[go: up one dir, main page]

JP3184763U - Composite board - Google Patents

Composite board Download PDF

Info

Publication number
JP3184763U
JP3184763U JP2013600008U JP2013600008U JP3184763U JP 3184763 U JP3184763 U JP 3184763U JP 2013600008 U JP2013600008 U JP 2013600008U JP 2013600008 U JP2013600008 U JP 2013600008U JP 3184763 U JP3184763 U JP 3184763U
Authority
JP
Japan
Prior art keywords
substrate
piezoelectric substrate
composite
support substrate
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2013600008U
Other languages
Japanese (ja)
Inventor
健司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Application granted granted Critical
Publication of JP3184763U publication Critical patent/JP3184763U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • H10N30/073Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】圧電基板とスピネル支持基板で構成され、接着力と割れ防止を両立できる複合基板を提供する。
【解決手段】圧電基板12と、スピネルからなる支持基板14と、前記圧電基板と前記支持基板とを接着する有機接着層16と、を備え、前記支持基板のうち前記圧電基板との接着面は、Rt(粗さ曲線の最大断面高さ)が5nm以上50nm以下とする。Rtが5nm以下では接着力不足、50nm以上では強度不足となる。
【選択図】図1
Provided is a composite substrate composed of a piezoelectric substrate and a spinel support substrate, which can achieve both adhesive force and crack prevention.
A piezoelectric substrate, a support substrate made of spinel, and an organic adhesive layer for bonding the piezoelectric substrate and the support substrate are provided, and an adhesive surface of the support substrate to the piezoelectric substrate is , Rt (maximum cross-sectional height of the roughness curve) is 5 nm to 50 nm. When Rt is 5 nm or less, the adhesive strength is insufficient, and when it is 50 nm or more, the strength is insufficient.
[Selection] Figure 1

Description

本発明は、複合基板に関する。  The present invention relates to a composite substrate.

従来より、携帯電話等に使用されるフィルタ素子や発振子として機能させることができる弾性表面波デバイスや、圧電薄膜を用いたラム波素子や薄膜共振子(FBAR:Film Bulk Acoustic Resonator)などの弾性波デバイスが知られている。こうした弾性波デバイスとしては、支持基板と弾性波を伝搬させる圧電基板とを貼り合わせ、圧電基板の表面に弾性表面波を励振可能な櫛形電極を設けたものが知られている。このうち、支持基板と圧電基板とを貼り合わせたものは複合基板と称される。支持基板には、サファイア基板が用いられることが多いが、サファイアは硬度が高いため所定形状に切削加工することが困難であり、コストも高いという欠点があった。これらの欠点を考慮して、近年、支持基板として、スピネル基板を用いることが提案されている(特許文献1)。
特開2011−66818号公報
Conventionally, elasticity such as a surface acoustic wave device that can function as a filter element or an oscillator used in a mobile phone or the like, a Lamb wave element using a piezoelectric thin film, or a thin film resonator (FBAR: Film Bulk Acoustic Resonator) Wave devices are known. As such an acoustic wave device, a device in which a supporting substrate and a piezoelectric substrate that propagates an acoustic wave are bonded together and a comb-shaped electrode capable of exciting a surface acoustic wave is provided on the surface of the piezoelectric substrate is known. Of these, a substrate obtained by bonding a support substrate and a piezoelectric substrate is referred to as a composite substrate. As the support substrate, a sapphire substrate is often used. However, since sapphire has a high hardness, it has been disadvantageous in that it is difficult to cut into a predetermined shape and the cost is high. In consideration of these drawbacks, it has recently been proposed to use a spinel substrate as a support substrate (Patent Document 1).
JP 2011-66818 A

しかしながら、特許文献1の段落0021に記載されているように、スピネル基板の主表面上に接着剤を用いて圧電基板を形成することは困難であった。このため、特許文献1では、スピネル基板と圧電基板とを接着剤を用いることなくファンデルワールス力を利用して直接接合している。  However, as described in paragraph 0021 of Patent Document 1, it has been difficult to form a piezoelectric substrate using an adhesive on the main surface of the spinel substrate. For this reason, in Patent Document 1, the spinel substrate and the piezoelectric substrate are directly joined using van der Waals force without using an adhesive.

本発明はこのような課題を解決するためになされたものであり、圧電基板とスピネルからなる支持基板とを有機接着層を介して堅固に接着された複合基板を提供することを主目的とする。  The present invention has been made to solve such problems, and has as its main object to provide a composite substrate in which a piezoelectric substrate and a support substrate made of spinel are firmly bonded via an organic adhesive layer. .

本発明の複合基板は、上述の主目的を達成するために以下の手段を採った。  The composite substrate of the present invention employs the following means in order to achieve the main object described above.

本発明の複合基板は、
圧電基板と、
スピネルからなる支持基板と、
前記圧電基板と前記支持基板とを接着する有機接着層と、
を備え、
前記支持基板のうち前記圧電基板との接着面は、Rt(粗さ曲線の最大断面高さ)が5nm以上50nm以下
のものである。
The composite substrate of the present invention is
A piezoelectric substrate;
A support substrate made of spinel;
An organic adhesive layer for bonding the piezoelectric substrate and the support substrate;
With
Of the support substrate, the bonding surface with the piezoelectric substrate has Rt (maximum cross-sectional height of the roughness curve) of 5 nm to 50 nm.

この複合基板では、支持基板のうち圧電基板との接着面のRtが5nm以上50nm以下であるため、圧電基板とスピネルからなる支持基板とが有機接着層を介して堅固に接着される。また、圧電基板と支持基板とを直接接合した場合に比べて、有機接着層が存在するため、応力緩和による割れ防止効果が得られる。  In this composite substrate, since the Rt of the bonding surface of the support substrate to the piezoelectric substrate is 5 nm or more and 50 nm or less, the piezoelectric substrate and the support substrate made of spinel are firmly bonded through the organic adhesive layer. Moreover, since the organic adhesive layer is present compared to the case where the piezoelectric substrate and the support substrate are directly bonded, an effect of preventing cracking due to stress relaxation can be obtained.

複合基板10の斜視図。1 is a perspective view of a composite substrate 10. FIG. 図1のA−A断面図。AA sectional drawing of FIG.

本発明の複合基板において、圧電基板は、例えば、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸リチウム−タンタル酸リチウム固溶体単結晶、ホウ酸リチウム、ランガサイト及び水晶からなる群より選ばれた1種からなる基板としてもよい。この圧電基板の大きさは、特に限定するものではないが、例えば、直径が50〜150mm、厚さが10〜500μmとしてもよい。  In the composite substrate of the present invention, the piezoelectric substrate is, for example, one selected from the group consisting of lithium tantalate, lithium niobate, lithium niobate-lithium tantalate solid solution, lithium borate, langasite, and crystal. It is good also as a board | substrate which becomes. The size of the piezoelectric substrate is not particularly limited. For example, the diameter may be 50 to 150 mm and the thickness may be 10 to 500 μm.

本発明の複合基板において、有機接着層は、例えば、アクリル系接着層又はエポキシ系接着剤としてもよい。この有機接着層の厚みは、特に限定するものではないが、例えば、0.1〜1.0μmとするのが良好な周波数温度特性が得られることから好ましい。  In the composite substrate of the present invention, the organic adhesive layer may be, for example, an acrylic adhesive layer or an epoxy adhesive. The thickness of the organic adhesive layer is not particularly limited, but is preferably 0.1 to 1.0 μm, for example, because good frequency temperature characteristics can be obtained.

本発明の複合基板において、支持基板は、スピネルからなる基板である。支持基板のうち圧電基板との接着面のRtは、5nm以上50nm以下である。この接着面のRtが5nm未満では、複合基板を高温で処理したときに圧電基板と支持基板とが剥離するおそれがあるため好ましくなく、50μmを超えると、複合基板を高温で処理したときに圧電基板が破裂するおそれがあるため好ましくない。スピネルは、マグネシウムとアルミニウムの酸化物である多結晶スピネルであることが好ましい。支持基板の大きさは、特に限定するものではないが、例えば、直径が50〜150mm、厚さが100〜500μmとしてもよい。  In the composite substrate of the present invention, the support substrate is a substrate made of spinel. Rt of the bonding surface of the support substrate with the piezoelectric substrate is 5 nm or more and 50 nm or less. If the Rt of the adhesion surface is less than 5 nm, the piezoelectric substrate and the support substrate may be peeled off when the composite substrate is processed at a high temperature. This is not preferable because the substrate may burst. The spinel is preferably a polycrystalline spinel that is an oxide of magnesium and aluminum. Although the magnitude | size of a support substrate is not specifically limited, For example, a diameter is 50-150 mm and thickness is good also as 100-500 micrometers.

本発明の複合基板を製造する方法の一例を以下に説明する。まず、支持基板の表面を研磨することにより、Rtが5nm以上50nm以下となるようにする。続いて、圧電基板及び支持基板の接合面を洗浄し、該接合面に付着している不純物(酸化物や吸着物等)を除去する。次に、両基板の接合面の少なくとも一方に有機接着剤を均一に塗布する。塗布方法としては、例えばスピンコートなどが挙げられる。その後、両基板を貼り合わせ、有機接着剤が熱硬化性樹脂の場合には加熱して硬化させ、有機接着剤が光硬化性樹脂の場合には光を照射して硬化させる。このように有機接着層を介して間接的に接合する場合には、有機接着層を厚さ0.1〜1.0μmとするのが好ましい。このようにして本発明の複合基板を得ることができる。  An example of a method for producing the composite substrate of the present invention will be described below. First, the surface of the support substrate is polished so that Rt is 5 nm to 50 nm. Subsequently, the bonding surface of the piezoelectric substrate and the support substrate is washed, and impurities (oxide, adsorbed material, etc.) adhering to the bonding surface are removed. Next, an organic adhesive is uniformly applied to at least one of the joint surfaces of both substrates. Examples of the coating method include spin coating. Thereafter, the two substrates are bonded together, and when the organic adhesive is a thermosetting resin, it is cured by heating, and when the organic adhesive is a photocurable resin, it is cured by irradiation with light. Thus, when bonding indirectly through an organic adhesive layer, it is preferable that the organic adhesive layer has a thickness of 0.1 to 1.0 μm. In this way, the composite substrate of the present invention can be obtained.

本発明の複合基板は、弾性波デバイスに用いられるものである。弾性波デバイスとしては、弾性表面波デバイスやラム波素子、薄膜共振子(FBAR)などが知られている。例えば、弾性表面波デバイスは、圧電基板の表面に、弾性表面波を励振する入力側のIDT(Interdigital Transducer)電極(櫛形電極、すだれ状電極ともいう)と弾性表面波を受信する出力側のIDT電極とを設けたものである。入力側のIDT電極に高周波信号を印加すると、電極間に電界が発生し、弾性表面波が励振されて圧電基板上を伝搬していく。そして、伝搬方向に設けられた出力側のIDT電極から、伝搬された弾性表面波を電気信号として取り出すことができる。こうした弾性波デバイスは、例えばプリント配線基板に実装する際にはリフロー工程が採用される。このリフロー工程において、鉛フリーのはんだを用いた場合、弾性波デバイスは260℃程度に加熱されるが、本発明の複合基板を利用した弾性波デバイスは耐熱性に優れるため圧電基板や支持基板の割れの発生が抑制される。  The composite substrate of the present invention is used for an acoustic wave device. As an acoustic wave device, a surface acoustic wave device, a Lamb wave element, a thin film resonator (FBAR), and the like are known. For example, in a surface acoustic wave device, an IDT (Interdigital Transducer) electrode (also referred to as a comb electrode or a comb electrode) that excites surface acoustic waves and an IDT on the output side that receives surface acoustic waves are formed on the surface of a piezoelectric substrate. And an electrode. When a high frequency signal is applied to the IDT electrode on the input side, an electric field is generated between the electrodes, and a surface acoustic wave is excited and propagates on the piezoelectric substrate. Then, the propagated surface acoustic wave can be taken out as an electric signal from the IDT electrode on the output side provided in the propagation direction. Such an acoustic wave device employs a reflow process when mounted on a printed wiring board, for example. In this reflow process, when lead-free solder is used, the acoustic wave device is heated to about 260 ° C. However, since the acoustic wave device using the composite substrate of the present invention is excellent in heat resistance, the piezoelectric substrate and the supporting substrate Generation of cracks is suppressed.

本発明の複合基板において、圧電基板は、裏面に金属膜を有していてもよい。金属膜は、弾性波デバイスとしてラム波素子を製造した際に、圧電基板の裏面近傍の電気機械結合係数を大きくする役割を果たす。この場合、ラム波素子は、圧電基板の表面に櫛歯電極が形成され、支持基板に設けられたキャビティによって圧電基板の金属膜が露出した構造となる。こうした金属膜の材質としては、例えばアルミニウム、アルミニウム合金、銅、金などが挙げられる。なお、ラム波素子を製造する場合、裏面に金属膜を有さない圧電基板を備えた複合基板を用いてもよい。  In the composite substrate of the present invention, the piezoelectric substrate may have a metal film on the back surface. The metal film plays a role of increasing the electromechanical coupling coefficient in the vicinity of the back surface of the piezoelectric substrate when a Lamb wave element is manufactured as an elastic wave device. In this case, the Lamb wave element has a structure in which comb electrodes are formed on the surface of the piezoelectric substrate, and the metal film of the piezoelectric substrate is exposed by the cavity provided in the support substrate. Examples of the material of such a metal film include aluminum, an aluminum alloy, copper, and gold. When a Lamb wave element is manufactured, a composite substrate including a piezoelectric substrate that does not have a metal film on the back surface may be used.

本発明の複合基板において、圧電基板は、裏面に金属膜と絶縁膜を有していてもよい。金属膜は、弾性波デバイスとして薄膜共振子を製造した際に、電極の役割を果たす。この場合、薄膜共振子は、圧電基板の表裏面に電極が形成され、絶縁膜をキャビティにすることによって圧電基板の金属膜が露出した構造となる。こうした金属膜の材質としては、例えば、モリブデン、ルテニウム、タングステン、クロム、アルミニウムなどが挙げられる。また、絶縁膜の材質としては、例えば、二酸化ケイ素、酸化亜鉛、リンシリカガラス、ボロンリンシリカガラスなどが挙げられる。  In the composite substrate of the present invention, the piezoelectric substrate may have a metal film and an insulating film on the back surface. The metal film serves as an electrode when a thin film resonator is manufactured as an acoustic wave device. In this case, the thin film resonator has a structure in which electrodes are formed on the front and back surfaces of the piezoelectric substrate, and the metal film of the piezoelectric substrate is exposed by using the insulating film as a cavity. Examples of the material for such a metal film include molybdenum, ruthenium, tungsten, chromium, and aluminum. Examples of the material for the insulating film include silicon dioxide, zinc oxide, phosphorous silica glass, and boron phosphorous silica glass.

[実施例1]
図1は複合基板10の斜視図、図2は図1のA−A断面図である。この複合基板10は、弾性表面波デバイスに利用されるものであり、1箇所がフラットになった円形に形成されている。このフラットな部分は、オリエンテーションフラット(OF)と呼ばれる部分であり、弾性表面波デバイスの製造工程において諸操作を行うときのウエハ位置や方向の検出などに用いられる。複合基板10は、弾性波を伝搬可能なタンタル酸リチウム(LT)からなる圧電基板12と、この圧電基板12に接合されたスピネル(立方晶多結晶スピネル、MgAl)からなる支持基板14と、両基板12,14を接合する接着層16とを備えている。圧電基板12は、厚さが20μm、直径が4インチ(約100mm)である。この圧電基板12は、42°YカットX伝搬LT基板(42Y−X LT)である。支持基板14は、厚さが250μm、直径が4インチである。接着層16は、アクリル系接着剤が固化した層であり、厚さは0.6μmである。
[Example 1]
FIG. 1 is a perspective view of the composite substrate 10, and FIG. 2 is a cross-sectional view taken along the line AA of FIG. The composite substrate 10 is used for a surface acoustic wave device, and is formed in a circular shape with one portion being flat. This flat portion is a portion called an orientation flat (OF), and is used for detection of a wafer position and direction when various operations are performed in the manufacturing process of the surface acoustic wave device. The composite substrate 10 includes a piezoelectric substrate 12 made of lithium tantalate (LT) capable of propagating elastic waves, and a support substrate 14 made of spinel (cubic polycrystalline spinel, MgAl 2 O 4 ) bonded to the piezoelectric substrate 12. And an adhesive layer 16 for joining the substrates 12 and 14 together. The piezoelectric substrate 12 has a thickness of 20 μm and a diameter of 4 inches (about 100 mm). The piezoelectric substrate 12 is a 42 ° Y-cut X-propagation LT substrate (42Y-X LT). The support substrate 14 has a thickness of 250 μm and a diameter of 4 inches. The adhesive layer 16 is a layer in which an acrylic adhesive is solidified and has a thickness of 0.6 μm.

こうした複合基板10の製造方法について、以下に説明する。まず、支持基板として、直径4インチの多結晶スピネルからなる支持基板を用意した。また、圧電基板として、直径4インチの42°YカットX伝搬LT基板を用意した。そして、圧電基板のうち支持基板との接着面を表面粗さRtが3nmになるように研磨、ポリッシュした。ポリッシュ後の圧電基板の厚さは、250μmであった。一方、支持基板のうち圧電基板との接着面を、Rtが5nmになるように、マイクロダイヤモンドにより研磨、ポリッシュした。ポリッシュ後の支持基板の厚さは、250μmであった。なお、Rtは、測定範囲を10μm×10μmの正方形で囲まれた領域とし、JIS B601(2001)に準じて測定した。続いて、各基板の片面に、アクリル系接着剤をスピンコーターを使用して塗布した。そして、両基板の接着剤塗布面同士が向かい合うようにして両基板を貼り合わせ、280℃で30分保持した。これにより、アクリル系接着剤を硬化してなる接着層を介して両基板が接着された貼り合わせ基板を得た。この貼り合わせ基板のうち、圧電基板を厚さが20μmになるまで研磨、ポリッシュし、実施例1の複合基板10を10枚得た。  A method for manufacturing such a composite substrate 10 will be described below. First, a support substrate made of polycrystalline spinel having a diameter of 4 inches was prepared as a support substrate. In addition, a 42 ° Y-cut X-propagation LT substrate having a diameter of 4 inches was prepared as a piezoelectric substrate. Then, the adhesive surface of the piezoelectric substrate with the support substrate was polished and polished so that the surface roughness Rt was 3 nm. The thickness of the piezoelectric substrate after polishing was 250 μm. On the other hand, the adhesive surface of the support substrate with the piezoelectric substrate was polished and polished with microdiamond so that Rt was 5 nm. The thickness of the support substrate after polishing was 250 μm. Rt was measured in accordance with JIS B601 (2001), with the measurement range being a region surrounded by a 10 μm × 10 μm square. Subsequently, an acrylic adhesive was applied to one side of each substrate using a spin coater. Then, both substrates were bonded so that the adhesive-coated surfaces of both substrates were facing each other, and held at 280 ° C. for 30 minutes. Thereby, the bonded substrate by which both the board | substrates were adhere | attached through the contact bonding layer formed by hardening | curing an acrylic adhesive was obtained. Among the bonded substrates, the piezoelectric substrate was polished and polished until the thickness became 20 μm, and 10 composite substrates 10 of Example 1 were obtained.

[実施例2]
実施例1で、支持基板のうち圧電基板との接着面をRtが45nmとなるように研磨、ポリッシュした以外は、実施例1と同様にして複合基板10を10枚得た。
[Example 2]
Ten composite substrates 10 were obtained in the same manner as in Example 1, except that the adhesive surface of the support substrate with the piezoelectric substrate was polished and polished so that Rt was 45 nm.

[比較例1]
実施例1で、支持基板のうち圧電基板との接着面をRtが2nmとなるように研磨、ポリッシュした以外は、実施例1と同様にして複合基板10を10枚得た。
[Comparative Example 1]
Ten composite substrates 10 were obtained in the same manner as in Example 1, except that the adhesive surface of the support substrate with the piezoelectric substrate was polished and polished so that Rt was 2 nm.

[比較例2]
実施例1で、支持基板のうち圧電基板との接着面をRtが60nmとなるように研磨、ポリッシュした以外は、実施例1と同様にして複合基板10を10枚得た。
[Comparative Example 2]
Ten composite substrates 10 were obtained in the same manner as in Example 1, except that the adhesive surface of the support substrate with the piezoelectric substrate was polished and polished so that Rt was 60 nm.

[評価]
実施例1,2及び比較例1,2の複合基板10をそれぞれ10枚ずつオーブン中で280℃、1時間放置した。その結果を表1に示す。表1から明らかなように、実施例1,2の複合基板10については、不良は見られず、圧電基板と支持基板とが堅固に接着されていた。一方、比較例1では、圧電基板と支持基板とが剥離した。また、比較例2では、圧電基板が破裂した。圧電基板が破裂した理由は、Rtが50nmを超えていたことから局所的に深さの深い微小穴が存在し、その微小穴内に空気が巻き込まれた状態で圧電基板と支持基板とが接着され、高温処理によりその空気が膨脹して圧電基板の破裂を招いたと考えられる。なお、算術平均粗さRaは、平均値であるため、深さの深い微小穴が存在しているか否かの指標にならない。例えば、Raが40nmだとしても深さが50nmを超える深い微小穴が存在することがある。
[Evaluation]
Ten composite substrates 10 of Examples 1 and 2 and Comparative Examples 1 and 2 were each left in an oven at 280 ° C. for 1 hour. The results are shown in Table 1. As apparent from Table 1, no defects were found in the composite substrates 10 of Examples 1 and 2, and the piezoelectric substrate and the support substrate were firmly bonded. On the other hand, in Comparative Example 1, the piezoelectric substrate and the support substrate were peeled off. In Comparative Example 2, the piezoelectric substrate burst. The reason for the rupture of the piezoelectric substrate is that since Rt exceeded 50 nm, there was a microhole with a deep depth locally, and the piezoelectric substrate and the support substrate were bonded together in a state where air was caught in the microhole. It is considered that the air was expanded by the high temperature treatment, and the piezoelectric substrate was ruptured. Since the arithmetic average roughness Ra is an average value, it does not serve as an index as to whether or not a minute hole having a deep depth exists. For example, even if Ra is 40 nm, deep microholes with a depth exceeding 50 nm may exist.

Figure 0003184763
Figure 0003184763

本出願は、2010年6月15日に出願された米国仮出願61/354837を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。This application is based on US provisional application 61/354837 filed Jun. 15, 2010, the entire contents of which are incorporated herein by reference.

本発明の複合基板は、例えば、弾性表面波デバイスやラム波素子、薄膜共振子(FBAR)などの弾性波デバイスに利用可能である。  The composite substrate of the present invention can be used for, for example, an acoustic wave device such as a surface acoustic wave device, a Lamb wave element, and a thin film resonator (FBAR).

Claims (3)

圧電基板と、
スピネルからなる支持基板と、
前記圧電基板と前記支持基板とを接着する有機接着層と、
を備え、
前記支持基板のうち前記圧電基板との接着面は、Rt(粗さ曲線の最大断面高さ)が5nm以上50nm以下である、
複合基板。
A piezoelectric substrate;
A support substrate made of spinel;
An organic adhesive layer for bonding the piezoelectric substrate and the support substrate;
With
Of the support substrate, the adhesive surface with the piezoelectric substrate has an Rt (maximum cross-sectional height of the roughness curve) of 5 nm or more and 50 nm or less.
Composite board.
前記スピネルは、マグネシウムとアルミニウムの酸化物である多結晶スピネルである、
請求項1に記載の複合基板。
The spinel is a polycrystalline spinel that is an oxide of magnesium and aluminum.
The composite substrate according to claim 1.
前記有機接着層は、厚さが0.1μm以上1.0μm以下である、
請求項1又は2に記載の複合基板。
The organic adhesive layer has a thickness of 0.1 μm or more and 1.0 μm or less.
The composite substrate according to claim 1 or 2.
JP2013600008U 2010-06-15 2011-05-27 Composite board Expired - Lifetime JP3184763U (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US35483710P 2010-06-15 2010-06-15
US61/354,837 2010-06-15
PCT/JP2011/062246 WO2011158636A1 (en) 2010-06-15 2011-05-27 Composite substrate

Publications (1)

Publication Number Publication Date
JP3184763U true JP3184763U (en) 2013-07-18

Family

ID=45348045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013600008U Expired - Lifetime JP3184763U (en) 2010-06-15 2011-05-27 Composite board

Country Status (3)

Country Link
JP (1) JP3184763U (en)
CN (1) CN203014754U (en)
WO (1) WO2011158636A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180102615A (en) 2016-03-25 2018-09-17 엔지케이 인슐레이터 엘티디 Bonded body and acoustic wave element
KR20180132613A (en) 2017-03-31 2018-12-12 엔지케이 인슐레이터 엘티디 Bonded body and acoustic wave element
KR20200115653A (en) 2018-03-29 2020-10-07 엔지케이 인슐레이터 엘티디 Conjugate and acoustic wave element
KR20200118213A (en) 2018-03-29 2020-10-14 엔지케이 인슐레이터 엘티디 Conjugate and acoustic wave element
KR20210006995A (en) 2018-06-22 2021-01-19 엔지케이 인슐레이터 엘티디 Conjugate and acoustic wave element
US10964882B2 (en) 2016-03-25 2021-03-30 Ngk Insulators, Ltd. Bonding method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013003488B4 (en) * 2012-07-12 2021-08-19 Ngk Insulators, Ltd. COMPOSITE SUBSTRATE, PIEZOELECTRIC DEVICE, AND METHOD FOR MANUFACTURING A COMPOSITE SUBSTRATE
EP3102405B1 (en) * 2014-02-07 2020-11-18 CeramTec-Etec GmbH Substrate ceramic laminate
JP6481465B2 (en) * 2014-08-21 2019-03-13 三星ダイヤモンド工業株式会社 Breaking method of composite substrate
CN109672420B (en) * 2018-12-18 2023-03-31 北方民族大学 Multi-layer piezoelectric substrate provided with magnesium-aluminum alloy film and preparation method thereof
EP4122885A4 (en) * 2021-06-09 2024-02-21 NGK Insulators, Ltd. Composite substrate and composite substrate manufacturing method
WO2022259591A1 (en) * 2021-06-09 2022-12-15 日本碍子株式会社 Composite substrate and composite substrate manufacturing method
CN113690365B (en) * 2021-07-23 2024-02-13 绍兴中芯集成电路制造股份有限公司 Piezoelectric device and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152236A (en) * 1994-06-03 2003-05-23 Ngk Insulators Ltd Ceramic diaphragm structure and its manufacturing method
JP4783558B2 (en) * 2003-07-22 2011-09-28 日本碍子株式会社 Actuator device
JP2007134889A (en) * 2005-11-09 2007-05-31 Shin Etsu Chem Co Ltd Composite piezoelectric substrate
WO2009072585A1 (en) * 2007-12-05 2009-06-11 Asahi Glass Co., Ltd. Process for production of crystalline kln film, process for production of semiconductor device, and semiconductor device
JP4956569B2 (en) * 2008-04-15 2012-06-20 日本碍子株式会社 Surface acoustic wave device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10964882B2 (en) 2016-03-25 2021-03-30 Ngk Insulators, Ltd. Bonding method
US10432169B2 (en) 2016-03-25 2019-10-01 Ngk Insulators, Ltd. Bonded body and elastic wave element
KR20190134827A (en) 2016-03-25 2019-12-04 엔지케이 인슐레이터 엘티디 Bonded body and elastic wave element
US10720566B2 (en) 2016-03-25 2020-07-21 Ngk Insulators, Ltd. Bonding method
KR20180102615A (en) 2016-03-25 2018-09-17 엔지케이 인슐레이터 엘티디 Bonded body and acoustic wave element
KR20180132613A (en) 2017-03-31 2018-12-12 엔지케이 인슐레이터 엘티디 Bonded body and acoustic wave element
US10284169B2 (en) 2017-03-31 2019-05-07 Ngk Insulators, Ltd. Bonded bodies and acoustic wave devices
DE112019001648B4 (en) 2018-03-29 2022-02-17 Ngk Insulators, Ltd. CONNECTION AND ELASTIC WAVE ELEMENT
KR20200118213A (en) 2018-03-29 2020-10-14 엔지케이 인슐레이터 엘티디 Conjugate and acoustic wave element
US11070189B2 (en) 2018-03-29 2021-07-20 Ngk Insulators, Ltd. Joint and elastic wave element
KR20200115653A (en) 2018-03-29 2020-10-07 엔지케이 인슐레이터 엘티디 Conjugate and acoustic wave element
US11411547B2 (en) 2018-03-29 2022-08-09 Ngk Insulators, Ltd. Joint and elastic wave element
DE112019001662B4 (en) 2018-03-29 2022-10-20 Ngk Insulators, Ltd. Connector and elastic shaft element
KR20210006995A (en) 2018-06-22 2021-01-19 엔지케이 인슐레이터 엘티디 Conjugate and acoustic wave element
US11133788B2 (en) 2018-06-22 2021-09-28 Ngk Insulators, Ltd. Bonded body and elastic wave element
DE112019002418B4 (en) 2018-06-22 2022-06-15 Ngk Insulators, Ltd. Connected body and elastic wave element

Also Published As

Publication number Publication date
CN203014754U (en) 2013-06-19
WO2011158636A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP3184763U (en) Composite board
KR102094026B1 (en) Composite substrate, elastic wave device and method for manufacturing elastic wave device
KR101766487B1 (en) Composite substrate manufacturing method and composite substrate
JP5180889B2 (en) Composite substrate, elastic wave device using the same, and method of manufacturing composite substrate
JP2010187373A (en) Composite substrate and elastic wave device using the same
JP6567970B2 (en) Composite substrate manufacturing method
JP5833239B2 (en) Composite substrate, piezoelectric device, and composite substrate manufacturing method
JP5814774B2 (en) Composite substrate and method for manufacturing composite substrate
JP5615472B1 (en) Composite substrate and acoustic wave device
JP6481687B2 (en) Elastic wave device
JP3187231U (en) Composite board
JP5056837B2 (en) Method for manufacturing piezoelectric device
JP2005229455A (en) Compound piezoelectric substrate
WO2014188842A1 (en) Method for manufacturing piezoelectric device, piezoelectric device, and piezoelectric free-standing substrate
KR20110083451A (en) Composite substrate, surface acoustic wave filter and surface acoustic wave resonator using the same
JP2014147054A (en) Piezoelectric substrate and surface acoustic wave element
JP5180104B2 (en) Surface acoustic wave device
JPWO2019054238A1 (en) Elastic wave device and method of manufacturing the same
JP5198242B2 (en) Composite substrate, method of manufacturing acoustic wave device, and acoustic wave device
JP2015122566A (en) Acoustic wave device
JP2018093329A (en) Elastic wave element
JP2011019043A (en) Composite substrate and method for manufacturing composite substrate
JP2011071838A (en) Surface acoustic wave element
JP2014229943A (en) Piezoelectric substrate, and elastic surface-wave device
JP2015005931A (en) Piezoelectric substrate, and elastic surface-wave device

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3184763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term