例にあっては、断熱孔26aの分布
により、自在に光学ガラス素材の外周部を中心より遅い
冷却速度に制御でき、実施例1と同様な作用、効果を得
ることができる。In the present embodiment, the cooling rate of the outer peripheral portion of the optical glass material can be freely controlled to be lower than the center by the distribution of the heat insulating holes 26a, and the same operation and effect as in the first embodiment can be obtained. .
【0024】[0024]
【実施例3】図6は、本発明の実施例3のガラス光学素
子の成形装置における伝熱盤の断面図である。本実施例
の伝熱盤27は、両平面部における中心部と外周部の表
面粗さを異なるようにして構成したもので、中心部27
aの表面粗さに対して外周部27bほど表面粗さが粗く
形成されている。Third Embodiment FIG. 6 is a sectional view of a heat transfer plate in a glass optical element forming apparatus according to a third embodiment of the present invention. The heat transfer panel 27 of the present embodiment is configured such that the surface roughness of the central portion and the outer peripheral portion of both flat portions are different from each other.
The outer peripheral portion 27b is formed so as to have a higher surface roughness than the surface roughness a.
【0025】本実施例にあっては、表面粗さの粗い外周
部では微細な空気断熱層が上、下型マウントと上、下型
との間に分布して介在し、実施例1と同様な作用、効果
が得られる。また、所望の表面粗さに形成することは容
易であり、伝熱盤27を所望の形状に容易にかつ低コス
トで形成できる。In the present embodiment, a fine air heat insulating layer is distributed and interposed between the upper and lower mold mounts and the upper and lower molds in the outer peripheral portion having a rough surface roughness. Functions and effects can be obtained. Further, it is easy to form the heat transfer board 27 into a desired shape, and the heat transfer board 27 can be easily formed at a desired shape at low cost.
【0026】[0026]
【実施例4】図7は、本発明に実施例4のガラス光学素
子の成形装置における金型部を示す断面図である。本実
施例の成形装置は凹レンズをプレス成形し得るように、
伝熱盤28,29及び上、下型30,31を構成したも
ので、その他の構成は実施例1と同様である。即ち、伝
熱盤28,29は、中央部に空洞部32,33を有し、
外周部に平行な端面を持つリング形状に形成されてい
る。また、上、下型30,31の成形面30a,31a
は、所定の凸状に形成され鏡面仕上げ加工されている。Fourth Embodiment FIG. 7 is a sectional view showing a mold part in a molding apparatus for a glass optical element according to a fourth embodiment of the present invention. The molding apparatus of this embodiment can press-mold a concave lens,
The heat transfer panels 28 and 29 and the upper and lower dies 30 and 31 are configured, and the other configuration is the same as that of the first embodiment. That is, the heat transfer plates 28 and 29 have hollow portions 32 and 33 at the center,
It is formed in a ring shape having an end surface parallel to the outer peripheral portion. Also, the molding surfaces 30a, 31a of the upper and lower dies 30, 31
Is formed in a predetermined convex shape and is mirror-finished.
【0027】本実施例にあっては、伝熱盤28,29の
空洞部32,33により、上、下型マウント14,19
と上、下型30,31間に空気断熱層が形成されるた
め、光学ガラス素材24の光学面部24a中心の冷却速
度は鈍化する。一方、光学面部24aの外周部は伝熱盤
28,29を介して熱伝導が行われるので、急速に冷却
される。よって、光学ガラス素材24の薄肉部である中
心部の温度を厚肉部である外周部より高い温度に保ちつ
つ、光学ガラス素材24は加圧冷却され、均等に収縮す
る等、実施例1と同様な作用、効果を得ることができ
る。In this embodiment, the upper and lower mounts 14 and 19 are formed by the cavities 32 and 33 of the heat transfer panels 28 and 29.
Since the air heat insulating layer is formed between the upper and lower dies 30, 31, the cooling rate at the center of the optical surface portion 24a of the optical glass material 24 is reduced. On the other hand, since the outer peripheral portion of the optical surface portion 24a conducts heat through the heat transfer plates 28 and 29, it is rapidly cooled. Therefore, the optical glass material 24 is pressurized and cooled and shrinks evenly while maintaining the temperature of the central portion which is the thin portion of the optical glass material 24 higher than that of the outer peripheral portion which is the thick portion. Similar functions and effects can be obtained.
【0028】図8は、実施例4における伝熱盤28,2
9の変形例を示す伝熱盤35の断面図である。伝熱盤3
5は、平面部中心に凹部からなる空間部35aを設けて
構成したもので、この空間部35aは、上型マウント1
4又は下型マウント19と接するいずれかの平面部に形
成してもよく、あるいは両平面部に形成して実施でき、
実施例4と同様な作用、効果を得ることができる。FIG. 8 shows the heat transfer plates 28 and 2 in the fourth embodiment.
It is sectional drawing of the heat transfer board 35 which shows the modification of FIG. Heat transfer panel 3
Reference numeral 5 denotes a configuration in which a space portion 35a formed of a concave portion is provided at the center of the plane portion.
4 or may be formed on any flat portion in contact with the lower mold mount 19, or may be formed on both flat portions and implemented.
The same operation and effect as those of the fourth embodiment can be obtained.
【0029】[0029]
【実施例5】図9は、本発明の実施例5のガラス光学素
子の成形装置における伝熱盤の平面図、図10は、伝熱
盤の断面図である。本実施例の伝熱盤36は、両平面部
に開口した貫通孔からなる複数の断熱孔36aを中心部
ほど多く分布させて構成してある。この断熱孔36aは
直径を変化させても良く、また、貫通孔とせず片面ある
いは両面に開口した凹部に形成して実施できる。その他
の構成は、実施例4の成形装置の構成と同様である。Fifth Embodiment FIG. 9 is a plan view of a heat transfer plate in a glass optical element forming apparatus according to a fifth embodiment of the present invention, and FIG. 10 is a sectional view of the heat transfer plate. The heat transfer board 36 of the present embodiment is configured such that a plurality of heat insulating holes 36a formed of through holes opened in both flat portions are distributed more toward the center. The diameter of the heat insulating hole 36a may be changed, and the heat insulating hole 36a may be formed not as a through hole but as a concave portion opened on one side or both sides. Other configurations are the same as the configuration of the molding apparatus of the fourth embodiment.
【0030】本実施例にあっては、断熱孔36aの分布
により、自在に光学ガラス素材の中心部を外周部より遅
い冷却速度に制御でき、実施例4と同様な作用、効果を
得ることができる。In the present embodiment, the central portion of the optical glass material can be freely controlled at a lower cooling rate than the outer peripheral portion by the distribution of the heat insulating holes 36a, and the same operation and effect as those of the fourth embodiment can be obtained. it can.
【0031】[0031]
【実施例6】図11は、本発明に実施例6のガラス光学
素子の成形装置における伝熱盤の断面図である。本実施
例の伝熱盤37は、両平面部における中心部と外周部の
表面粗さを異なるようにして構成したもので、外周部3
7aの表面粗さに対して中心部37bほど表面粗さが粗
く形成されている。Sixth Embodiment FIG. 11 is a sectional view of a heat transfer plate in a glass optical element forming apparatus according to a sixth embodiment of the present invention. The heat transfer plate 37 of the present embodiment is configured such that the surface roughness of the central portion and the outer peripheral portion of both flat portions are different from each other.
The surface roughness is formed so as to be closer to the central portion 37b than the surface roughness of 7a.
【0032】本実施例にあっては、表面粗さ、の粗い中
心部では微細な空気断熱層が上、下型マウントと上、下
型との間に分布して介在し、実施例4と同様な作用、効
果が得られる。また、所望の表面粗さに形成することは
容易であり、伝熱盤37を所望の形状に容易にかつ低コ
ストで形成できる。In the present embodiment, a fine air heat insulating layer is distributed and interposed between the upper and lower mold mounts and the upper and lower molds in the central portion having a rough surface roughness. Similar functions and effects can be obtained. Further, it is easy to form the heat transfer plate 37 into a desired surface roughness, and the heat transfer plate 37 can be easily formed into a desired shape at low cost.
【0033】[0033]
【実施例7】図12は、本発明の実施例7のガラス光学
素子の成形装置における伝熱盤の断面図である。本実施
例の伝熱盤38は凸レンズを形成する際に用いるものを
示し、熱導電率の異なる材質からなる2つの部材で構成
されている。即ち、伝熱盤38は、外周部材38aをリ
ング形状に形成し、中央部材38bを外周部材38aの
中心部に嵌合して一体的に形成されており、熱伝導率は
中心部材38bの方が外周部部材38aよりも大きい材
料で構成されている。表1は、外周部材38aの材料と
中央部材38bの材料との組合わせを例示したものであ
る。Seventh Embodiment FIG. 12 is a cross-sectional view of a heat transfer plate in a glass optical element forming apparatus according to a seventh embodiment of the present invention. The heat transfer plate 38 of this embodiment is used for forming a convex lens, and is composed of two members made of materials having different thermal conductivity. That is, the heat transfer plate 38 is formed integrally by forming the outer peripheral member 38a into a ring shape, fitting the center member 38b to the center of the outer peripheral member 38a, and has a heat conductivity that is closer to that of the center member 38b. Is made of a material larger than the outer peripheral member 38a. Table 1 illustrates combinations of the material of the outer peripheral member 38a and the material of the central member 38b.
【0034】[0034]
【表1】 [Table 1]
【0035】本実施例にあっては、外周部材38aは熱
伝導率が小さいので、光学ガラス素材の光学面部外周の
冷却速度は鈍化する。一方、光学面部中央は熱伝導率の
大きい中央部材38bを介して熱伝導が行われるので、
急速に冷却される。よって、光学ガラス素材の薄肉部で
ある外周部の温度を厚肉部である中心部より高く保ちつ
つ、光学ガラス素材は加圧冷却され、均等に収縮する
等、実施例1と同様な作用、効果を得ることができる。
また、光学素子の肉厚差に応じて、外周部材38aと外
周部材38bの熱伝導率の差を考慮することにより簡単
に伝熱盤を得ることができる。なお、凹レンズを成形す
る場合には、上記伝熱盤38の構成と逆に、外周部材3
8aを中央部材38bよりも熱伝導率の大きい材料で伝
熱盤を構成して実施することができる。In the present embodiment, since the outer peripheral member 38a has a low thermal conductivity, the cooling rate of the outer periphery of the optical surface of the optical glass material is reduced. On the other hand, the center of the optical surface portion conducts heat through the central member 38b having a large heat conductivity.
Cools rapidly. Therefore, while maintaining the temperature of the outer peripheral portion, which is the thin portion of the optical glass material, higher than that of the central portion, which is the thick portion, the optical glass material is pressurized and cooled, and contracts uniformly, and the like, The effect can be obtained.
In addition, a heat transfer panel can be easily obtained by considering the difference in thermal conductivity between the outer peripheral member 38a and the outer peripheral member 38b according to the thickness difference of the optical element. When the concave lens is molded, the outer peripheral member 3
8a can be implemented by forming a heat transfer plate with a material having a higher thermal conductivity than the central member 38b.
【0036】[0036]
【発明の効果】本発明によれば、成形型と型マウントと
の間に伝熱部材を設けたので、ガラス素材から電動する
熱量に分布を与え、冷却中のガラス素材の薄肉部におけ
る冷却を押えるとともに、厚肉部における冷却を促進で
きる。よって、ガラス薄肉部の粘度上昇を遅延させるこ
とができ、形状精度の良好な光学素子を成形できる。ま
た、前記伝熱部材を成形型とは別体で構成したので、伝
熱部材の材料として比較的加工性の良好な材質のものを
選択でき、安価な光学素子を得ることができる。さら
に、伝熱部材を熱伝導率の異なる複合材料で構成するこ
とにより、簡単な形状の材料を組合わせることで伝熱部
材を形成できる。According to the present invention, since the heat transfer member is provided between the molding die and the mold mount, a distribution is given to the amount of heat to be electrically driven from the glass material, and cooling at the thin portion of the glass material being cooled is performed. In addition to pressing down, cooling in the thick portion can be promoted. Therefore, an increase in the viscosity of the thin glass portion can be delayed, and an optical element having good shape accuracy can be formed. Further, since the heat transfer member is formed separately from the molding die, a material having relatively good workability can be selected as the material of the heat transfer member, and an inexpensive optical element can be obtained. Further, by forming the heat transfer member from composite materials having different thermal conductivities, the heat transfer member can be formed by combining materials having simple shapes.
【図1】本発明の実施例1のガラス素材の成形装置にお
ける金型部を示す断面図である。FIG. 1 is a sectional view showing a mold part in a glass material forming apparatus according to a first embodiment of the present invention.
【図2】本発明の実施例1のガラス光学素子の成形装置
を示す断面図である。FIG. 2 is a cross-sectional view showing a glass optical element forming apparatus according to Embodiment 1 of the present invention.
【図3】実施例1における伝熱盤の変形例を示す断面図
である。FIG. 3 is a cross-sectional view illustrating a modified example of the heat transfer panel in the first embodiment.
【図4】本発明の実施例2のガラス光学素子の成形装置
における伝熱盤を示す平面図である。FIG. 4 is a plan view showing a heat transfer plate in a glass optical element forming apparatus according to a second embodiment of the present invention.
【図5】図4に示した伝熱盤の断面図である。FIG. 5 is a cross-sectional view of the heat transfer board shown in FIG.
【図6】本発明の実施例3のガラス光学素子の成形装置
における伝熱盤を示す断面図である。FIG. 6 is a cross-sectional view illustrating a heat transfer plate in a glass optical element forming apparatus according to a third embodiment of the present invention.
【図7】本発明の実施例4のガラス光学素子の成形装置
における金型部を示す断面図である。FIG. 7 is a cross-sectional view illustrating a mold part in a glass optical element forming apparatus according to a fourth embodiment of the present invention.
【図8】実施例1における伝熱盤の変形例を示す断面図
である。FIG. 8 is a cross-sectional view showing a modification of the heat transfer panel in the first embodiment.
【図9】本発明の実施例5のガラス光学素子の成形装置
における伝熱盤を示す平面図である。FIG. 9 is a plan view showing a heat transfer plate in a glass optical element forming apparatus according to a fifth embodiment of the present invention.
【図10】図9に示した伝熱盤の断面図である。FIG. 10 is a cross-sectional view of the heat transfer panel shown in FIG.
【図11】本発明の実施例6のガラス光学素子の成形装
置における伝熱盤を示す断面図である。FIG. 11 is a cross-sectional view showing a heat transfer plate in a glass optical element forming apparatus according to Embodiment 6 of the present invention.
【図12】本発明の実施例7のガラス光学素子の成形装
置における伝熱盤を示す断面図である。FIG. 12 is a cross-sectional view showing a heat transfer plate in a glass optical element forming apparatus according to a seventh embodiment of the present invention.
14 上型マウント 16,21,25,26,27,28,29 35,36,37,38 伝熱盤 17 上型 18 空洞部 19 下型マウント 22 下型 14 Upper die mount 16, 21, 25, 26, 27, 28, 29 35, 36, 37, 38 Heat transfer board 17 Upper die 18 Cavity part 19 Lower die mount 22 Lower die
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C03B 9/00 - 17/06 C03B 19/00 - 19/10 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C03B 9/00-17/06 C03B 19/00-19/10
Claims (3)
マウントにそれぞれ位置決めして取付けたガラス光学素
子の成形装置において、前記成形型から型マウントに流
れる熱量を制御する伝熱部材を成形型と型マウントとの
間に設けたことを特徴とするガラス光学素子の成形装
置。In a glass optical element forming apparatus in which a mold including an upper mold and a lower mold is positioned and mounted on a pair of mold mounts, a heat transfer member for controlling the amount of heat flowing from the mold to the mold mount is provided. A molding apparatus for a glass optical element, provided between a molding die and a mold mount.
ラス光学素子の薄肉部に対応する位置に空洞部を有する
ことを特徴とする請求項1記載のガラス光学素子の成形
装置。2. The glass optical element according to claim 1, wherein the heat transfer member has a cavity at a position corresponding to a thin portion of the glass optical element between the upper mold and the lower mold. apparatus.
合材料からなることを特徴とする請求項1記載のガラス
光学素子の成形装置。3. The apparatus according to claim 1, wherein the heat transfer member is made of a composite material having different thermal conductivity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35494491A JP3187903B2 (en) | 1991-12-20 | 1991-12-20 | Glass optical element molding equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35494491A JP3187903B2 (en) | 1991-12-20 | 1991-12-20 | Glass optical element molding equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05170463A JPH05170463A (en) | 1993-07-09 |
JP3187903B2 true JP3187903B2 (en) | 2001-07-16 |
Family
ID=18440952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35494491A Expired - Fee Related JP3187903B2 (en) | 1991-12-20 | 1991-12-20 | Glass optical element molding equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3187903B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010159182A (en) * | 2009-01-08 | 2010-07-22 | Olympus Corp | Apparatus and method for manufacturing optical element |
-
1991
- 1991-12-20 JP JP35494491A patent/JP3187903B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05170463A (en) | 1993-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103974915B (en) | The forming device of glass framework and manufacturing process | |
JP4495842B2 (en) | Manufacturing method and manufacturing apparatus for glass molded product, and manufacturing method for glass product | |
JP3103243B2 (en) | Glass compression molding machine and its processing room | |
JP3974200B2 (en) | Glass optical element molding method | |
JP3187903B2 (en) | Glass optical element molding equipment | |
JP3608768B2 (en) | Glass optical element press molding apparatus and glass optical element molding method | |
JP3184585B2 (en) | Mold for glass optical element | |
JP3162180B2 (en) | Glass optical element molding method | |
JP2723139B2 (en) | Optical element molding method and molding apparatus | |
JP2718451B2 (en) | Optical glass parts molding method | |
JP3131584B2 (en) | Method for molding optical element and optical element | |
JP3753415B2 (en) | Glass optical element molding method | |
JP3957776B2 (en) | Optical element mold | |
JP4358406B2 (en) | Optical element molding apparatus and molding method | |
JPH08217469A (en) | Method for forming optical element | |
JP4094587B2 (en) | Glass optical element molding method | |
JP3131472B2 (en) | Optical element and method for molding optical element | |
JP3187902B2 (en) | Glass optical element molding method | |
JP3229943B2 (en) | Glass optical element molding method | |
JPS63170228A (en) | Press-molding device for glass lens | |
JPH0725629A (en) | Mold for forming optical lens | |
JP2000178033A (en) | Formation of glass element | |
JP2007112010A (en) | Method and apparatus for molding thermoplastic material | |
JPH05193962A (en) | Method for forming glass optical element | |
JP2002338270A (en) | Forming die for press forming of quartz glass and press forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010424 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080511 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090511 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100511 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |