[go: up one dir, main page]

JP3183616B2 - Beer filtration method - Google Patents

Beer filtration method

Info

Publication number
JP3183616B2
JP3183616B2 JP20779995A JP20779995A JP3183616B2 JP 3183616 B2 JP3183616 B2 JP 3183616B2 JP 20779995 A JP20779995 A JP 20779995A JP 20779995 A JP20779995 A JP 20779995A JP 3183616 B2 JP3183616 B2 JP 3183616B2
Authority
JP
Japan
Prior art keywords
membrane
filtration
beer
pore diameter
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20779995A
Other languages
Japanese (ja)
Other versions
JPH0928369A (en
Inventor
勝弘 野口
和彦 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Priority to JP20779995A priority Critical patent/JP3183616B2/en
Publication of JPH0928369A publication Critical patent/JPH0928369A/en
Application granted granted Critical
Publication of JP3183616B2 publication Critical patent/JP3183616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ビール発酵液の濾
過技術つまり、後発酵を経て熟成したビール発酵終了液
中の酵母、タンパク質等の不溶物を除去して清澄な製品
ビールを製造する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for filtering a fermented beer fermentation liquor, that is, a technique for producing a clear product beer by removing insoluble substances such as yeasts and proteins in a beer fermentation end liquid aged after post-fermentation. It is about.

【0002】[0002]

【従来の技術】従来一般的に、ビール発酵液の濾過に際
しては、珪藻土を濾過助剤として用いる濾過方法が用い
られている。この方法は珪藻土によって濾過層を形成し
つつ、これによって生じた隙間で不溶物を濾過する方法
である。
2. Description of the Related Art Generally, a filtration method using diatomaceous earth as a filter aid has been used for filtering a fermented beer liquid. This method is a method in which a filtration layer is formed by diatomaceous earth, and insolubles are filtered through gaps generated thereby.

【0003】しかしながら、この方法では濾過助剤の珪
藻土を再使用することができず廃棄されてしまうので、
資源の有効活用という面でも問題がある上に、使用済み
珪藻土の処理費用が大きいという点でも問題がある。
However, in this method, diatomaceous earth as a filter aid cannot be reused and is discarded.
There is a problem in terms of effective use of resources, and also a problem in that the cost of treating used diatomaceous earth is large.

【0004】このような問題に対処するために、特開昭
62−3782号公報および特開昭62−213817
号公報には、多孔質フィルターを用いたいわゆるクロス
フロー濾過方法が提案されている。しかしながら、クロ
スフロー濾過では、珪藻土などの濾過助剤を用いる濾過
に比べて膜透過流束が非常に小さくなるという欠点を有
しており、大量の発酵液を処理することを目的としたビ
ール濾過工程においては実用上問題があった。また、こ
の方法では、定速に濾過を行うための制御が難しいと
か、ビールを循環することによって生じる沈澱によって
目詰まりが生じるといった基本的な技術課題も依然とし
て残されている。
In order to deal with such a problem, Japanese Patent Application Laid-Open Nos. 62-3782 and 62-213817 disclose the method.
Japanese Patent Application Laid-Open Publication No. HEI 9-214969 proposes a so-called cross-flow filtration method using a porous filter. However, cross-flow filtration has the disadvantage that the membrane permeation flux is much smaller than that of filtration using a filter aid such as diatomaceous earth, and beer filtration intended to process a large amount of fermentation liquor. There was a practical problem in the process. Further, in this method, there still remain basic technical problems such as difficulty in controlling for constant-rate filtration and clogging caused by precipitation caused by circulating beer.

【0005】最近になって、特殊な精密濾過膜を用いて
周期的に逆洗を行う濾過方法が提案されている(例え
ば、特開平4−317723号公報等)。この方法は、
膜厚さ方向の孔径に異方性を有する精密濾過膜を使用す
ることに特徴がある。そして、この膜を用いると目詰ま
りが著しく改善されること、さらには周期的に逆洗する
ことによって全く未濾過のビール発酵終了液でも実用的
に濾過が達成できるとされており、本技術は、従来の濾
過技術の問題点を解決できる極めて優秀な技術である。
しかしながら、本発明者らが、実際のビール発酵終了液
を濾過処理する実験をしたところ、新品の膜の状態では
目詰まりするまでの総濾過量が充分得られるものの、使
用した膜を洗浄して再生した膜を使用する場合には総濾
過量が非常に少なくなり、このままの技術ではコストに
見合うだけの濾過処理が行えないことが明らかになっ
た。
Recently, a filtration method has been proposed in which backwashing is periodically performed using a special microfiltration membrane (for example, Japanese Patent Application Laid-Open No. 4-317723). This method
It is characterized by using a microfiltration membrane having anisotropic pore diameter in the thickness direction. And it is said that clogging is remarkably improved by using this membrane, and furthermore, filtration can be achieved practically even with a completely unfiltered beer fermentation finished liquid by periodic backwashing. It is a very excellent technology that can solve the problems of the conventional filtration technology.
However, the present inventors conducted an experiment of filtering the actual beer fermentation finished liquid, and found that although the total amount of filtration until clogging was sufficiently obtained in the state of a new membrane, the used membrane was washed. When a regenerated membrane is used, the total amount of filtration becomes very small, and it has been clarified that the filtration process cannot be carried out to justify the cost with this technique.

【0006】周期逆洗濾過技術における目詰まりを防止
するためには、逆洗液にタンパク質分解酵素あるいはセ
ルロース分解酵素を添加する方法も提案されている(特
開平4−267933号公報等)。しかしながら、ビー
ル発酵終了液を濾過の対象とする場合、洗浄して再生し
た膜に対する目詰り防止効果というものはそれほど期待
できるものではなかった。
[0006] In order to prevent clogging in the periodic backwashing filtration technique, a method of adding a protease or a cellulolytic enzyme to a backwash solution has also been proposed (Japanese Patent Application Laid-Open No. 4-267933). However, when the beer fermentation finished liquid is subjected to filtration, the effect of preventing clogging of the washed and regenerated membrane has not been so expected.

【0007】一方、従来行われている珪藻土を濾過助剤
として用いるビール発酵終了液の濾過方法においてもし
ばしば濾過困難の問題が生じるので、その対策が多く考
えられている。例えば、シリカゲル、シリカゾルあるい
はPVPP(ポリビニルポリピロリドン)等によって濾
過性を悪化させる物質を吸着する方法は古くから知られ
ており、一部は実用化されている。また、後発酵時にシ
リカゾルを添加した後、遠心分離する方法がドイツ公開
特許3231240号に提案されている。また、ビール
原料の麦汁をβー グルカナーゼやキシラナーゼによる酵
素処理して濾過助剤の濾過性改良をおこなう方法も知ら
れている(例えば特公平6−97984号公報等)。
[0007] On the other hand, in the conventional method of filtering a beer fermentation end liquid using diatomaceous earth as a filter aid, there is often a problem of difficulty in filtering, and many measures have been considered. For example, a method of adsorbing a substance that deteriorates filterability with silica gel, silica sol, PVPP (polyvinylpolypyrrolidone), or the like has been known for a long time, and a part of the method has been put to practical use. In addition, a method of adding silica sol during post-fermentation and centrifuging the silica sol is proposed in DE-A-3231240. There is also known a method of improving the filterability of a filter aid by subjecting wort as a beer raw material to an enzyme treatment with β-glucanase or xylanase (for example, Japanese Patent Publication No. 6-99784).

【0008】しかしながら、これらはあくまでも従来の
珪藻土濾過における一次的な目詰まりを防止するもので
あった。
[0008] However, these have been to prevent primary clogging in conventional diatomaceous earth filtration.

【0009】したがって、精密濾過膜を用いて周期的に
逆洗をおこなう濾過方法であって、ビール発酵終了液の
濾過に使用した膜を洗浄して得られた再生膜の目詰まり
をも防止する方法は全く知られていなかった。
Therefore, the present invention provides a filtration method in which backwashing is periodically performed using a microfiltration membrane, which also prevents clogging of a regenerated membrane obtained by washing a membrane used for filtering a beer fermentation end solution. The method was not known at all.

【0010】[0010]

【発明が解決しようとする課題】このような実状のもと
に本発明は創案されたものであり、その目的は、膜の厚
さ方向の孔径に異方性を有する精密濾過膜を用いる周期
逆洗技術において、ビール発酵終了液の濾過に使用した
膜を洗浄して再度使用する場合の、再生膜の目詰まりを
防止することで濾過量を向上させる技術を開発して、実
用的なビール濾過技術を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method using a microfiltration membrane having an anisotropic pore diameter in the thickness direction of the membrane. In the backwashing technology, we developed a technology to improve the amount of filtration by preventing clogging of the regenerated membrane when washing and reusing the membrane used for filtration of the beer fermentation finished liquid, and It is to provide a filtration technique.

【0011】[0011]

【課題を解決するための手段】本発明者らは、精密濾過
膜を用いる周期的逆洗を伴って濾過する方法を改良すべ
く、鋭意検討をおこなった結果、濾過原液として仕込工
程でβ−グルカナーゼ処理をおこなって得られた麦汁を
用いて製造したビール発酵終了液を用いれば、再生膜を
用いた場合でも目詰まりする事なく充分な総濾過量を得
ることができることを見いだし、本発明を完成するに至
った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to improve the method of performing filtration with periodic backwashing using a microfiltration membrane. The present inventors have found that by using a beer fermentation termination liquid produced using wort obtained by performing a glucanase treatment, it is possible to obtain a sufficient total filtration amount without clogging even when a regenerated membrane is used. Was completed.

【0012】すなわち、本発明は膜の厚さ方向の孔径に
異方性を有する精密濾過膜を用い、周期的逆洗を伴って
濾過原液を濾過するビール濾過方法であって、前記濾過
の対象となる濾過原液が、麦汁製造のための仕込工程で
β−グルカナーゼ処理をおこなって得られた麦汁を用い
て製造されたビール発酵終了液であるように構成され
る。
That is, the present invention relates to a method for beer filtration which uses a microfiltration membrane having an anisotropic pore diameter in the thickness direction of the membrane and filters the undiluted solution with periodic backwashing. Is a beer fermentation end liquid produced using wort obtained by performing β-glucanase treatment in a preparation step for wort production.

【0013】より好ましい態様として、前記膜の厚さ方
向の孔径に異方性を有する精密濾過膜は、濾過原液が最
初に膜に接する入口側表面の孔径が4〜30μm、膜の
最緻密層の孔径が0.8〜4.0μmであるように構成
される。
As a more preferred embodiment, the microfiltration membrane having an anisotropic pore diameter in the thickness direction of the membrane has a pore diameter of 4 to 30 μm on the inlet side surface where the undiluted solution first comes into contact with the membrane, and the densest membrane of the membrane. Is configured to have a pore diameter of 0.8 to 4.0 μm.

【0014】[0014]

【発明の実施の形態】以下、本発明のビール濾過方法の
具体的構成について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a specific configuration of the beer filtration method of the present invention will be described in detail.

【0015】本発明における第一の特徴点は、精密濾過
膜を再生した再生膜を使用しても、すぐに目詰まりが生
じることなく十分な総濾過量が得られるように、濾過の
対象液であるビール発酵終了液を作るに至るまでの途中
の、麦汁製造のための仕込工程に創意を凝らした点にあ
る。
The first characteristic feature of the present invention is that even when a regenerated membrane obtained by regenerating a microfiltration membrane is used, a liquid to be filtered is obtained so that a sufficient total filtration amount can be obtained without clogging immediately. In the course of producing the beer fermentation finished liquid, which is a process for preparing wort.

【0016】すなわち、本発明において、麦汁製造のた
めの仕込工程では、β−グルカナーゼの投入によるβ−
グルカナーゼ処理(酵素処理)が行われる。麦汁製造の
ための仕込工程とは、粉砕した麦芽(および澱粉質副原
料)を温水と混合し、これを麦芽自体のもつ酵素によっ
て低分子化してもろみ(マイシュ)に変える工程をい
う。この仕込工程で用いられるβ−グルカナーゼは、ア
スペルギラス由来のもの、バチラス由来のもの、ペニシ
リウム由来のものなど、β−グルカンを加水分解できる
ものであればいずれでも使用可能であるが、フミコラ・
インソレンス由来のβ−グルカナーゼが至適温度範囲が
広い点で最も好ましい。
That is, in the present invention, in the preparation step for wort production, β-glucanase is introduced into β-glucanase.
Glucanase treatment (enzyme treatment) is performed. The charging step for wort production refers to a step of mixing the crushed malt (and the starchy auxiliary material) with warm water and converting it into low-molecular-weight mash (mesh) by the enzyme of the malt itself. As the β-glucanase used in this preparation step, any of those capable of hydrolyzing β-glucan, such as those derived from Aspergillus, those derived from Bacillus, and those derived from penicillium, can be used.
Β-glucanase derived from insolens is most preferred in that it has a wide optimum temperature range.

【0017】添加する酵素量は使用する麦芽100kg
あたり250〜5000FBU (Fungal Beta Glucanase
unit) 使用すればよく、好ましい添加量は500〜10
00FBU である。酵素の添加は、仕込時期のいずれの時
期でもよいが、酵素反応を充分おこなうためには、粉砕
した麦芽を温水とともに糖化槽に入れる際に同時に添加
することが好ましい。仕込温度は、通常行われているよ
うに最初45〜55℃位に保った後、米、澱粉等の副原
料を加えて60〜70℃位に上昇させればよい。
The amount of enzyme to be added is 100 kg of malt to be used.
250-5000 FBU (Fungal Beta Glucanase
unit) may be used, and a preferable addition amount is 500 to 10
00FBU. The enzyme may be added at any time during the charging period, but in order to perform the enzyme reaction sufficiently, it is preferable to add the crushed malt simultaneously with the warm water in the saccharification tank. The charging temperature may be initially maintained at about 45 to 55 ° C as usual, and then increased to about 60 to 70 ° C by adding auxiliary materials such as rice and starch.

【0018】このようにしてできたもろみから麦汁を製
造して、通常のビール製造通り、主発酵および後発酵を
おこなって、ビール発酵終了液を製造する。
The wort is produced from the mash thus produced, and the main fermentation and the post-fermentation are carried out in the same manner as in normal beer production to produce a finished liquid of beer fermentation.

【0019】このようにして得られたビール発酵終了液
は、次いで、膜の厚さ方向の孔径に異方性を有する精密
濾過膜を用い、周期的逆洗を伴う濾過方法に供される。
The beer fermentation finished liquid thus obtained is then subjected to a filtration method involving periodic backwashing using a microfiltration membrane having an anisotropic pore diameter in the thickness direction of the membrane.

【0020】ここでいう周期的逆洗を伴う濾過方法と
は、精密濾過膜を用いて濾過原液を濾過する際に、ある
時間毎に濾過膜の透過液側から圧力を加え透過液側から
原流体側へ(逆方向へ)流体を流すことによって目詰ま
り物質を断続的に取り除きながら濾過をおこなうもので
ある。
The term “filtration method involving periodic backwashing” as used herein means that when filtering a stock solution using a microfiltration membrane, pressure is applied from the permeate side of the filtration membrane every certain time and the filtrate is filtered from the permeate side. Filtration is performed while intermittently removing clogging substances by flowing a fluid to the fluid side (in the opposite direction).

【0021】また、ここでいう膜の厚さ方向の孔径に異
方性を有する精密濾過膜とは、膜の片面から反対方向に
連続的に孔径が変化しているようなものや、膜内部や膜
外部に最小孔径が存在するもの(最緻密層)等があげら
れる。
The microfiltration membrane having anisotropy in the pore diameter in the thickness direction of the membrane as used herein refers to a membrane whose pore diameter continuously changes from one side of the membrane to the opposite direction, or the inside of the membrane. And those having a minimum pore diameter outside the membrane (the densest layer).

【0022】異方性構造の膜を形成する代表的な膜材料
(ポリマー)としては、酢酸セルロースやポリスルホン
が挙げられるが、さらにポリ塩化ビニルとポリフッ化ビ
ニリデン等も異方性構造を形成する。このような異方性
構造を有する精密濾過膜の製造は、上記のポリマーを
良溶媒、あるいは良溶媒と非溶媒の混合溶媒、あるい
はポリマーに対する溶解性の程度が異なる複数種の溶
媒を混合させたもの、に溶解させて製膜原液を作製し、
これを支持体上に、または直接凝固液中に流延し、洗浄
乾燥して行われる。
Typical film materials (polymers) for forming a film having an anisotropic structure include cellulose acetate and polysulfone, and polyvinyl chloride and polyvinylidene fluoride also form an anisotropic structure. The production of the microfiltration membrane having such an anisotropic structure, the above-mentioned polymer was mixed with a good solvent, or a mixed solvent of a good solvent and a non-solvent, or a plurality of solvents having different degrees of solubility in the polymer. To prepare a membrane-forming stock solution,
This is carried out by casting on a support or directly in a coagulating liquid, washing and drying.

【0023】この場合に、上記ポリマーを溶解させる溶
媒(良溶媒)の好適具体例としては、ジクロロメタン、
アセトン、ジメチルホルムアミド、ジメチルアセトアミ
ド、ジメチルスルホキシド、2−ピロリドン、N−メチ
ル−2−ピロリドン、スルホラン等を挙げることができ
る。
In this case, preferred examples of the solvent (good solvent) for dissolving the polymer include dichloromethane,
Examples include acetone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 2-pyrrolidone, N-methyl-2-pyrrolidone, and sulfolane.

【0024】このような溶媒に添加され得る非溶媒の具
体例としては、セロソルブ類;メタノール、エタノー
ル、イソプロパノール等のアルコール類;アセトン、メ
チルエチルケトン等のケトン類;テトラヒドロフラン、
ジオキサン等のエーテル類;ポリエチレングリコール、
グリセリン、エチルグリコール等のポリオール類等が挙
げられる。非溶媒の良溶媒に対する割合は、混合液が均
一状態を保てる範囲ならばいかなる範囲でも良いが、特
に、5〜50重量部の範囲が好ましい。
Specific examples of non-solvents which can be added to such a solvent include cellosolves; alcohols such as methanol, ethanol and isopropanol; ketones such as acetone and methyl ethyl ketone; tetrahydrofuran;
Ethers such as dioxane; polyethylene glycol;
Examples include polyols such as glycerin and ethyl glycol. The ratio of the non-solvent to the good solvent may be in any range as long as the mixture can maintain a uniform state, but is particularly preferably in the range of 5 to 50 parts by weight.

【0025】また、膜の多孔質構造を制御するために、
膨張剤と称される無機電解液、有機電解液、高分子電解
液等を加えることもできる。使用できる電解質として
は、食塩、硝酸ナトリウム、硝酸カリウム、硫酸ナトリ
ウム、塩化亜鉛、臭化マグネシウム等の無機酸の金属
塩;酢酸ナトリウム、ギ酸ナトリウム、酪酸カリウム等
の有機酸塩類;ポリスチレンスルホン酸ナトリウム、ポ
リビニルピロリドン、ポリビニルベンジルトリメチルア
ンモニウムクロライド等の高分子電解液;ジオクチルス
ルホコハク酸ナトリウム、アルキルメチルタウリン酸ナ
トリウム等のイオン系界面活性剤等が挙げられる。
In order to control the porous structure of the membrane,
An inorganic electrolyte, an organic electrolyte, a polymer electrolyte, or the like, which is called a swelling agent, can be added. Examples of usable electrolytes include metal salts of inorganic acids such as sodium chloride, sodium nitrate, potassium nitrate, sodium sulfate, zinc chloride and magnesium bromide; organic acid salts such as sodium acetate, sodium formate and potassium butyrate; sodium polystyrene sulfonate and polyvinyl Polymer electrolytes such as pyrrolidone and polyvinylbenzyltrimethylammonium chloride; and ionic surfactants such as sodium dioctylsulfosuccinate and sodium alkylmethyltaurate.

【0026】これらの電解質は単独でポリマー溶液に加
えてもある程度の効果を示すものもあるが、これらの電
解質を水溶液として添加する場合には特に顕著な効果を
示すことがある。電解質水溶液の添加量は添加によって
溶液の均一性が失われない範囲において特に制限はない
が、通常、溶媒に対して0.5重量部から10容量%で
ある。また、電解質水溶液の濃度についても特に制限は
なく、濃度の大きい方が効果は大きいが、通常用いられ
る濃度としては、1〜60重量部である。
Although some of these electrolytes show a certain effect even when added alone to a polymer solution, particularly remarkable effects may be obtained when these electrolytes are added as an aqueous solution. The amount of the aqueous electrolyte solution is not particularly limited as long as the uniformity of the solution is not lost by the addition, but is usually from 0.5 parts by weight to 10% by volume based on the solvent. The concentration of the aqueous electrolyte solution is not particularly limited, and the higher the concentration, the greater the effect. However, a commonly used concentration is 1 to 60 parts by weight.

【0027】製膜原液としての前記ポリマー濃度は5〜
35重量%、好ましくは、10〜30重量%である。こ
の値が35重量%を超えると得られる微孔性膜の透水性
が実用的な意味を持たない程に小さくなり過ぎてしまう
という不都合が生じる。また、この値が5重量%未満と
なると十分な分離能力を持った精密濾過膜が得られない
という不都合が生じる。
The concentration of the polymer as a stock solution is 5 to 5.
It is 35% by weight, preferably 10 to 30% by weight. If this value exceeds 35% by weight, the water permeability of the resulting microporous membrane will be too small to have any practical significance. On the other hand, if this value is less than 5% by weight, there arises a disadvantage that a microfiltration membrane having a sufficient separation ability cannot be obtained.

【0028】上記のようにして調整された製膜原液は支
持体の上に流延され、流延直後あるいは一定時間をおい
て凝固液の中に支持体ごとポリマー溶液膜が浸漬させら
れる。凝固液としては水が一般的に用いられるが、ポリ
マーを溶解しない有機溶媒を用いても良い。有機溶媒は
2種以上を混合して用いてもよい。支持体としては、通
常、精密濾過膜を製造する場合に支持体としての機能を
有するものすべてが使用可能であるが、特に、不織布を
使用した場合には支持体を剥す必要がないので好まし
い。使用できる不織布としては、ポリプロピレン、ポリ
エステル等からなる一般的なものを挙げることができ
る。
The membrane-forming stock solution prepared as described above is cast on a support, and the polymer solution membrane together with the support is immersed in the coagulation solution immediately after casting or after a certain period of time. Water is generally used as the coagulating liquid, but an organic solvent that does not dissolve the polymer may be used. Two or more organic solvents may be used as a mixture. As the support, generally, any material having a function as a support when producing a microfiltration membrane can be used. In particular, when a non-woven fabric is used, it is not necessary to peel off the support, which is preferable. Examples of the nonwoven fabric that can be used include general nonwoven fabrics made of polypropylene, polyester, and the like.

【0029】凝固液の浴中でポリマーが析出した流延膜
は、水洗、温水洗浄、溶剤洗浄等を経て乾燥される。
The cast film in which the polymer is precipitated in the bath of the coagulating liquid is dried after washing with water, washing with warm water, washing with a solvent and the like.

【0030】このように作製された厚さ方向の孔径に異
方性を有する精密濾過膜は、ビールの有効な濾過を実現
させるために、濾過原液が最初に膜に接する入口側表面
の孔径が4〜30μm、膜内部もしくは出口側に存在す
る最緻密層(最も小さな孔径が分布する層)の孔径が
0.8〜4.0μmとすることが好ましい。さらに、除
菌の観点からは最緻密層の孔径は0.8〜1.2μm程
度が、また酵母などの懸濁物質を捕捉して大きな総濾過
量をえるために入口側の孔径は24〜30μm程度が最
も好ましい。
The microfiltration membrane thus produced having anisotropic pore diameter in the thickness direction has a pore diameter at the inlet side surface where the undiluted filtrate first comes into contact with the membrane in order to realize effective filtration of beer. The pore diameter of the densest layer (the layer in which the smallest pore diameter is distributed) present in the membrane or on the outlet side is preferably 0.8 to 4.0 µm. Further, from the viewpoint of sterilization, the pore diameter of the densest layer is about 0.8 to 1.2 μm, and the pore diameter on the inlet side is 24 to 24 to capture a suspended substance such as yeast and obtain a large total filtration amount. Most preferably, about 30 μm.

【0031】濾過流束は、低ければ濾過差圧の上昇が防
止できて濾過時間の延長が可能であるが、膜コストに見
合う効率的な濾過をおこなうためには、100L/m2
・h位が妥当である。
If the filtration flux is low, it is possible to prevent an increase in the filtration differential pressure and to extend the filtration time. However, in order to perform efficient filtration commensurate with the membrane cost, 100 L / m 2 is required.
-The h position is appropriate.

【0032】目詰まりの指標としては濾過差圧値を使用
する。濾過差圧とは原流体側の圧力と透過液側圧力との
差であって、0.2〜0.3kg/cm2 以下であれ
ば、充分な濾過流束が得られるが、それを超えると膜の
洗浄の必要となり、洗浄して再生された再生膜によって
再度濾過が行われる。
As an index of clogging, a filtration pressure difference value is used. The filtration differential pressure is the difference between the pressure on the raw fluid side and the pressure on the permeate side, and if it is 0.2 to 0.3 kg / cm 2 or less, a sufficient filtration flux can be obtained, but it exceeds that Then, the membrane needs to be washed, and filtration is performed again by the washed and regenerated membrane.

【0033】濾過膜の再生は、一般に使用されている洗
浄方法であればいずれも使用可能であるが、ビール工場
で使用することから安全性が高いことおよび洗浄効果が
高いことが必要である。その点から、例えば、まず、2
%水酸化ナトリウム水溶液に次亜塩素酸100ppm添
加した液を50℃にして1時間400L/m2 ・hで正
洗した後に、引き続き2%硝酸水溶液に2%加酸化水素
を添加した液を60℃にして1時間400L/m2 ・h
で正洗して最終的に水で洗浄する方法や、2%のβ−グ
ルカナーゼと2%のプロテアーゼを混合して2時間浸せ
きした後、湯洗浄、水洗浄をおこなうなどの方法が考え
られる。
For the regeneration of the filtration membrane, any generally used cleaning method can be used, but since it is used in a beer factory, it is necessary to have high safety and a high cleaning effect. From that point, for example, first, 2
A solution obtained by adding 100 ppm of hypochlorous acid to an aqueous solution of sodium hydroxide at 50 ° C. for 1 hour at 400 L / m 2 · h, and then washing the solution obtained by adding 2% hydrogen peroxide to a 2% aqueous solution of nitric acid in 60% ℃ 1 hour 400L / m 2 · h
And finally washing with water, or a method of mixing 2% β-glucanase and 2% protease, immersing for 2 hours, and washing with hot water and water.

【0034】なお、上記作製された精密濾過膜は、通
常、プリーツカートリッジ、平膜積層構造カートリッジ
等公知のモジュールに組み立てられて濾過に供される。
The microfiltration membrane produced above is usually assembled into a known module such as a pleated cartridge, a flat membrane laminated structure cartridge and the like and subjected to filtration.

【0035】また、本発明においては、周期的な逆洗を
伴って濾過が行われるわけであるが、逆洗の周期や、逆
洗時間は特に制限はなく、最適な生産性を等考慮しつつ
適宜設定すればよい。
In the present invention, filtration is performed with periodic backwashing. However, the backwashing cycle and backwashing time are not particularly limited, and optimum productivity is taken into consideration. What is necessary is just to set appropriately.

【0036】図7には、周期的逆洗をしながら濾過をす
るための概略プロセス図が示される。この図において、
濾過原液4はポンプ2によって濾過器ハウジング1に送
られ、濾過されたろ液は濾過液貯蔵タンク5に送られ
る。そして、一定時間の濾過が行われ次第に濾過圧力が
高くなると、ポンプ2を停止させて、フィルターの一次
側にガス供給口7からガスを導入して残留している液を
二次側へ押し出す。ついで、ポンプ3によって逆洗液6
は濾過器ハウジング1に送られ、逆洗液排出口へ捕捉し
た粒子ケークを押し出す。今度はフィルター二次側から
ガスを導入し、残留している逆洗液を排出口に押し出し
た後、再びポンプ2によって濾過を再開する。
FIG. 7 shows a schematic process diagram for filtering with periodic backwashing. In this figure,
The undiluted filtrate 4 is sent to the filter housing 1 by the pump 2, and the filtered filtrate is sent to the filtrate storage tank 5. When the filtration pressure is gradually increased for a certain period of time, the pump 2 is stopped, the gas is introduced from the gas supply port 7 to the primary side of the filter, and the remaining liquid is pushed out to the secondary side. Next, the backwashing liquid 6 is
Is sent to the filter housing 1 and pushes out the particle cake captured at the backwash liquid outlet. This time, gas is introduced from the secondary side of the filter, the remaining backwash liquid is pushed out to the outlet, and then filtration is restarted by the pump 2 again.

【0037】ハウジング1内に残留している逆洗液の除
去は、このあとにさらに抗生物質やアミノ酸を用いる精
製工程が存在する場合には省略してもよい。逆洗液とし
ては通常、水が使用されるが、ろ液を使用することもで
きる。
The removal of the backwash liquid remaining in the housing 1 may be omitted if there is a further purification step using an antibiotic or an amino acid. Water is usually used as the backwash liquid, but a filtrate can also be used.

【0038】[0038]

【実施例】以下に、具体的実施例を示して本発明をさら
に詳細に説明する。
The present invention will be described below in more detail with reference to specific examples.

【0039】〔実施例1〕麦芽350kgを粉砕して5
0℃の熱水に入れ、さらにそこにβ−グルカナーゼ(ノ
ボ社製「ウルトラフロー」( 50FBU/mL) )を70mL
添加した。これを50℃で1時間放置した後、副原料で
ある米45kg、コーングリッツ35kgおよびコーン
スターチ20kgをあらかじめ米煮沸釜で煮たものを添
加して45℃から70℃まで昇温してその温度で1時間
経過させて、もろみを完成させた。
Example 1 350 kg of malt was pulverized into 5
Put into hot water of 0 ° C and further add 70 mL of β-glucanase (“Ultraflow” (50 FBU / mL) manufactured by Novo).
Was added. After leaving it at 50 ° C. for 1 hour, 45 kg of rice as an auxiliary material, 35 kg of corn grits and 20 kg of corn starch were added in advance in a rice boiling kettle, and the temperature was raised from 45 ° C. to 70 ° C. Over time, the moromi was completed.

【0040】このもろみを用いて通常通りの方法で、麦
汁濾過、麦汁煮沸およびホップ添加をおこなって原料麦
汁2000Lを調製した。これに下面ビール酵母を添加
させて主発酵、後発酵をおこなった。
Using this moromi, wort filtration, wort boiling and hop addition were carried out in the usual manner to prepare 2000 L of raw wort. Main beer fermentation and post-fermentation were carried out by adding bottom beer yeast to this.

【0041】ついで、富士写真フィルム社製のプリーツ
カートリッジ型のポリスルホン製異方性精密濾過膜(入
口孔径約27μm、細孔径0.87μm、膜面積0.4
5m2 、膜厚180〜240μm)を用いて、得られた
発酵終了液を濾過開始時点の濾過流束を100L/m2
・時間に設定し、30分間毎に30秒間の逆洗を行いな
がら20時間、濾過をおこなった。濾過流束の変化を図
1のグラフに示す。この結果から、ポンプ定電圧のもと
では開始20時間まで濾過流束100L/m2・時間が
得られることが判明した。
Next, a pleated cartridge type polysulfone anisotropic microfiltration membrane manufactured by Fuji Photo Film Co., Ltd. (inlet pore diameter: about 27 μm, pore diameter: 0.87 μm, membrane area: 0.4
5 m 2 , film thickness of 180 to 240 μm), and the obtained fermentation ending solution was filtered at a filtration flux of 100 L / m 2 at the start of filtration.
-The time was set, and filtration was performed for 20 hours while performing backwashing for 30 seconds every 30 minutes. The change in filtration flux is shown in the graph of FIG. From these results, it was found that a filtration flux of 100 L / m 2 · hour was obtained up to 20 hours under the constant voltage of the pump.

【0042】なお、得られた製品ビールは香味的にも優
れており、通常ビールと遜色ないものであった。
The obtained product beer was excellent in flavor and was inferior to ordinary beer.

【0043】〔実施例2〕実施例1と同様な方法で10
時間濾過に使用した膜を、2%水酸化ナトリウム水溶液
に次亜塩素酸100ppm添加した液を50℃にして1
時間正洗した後に、引き続き2%硝酸水溶液に2%加酸
化水素を添加した液を60℃にして1時間正洗して最終
的に水で洗浄することで再生をおこなった。
[Embodiment 2] In the same manner as in Embodiment 1, 10
A solution obtained by adding 100 ppm of hypochlorous acid to a 2% aqueous sodium hydroxide solution at 50 ° C.
After washing for 2 hours, a solution obtained by adding 2% hydrogen peroxide to a 2% aqueous solution of nitric acid was washed at 60 ° C. for 1 hour, and finally washed with water for regeneration.

【0044】この再生された膜を用いて、実施例1と同
様な発酵終了液を、実施例1と同一条件で濾過をおこな
った。その結果、再度開始してから10時間まで、濾過
流束は100L/m2 ・時間が保持可能であった。
Using the regenerated membrane, the same fermentation-finished solution as in Example 1 was filtered under the same conditions as in Example 1. As a result, the filtration flux could be maintained at 100 L / m 2 · hour for up to 10 hours from the start again.

【0045】さらに、これと全く同様にして、洗浄によ
る膜の再生−濾過を交互に7回繰り返して実験をおこな
った。いずれの再生膜でも濾過流束は充分に保持可能で
あった。また、図2に示されるように濾過差圧の上昇は
軽微であり、洗浄3回目以降はその濾過差圧の上昇もほ
とんど観察されなかった。
Further, in exactly the same manner, an experiment was conducted by alternately repeating the regeneration and filtration of the membrane by washing seven times. All of the regenerated membranes were able to sufficiently maintain the filtration flux. Further, as shown in FIG. 2, the increase in the filtration pressure difference was slight, and almost no increase in the filtration pressure difference was observed after the third washing.

【0046】1回の濾過による総濾過量が、膜面積1m
2 あたり1000L以上であれば、ビール工場現場でも
実用可能な技術であると考えられ、本法によると再生膜
についても開始10時間でその量が得られることから、
充分に実用に耐え得る技術であると判断された。
The total filtration amount by one filtration is 1 m in membrane area.
If it is 1000L or more per 2, it is considered to be a technology that can be used practically at the beer factory site, and according to this method, the amount of the regenerated membrane can be obtained in 10 hours from the start,
It was determined that the technology was sufficiently practical.

【0047】〔比較例1〕β−グルカナーゼを添加しな
い点を除いて、実施例1で述べた方法と全く同様に製造
したビール発酵終了液を濾過原液とした。
[Comparative Example 1] A beer fermentation finished solution produced in exactly the same manner as described in Example 1 except that β-glucanase was not added was used as a stock solution for filtration.

【0048】使用した膜の性質を含む濾過条件および洗
浄条件は、上記実施例1および実施例2と同一として、
洗浄による膜の再生−濾過を交互に5回繰り返して実験
をおこなった。
The filtration conditions including the properties of the membrane used and the washing conditions were the same as those in Examples 1 and 2 above.
The experiment was conducted by alternately repeating the regeneration and filtration of the membrane by washing five times.

【0049】新品の膜を使用した場合の濾過流束の経時
変化および再生膜を使用した場合の濾過差圧の経時変化
を、図3および図4にそれぞれ示した。
FIG. 3 and FIG. 4 show the change over time of the filtration flux when a new membrane is used and the change over time of the filtration pressure difference when a regenerated membrane is used.

【0050】図3に示されるように、新品の膜を使用し
た場合でも、開始7時間頃から濾過流束が落ち始め、濾
過開始から18時間頃には14L/m2 ・時間しか得ら
れなくなった。
As shown in FIG. 3, even when a new membrane was used, the filtration flux began to drop from about 7 hours after the start, and only 14 L / m 2 · hour was obtained about 18 hours from the start of the filtration. Was.

【0051】また、図4に示されるように、再生膜を使
用した場合は、目詰まりがさらに顕著になり、濾過差圧
が開始してすぐに上昇をしはじめた。2回再生した膜で
4時間、再生3回目以降は3時間経過すると濾過流束が
所定の100L/m2 ・時間を保持できなくなることが
判明した。
Further, as shown in FIG. 4, when the regenerated membrane was used, clogging became more remarkable, and the filtration differential pressure started to rise immediately after the start. It was found that the filtration flux could not maintain a predetermined 100 L / m 2 · hour after 4 hours with the membrane regenerated twice and 3 hours after the third regeneration.

【0052】したがって、再生膜を使用した場合、膜面
積1m2 あたりの総濾過量はせいぜい300Lであって
実用的ではない。
Therefore, when a regenerated membrane is used, the total filtration amount per 1 m 2 of the membrane area is at most 300 L, which is not practical.

【0053】〔比較例2〕β−グルカナーゼを添加しな
い点を除いて、実施例1で述べた方法と全く同様に製造
したビール主発酵終了液に対して、シリカゾル150p
pmを添加して後発酵をおこなった後、約3000gで
連続遠心分離処理をおこない、その分離液を濾過原液と
した。
Comparative Example 2 A beer main fermentation liquor produced in exactly the same manner as described in Example 1 except that β-glucanase was not added was mixed with 150 μl of silica sol.
After pm was added and fermentation was performed, continuous centrifugation was performed at about 3000 g, and the separated liquid was used as a filtrate.

【0054】使用した膜の性質を含む濾過条件および洗
浄条件は、上記実施例1および実施例2と同一として、
浄による膜の再生−濾過を交互に6回繰り返して実験を
おこなった。
The filtration conditions and washing conditions including the properties of the membrane used were the same as those in Examples 1 and 2 above.
The experiment was conducted by alternately repeating regeneration-filtration of the membrane by purification six times.

【0055】新品の膜を使用した場合の濾過流束の経時
変化および再生膜を使用した場合の濾過差圧の経時変化
を、図5および図6にそれぞれ示した。
FIG. 5 and FIG. 6 show the change over time of the filtration flux when a new membrane is used and the change over time of the filtration differential pressure when a regenerated membrane is used.

【0056】図5に示されるように、ある程度の目詰ま
り防止効果が確認され、新品の膜であれば開始12時間
は所定の濾過流束100L/m2 ・時間を保持できた。
As shown in FIG. 5, a certain degree of clogging prevention effect was confirmed. For a new membrane, a predetermined filtration flux of 100 L / m 2 · hour could be maintained for 12 hours from the start.

【0057】しかし、図6に示されるように、再生膜を
使用した場合には、濾過を開始してすぐに濾過差圧が上
昇しはじめることが確認された。その差圧上昇速度は再
生回数毎に徐々に速くなり、3回再生した膜で8時間、
4回再生した膜では5時間経過すると定速濾過の場合差
圧の急上昇が予測され、濾過流束が所定の100L/m
2 ・時間を保持できなくなることが判明した。したがっ
て、4回以上再生した膜では膜面積1m2 あたり500
Lしか濾過できないことになる。
However, as shown in FIG. 6, when the regenerated membrane was used, it was confirmed that the filtration differential pressure started to increase immediately after the filtration was started. The rate of increase in the differential pressure gradually increases with the number of times of regeneration, and for a film regenerated three times, for 8 hours,
In the case of the membrane regenerated four times, a rapid rise in the differential pressure is expected in the case of constant-speed filtration after 5 hours, and the filtration flux becomes a predetermined 100 L / m.
2. It became clear that time could not be maintained. Thus, membrane area 1 m 2 per 500 a film reproduced four times or more
Only L can be filtered.

【0058】この結果より、濾過助剤を用いる濾過の際
の目詰まり防止策としては充分な効力を発揮するシリカ
ゾルと遠心分離の組み合わせに関しても、精密濾過膜を
用いた周期逆洗濾過において、膜を洗浄−再生して使用
する場合にはほとんど目詰まり防止効果がないことがわ
かった。
From the above results, as for the combination of silica sol and centrifugal separation, which are effective as a measure for preventing clogging during filtration using a filter aid, the membrane was not used in the periodic backwash filtration using a microfiltration membrane. It was found that there was almost no effect of preventing clogging when used after washing and recycling.

【0059】[0059]

【発明の効果】上記の実施例の結果より本発明の効果は
明らかである。すなわち、本発明では仕込工程でβ−グ
ルカナーゼ処理をおこなって得られた麦汁を用いて製造
したビール発酵終了液を、精密濾過膜を用いて周期的逆
洗を伴って濾過するように構成しているので、洗浄によ
り再生した膜でも充分な総濾過量が得られて、実用的な
濾過が可能になるという効果を奏する。
The effects of the present invention are apparent from the results of the above embodiments. That is, in the present invention, the beer fermentation end liquid produced using wort obtained by performing the β-glucanase treatment in the charging step is configured to be filtered with a periodic backwash using a microfiltration membrane. Therefore, a sufficient total filtration amount can be obtained even with a membrane regenerated by washing, and thus there is an effect that practical filtration becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】再生前の新膜を使用した場合の濾過流速の経時
変化を示すグラフである。
FIG. 1 is a graph showing a change over time in a filtration flow rate when a new membrane before regeneration is used.

【図2】本発明における濾過差圧の経時変化を洗浄回数
をパラメータとして表示したグラフである。
FIG. 2 is a graph showing the change over time of the filtration differential pressure in the present invention, with the number of times of washing as a parameter.

【図3】比較例1において、再生前の新膜を使用した場
合の濾過流速の経時変化を示すグラフである。
FIG. 3 is a graph showing the change over time in the filtration flow rate when a new membrane before regeneration is used in Comparative Example 1.

【図4】比較例1において、濾過差圧の経時変化を洗浄
回数をパラメータとして表示したグラフである。
FIG. 4 is a graph showing a change over time in a filtration differential pressure in Comparative Example 1 with the number of times of washing as a parameter.

【図5】比較例2において、再生前の新膜を使用した場
合の濾過流速の経時変化を示すグラフである。
FIG. 5 is a graph showing the change over time in the filtration flow rate when a new membrane before regeneration is used in Comparative Example 2.

【図6】比較例2において、濾過差圧の経時変化を洗浄
回数をパラメータとして表示したグラフである。
FIG. 6 is a graph showing a change over time in a filtration differential pressure in Comparative Example 2 with the number of times of washing as a parameter.

【図7】周期的逆洗をしながら濾過をするための概略プ
ロセスを示す図である。
FIG. 7 shows a schematic process for filtering with periodic backwashing.

【符号の説明】[Explanation of symbols]

1…濾過器ハウジング 2,3…ポンプ 4…濾過原液 5…濾過液貯蔵タンク 6…逆洗液 DESCRIPTION OF SYMBOLS 1 ... Filter housing 2, 3 ... Pump 4 ... Filtration stock solution 5 ... Filtrate storage tank 6 ... Backwash liquid

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−317723(JP,A) Proc.Congr.Eur.Br ew.Conv.,15th,p.201− 216,1975 (58)調査した分野(Int.Cl.7,DB名) C12C 1/00 - 13/10 C12H 1/00 - 1/22 JICST/JAFIC(JOIS)──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-4-317723 (JP, A) Proc. Congr. Eur. Brew. Conv. , 15th, p. 201-216, 1975 (58) Fields studied (Int. Cl. 7 , DB name) C12C 1/00-13/10 C12H 1/00-1/22 JICST / JAFIC (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 膜の厚さ方向の孔径に異方性を有する精
密濾過膜を用い、周期的逆洗を伴って濾過原液を濾過す
るビール濾過方法であって、 前記膜の厚さ方向の孔径に異方性を有する精密濾過膜
は、濾過原液が最初に膜に接する入口側表面の孔径が4
〜30μm、膜の最緻密層の孔径が0.8〜4.0μm
であり、 前記濾過の対象となる濾過原液が、麦汁製造のための仕
込工程でβ−グルカナーゼ処理をおこなって得られた麦
汁を用いて製造されたビール発酵終了液であることを特
徴とするビール濾過方法。
1. A beer filtration method comprising: using a microfiltration membrane having an anisotropic pore diameter in the thickness direction of the membrane, and filtering the undiluted filtration solution with periodic backwashing, wherein A microfiltration membrane having an anisotropic pore size has a pore size of 4 at the inlet side surface where the undiluted filtrate first contacts the membrane.
3030 μm, the pore diameter of the densest layer of the membrane is 0.8-4.0 μm
Wherein the undiluted filtrate to be filtered is a beer fermentation finished liquid produced using wort obtained by performing β-glucanase treatment in a preparation step for wort production. Beer filtration method.
【請求項2】 前記膜の厚さ方向の孔径に異方性を有す
る精密濾過膜は、濾過原液が最初に膜に接する入口側表
面の孔径が24〜30μm、膜の最緻密層の孔径が0.
8〜1.2μmである請求項1記載のビール濾過方法。
2. The microfiltration membrane having an anisotropic pore diameter in the thickness direction of the membrane has a pore diameter of 24 to 30 μm on the inlet side surface where the undiluted filtrate first contacts the membrane, and a pore diameter of the densest layer of the membrane. 0.
The beer filtration method according to claim 1, wherein the thickness is 8 to 1.2 m.
【請求項3】 前記膜の厚さ方向の孔径に異方性を有す
る精密濾過膜は、洗浄によって再生された再生膜である
請求項1または請求項2記載のビール濾過方法。
3. The beer filtration method according to claim 1, wherein the microfiltration membrane having anisotropic pore diameter in the thickness direction of the membrane is a regenerated membrane regenerated by washing.
JP20779995A 1995-07-21 1995-07-21 Beer filtration method Expired - Fee Related JP3183616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20779995A JP3183616B2 (en) 1995-07-21 1995-07-21 Beer filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20779995A JP3183616B2 (en) 1995-07-21 1995-07-21 Beer filtration method

Publications (2)

Publication Number Publication Date
JPH0928369A JPH0928369A (en) 1997-02-04
JP3183616B2 true JP3183616B2 (en) 2001-07-09

Family

ID=16545693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20779995A Expired - Fee Related JP3183616B2 (en) 1995-07-21 1995-07-21 Beer filtration method

Country Status (1)

Country Link
JP (1) JP3183616B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757356A1 (en) * 2005-08-26 2007-02-28 Krones AG Filtration apparatus with pumping means
JP2010017177A (en) * 2008-06-11 2010-01-28 Fuji Silysia Chemical Ltd Silica gel for beer stabilizing treatment and method for beer stabilizing treatment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2027244T4 (en) * 2006-05-19 2015-10-12 Heineken Supply Chain Bv Process for the preparation of a light gærfermenteret drink
JP2008109859A (en) * 2006-10-27 2008-05-15 Asahi Breweries Ltd Filter regeneration device
JP5078729B2 (en) * 2007-04-25 2012-11-21 富士フイルム株式会社 Crystalline polymer microporous membrane, method for producing the same, and filter for filtration
JP2010124798A (en) * 2008-11-28 2010-06-10 Tohoku Univ Brewed liquor filtration system, brewed liquor filtration method, and method for producing brewed liquor
JP5658489B2 (en) * 2010-06-16 2015-01-28 アサヒビール株式会社 Method for producing fermented malt beverage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Proc.Congr.Eur.Brew.Conv.,15th,p.201−216,1975

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757356A1 (en) * 2005-08-26 2007-02-28 Krones AG Filtration apparatus with pumping means
WO2007022868A1 (en) * 2005-08-26 2007-03-01 Krones Ag Filter device with a pump unit
JP2010017177A (en) * 2008-06-11 2010-01-28 Fuji Silysia Chemical Ltd Silica gel for beer stabilizing treatment and method for beer stabilizing treatment

Also Published As

Publication number Publication date
JPH0928369A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
JP3447741B2 (en) Liquid filtration method and microfiltration device using MF module
JP3183616B2 (en) Beer filtration method
JPS6214905A (en) Process of manufacturing microporous
JPS61122227A (en) Purification of reaction liquid produced by using microbial cell, immobilized microbial cell or immobilized enzyme
JPH04349927A (en) Preparation of precise filter membrane
JPH04250834A (en) Precision filter membrane
US4130485A (en) Novel filtration process and apparatus
JPH03280832A (en) Production of tea drink
CN111286561A (en) A cleaning system and method for decolorizing membrane in a membrane sugar production system
JP2717458B2 (en) Filtration method
CN111790273A (en) Membrane cleaning method
JPH0679147A (en) Filtration method
JP3965570B2 (en) Membrane separation method and membrane separation apparatus cleaning method
JP2004130307A (en) Filtration method of hollow fiber membrane
JPH028706B2 (en)
JPH02113859A (en) Production of protein hydrolyzate
JP3637751B2 (en) Regeneration extra filter element
JPH04271817A (en) Filtering method
JPH07222917A (en) Precise filter membrane and filtering method
JP2003144128A (en) Laminated filter for filtering beer
JP2002079066A (en) Hollow fiber membrane and its production method
JP2001070764A (en) Cleaning method
JPH04277018A (en) Method for washing porous plate-shaped membrane for filtering pasteurized soy sauce
JP2008109859A (en) Filter regeneration device
CN110180392B (en) Cleaning method of filter membrane for extracting quebrachitol from glue-making wastewater

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees