[go: up one dir, main page]

JP3180474B2 - Anodizing method - Google Patents

Anodizing method

Info

Publication number
JP3180474B2
JP3180474B2 JP32383592A JP32383592A JP3180474B2 JP 3180474 B2 JP3180474 B2 JP 3180474B2 JP 32383592 A JP32383592 A JP 32383592A JP 32383592 A JP32383592 A JP 32383592A JP 3180474 B2 JP3180474 B2 JP 3180474B2
Authority
JP
Japan
Prior art keywords
metal film
voltage
film
anodic oxidation
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32383592A
Other languages
Japanese (ja)
Other versions
JPH06146077A (en
Inventor
久敏 森
邦宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP32383592A priority Critical patent/JP3180474B2/en
Priority to US08/147,129 priority patent/US5441618A/en
Priority to KR1019930023837A priority patent/KR960002417B1/en
Publication of JPH06146077A publication Critical patent/JPH06146077A/en
Priority to US08/694,210 priority patent/US5733420A/en
Application granted granted Critical
Publication of JP3180474B2 publication Critical patent/JP3180474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、絶縁性基板の上に形成
された金属膜の表面を陽極酸化する陽極酸化方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anodizing method for anodizing a surface of a metal film formed on an insulating substrate.

【0002】[0002]

【従来の技術】例えばTFTアクティブマトリックス液
晶表示素子に用いられるTFTパネルは、ガラス等から
なる絶縁性基板の上にゲート配線とデータ配線とを互い
に直交させて形成するとともに、このゲート配線とデー
タ配線との交差部にそれぞれ薄膜トランジスタ(TF
T)を形成し、これら薄膜トランジスタにそれぞれ対応
させて画素電極を配列形成したもので、このTFTパネ
ルとしては、一般に、ゲート配線を基板上に形成し、デ
ータ配線を前記ゲート配線を覆う絶縁膜の上に形成した
ものが知られている。
2. Description of the Related Art For example, in a TFT panel used for a TFT active matrix liquid crystal display device, a gate wiring and a data wiring are formed orthogonally to each other on an insulating substrate made of glass or the like. And the thin film transistor (TF
T) is formed, and pixel electrodes are arrayed and formed so as to correspond to these thin film transistors, respectively. Generally, as this TFT panel, a gate wiring is formed on a substrate, and a data wiring is formed of an insulating film covering the gate wiring. The one formed above is known.

【0003】このTFTパネルの薄膜トランジスタは、
上記ゲート配線に一体に形成されたゲート電極と、この
ゲート電極およびゲート配線を覆って基板上のほぼ全面
に形成されたゲート絶縁膜と、このゲート絶縁膜の上に
前記ゲート電極と対向させて形成されたa−Si (アモ
ルファスシリコン)からなる半導体膜と、この半導体膜
の上に形成されたソース,ドレイン電極とからなってお
り、そのソース電極は画素電極に接続され、ドレイン電
極はデータ配線につながっている。
The thin film transistor of this TFT panel is
A gate electrode formed integrally with the gate wiring, a gate insulating film formed on substantially the entire surface of the substrate covering the gate electrode and the gate wiring, and facing the gate electrode on the gate insulating film. It comprises a semiconductor film made of a-Si (amorphous silicon) and source and drain electrodes formed on the semiconductor film. The source electrode is connected to a pixel electrode, and the drain electrode is a data line. Is connected to

【0004】ところで、上記TFTパネルのゲート配線
およびデータ配線は、一般にAl 等の低抵抗金属で形成
されており、また、下層の金属膜であるゲート配線およ
びこのゲート配線に一体に形成されたゲート電極の表面
は、ゲート配線の端子部を除いて陽極酸化されている。
The gate wiring and data wiring of the above-mentioned TFT panel are generally formed of a low-resistance metal such as Al, and a gate wiring which is a lower metal film and a gate formed integrally with the gate wiring. The surface of the electrode is anodized except for the terminal portion of the gate wiring.

【0005】このように下層金属膜であるゲート配線お
よびゲート電極の表面を陽極酸化しているのは、ゲート
配線とデータ配線との間、およびゲート電極とソース,
ドレイン電極との間の絶縁耐圧を十分高くして層間短絡
の発生を防ぐためであり、前記ゲート配線およびゲート
電極の表面を陽極酸化してその表面に酸化膜を生成させ
ておけば、ゲート配線およびゲート電極と上記データ配
線およびソース,ドレイン電極との間が前記酸化膜とそ
の上の絶縁膜とによって二重に絶縁されるため、十分な
絶縁耐圧を得ることができる。
The anodizing of the surfaces of the gate wiring and the gate electrode, which are the lower metal film, is performed between the gate wiring and the data wiring, and between the gate electrode and the source,
This is to prevent the occurrence of interlayer short circuit by sufficiently increasing the dielectric strength between the drain electrode and the gate electrode. If the surface of the gate wiring and the gate electrode is anodized to form an oxide film on the surface, the gate wiring can be formed. In addition, since the gate electrode and the data wiring and the source and drain electrodes are doubly insulated by the oxide film and the insulating film thereon, a sufficient withstand voltage can be obtained.

【0006】なお、下層金属膜の陽極酸化は、上記TF
Tパネルに限らず、絶縁性基板上に複数層に配線を形成
した多層配線パネル等にも適用されており、この多層配
線パネル等においても、下層金属膜である下部配線の表
面を陽極酸化して、その上に絶縁膜を介して形成される
上部配線との間の絶縁耐圧を高くしている。
The anodic oxidation of the lower metal film is performed by the above-mentioned TF.
The present invention is applied not only to the T-panel but also to a multilayer wiring panel in which wiring is formed in a plurality of layers on an insulating substrate. In this multilayer wiring panel, the surface of the lower wiring, which is a lower metal film, is anodized. Thus, the withstand voltage between the wiring and the upper wiring formed thereon via an insulating film is increased.

【0007】上記TFTパネルや多層配線パネル等の下
層金属膜の陽極酸化は、図3に示した陽極酸化装置によ
って行なわれている。この陽極酸化装置は、電解液(例
えば硼酸アンモニウム水溶液)2を満たした電解液槽1
内に、白金等の耐蝕性金属からなる網状の陰極3を電解
液2中に浸漬して垂直に配置したもので、前記陰極3は
直流電源4の−側に接続されている。
The anodic oxidation of the lower metal film such as the TFT panel and the multilayer wiring panel is performed by the anodic oxidation apparatus shown in FIG. The anodic oxidation apparatus includes an electrolytic bath 1 filled with an electrolytic solution (for example, an aqueous solution of ammonium borate) 2.
Inside, a net-like cathode 3 made of a corrosion-resistant metal such as platinum is immersed in an electrolytic solution 2 and vertically arranged. The cathode 3 is connected to the negative side of a DC power supply 4.

【0008】この陽極酸化装置による金属膜の陽極酸化
は、金属膜11を形成した基板10を電解液槽1の電解
液2中に垂直に浸漬してこの基板10上の被酸化金属膜
11を陰極3と対向させ、前記被酸化金属膜11を陽極
として、この金属膜11と陰極3との間に電源4から化
成電圧を印加して行なわれている。
In the anodic oxidation of the metal film by the anodizing apparatus, the substrate 10 on which the metal film 11 is formed is vertically immersed in the electrolytic solution 2 of the electrolytic solution tank 1 and the oxidized metal film 11 on the substrate 10 is removed. It is performed by applying a formation voltage from a power supply 4 between the metal film 11 and the cathode 3 with the metal film 11 to be oxidized facing the cathode 3.

【0009】このように電解液2中で被酸化金属膜11
と上記陰極3との間に化成電圧を印加すると、陽極であ
る被酸化金属膜11が電解液中で化成反応を起してその
表面から陽極酸化され、この金属膜11の表面に酸化膜
が生成する。
Thus, the metal film 11 to be oxidized in the electrolytic solution 2
When a formation voltage is applied between the anode and the cathode 3, the metal film to be oxidized 11, which is an anode, undergoes a chemical reaction in the electrolytic solution and is anodic oxidized from the surface thereof. Generate.

【0010】なお、図3に示した金属膜11は、例えば
上述したTFTパネルのゲート配線であり、各ゲート配
線には薄膜トランジスタのゲート電極(図示せず)が一
体に形成されている。この各ゲート配線は、基板10の
端縁部(TFTパネルの完成後または液晶表示素子の組
立て後に分離される部分)に形成した給電路11aに共
通接続されており、各ゲート配線への+電圧の供給は、
前記給電路11aを基板端縁部を挾持するクリップ形接
続部材5により電源4の+側に接続して行なわれてい
る。
The metal film 11 shown in FIG. 3 is, for example, a gate wiring of the above-described TFT panel, and a gate electrode (not shown) of a thin film transistor is integrally formed on each gate wiring. Each of the gate lines is commonly connected to a power supply line 11a formed at an edge portion of the substrate 10 (a portion separated after the completion of the TFT panel or after the assembling of the liquid crystal display element). The supply of
The power supply path 11a is connected to the + side of the power supply 4 by a clip-shaped connecting member 5 for clamping the edge of the substrate.

【0011】ところで、上記陽極酸化において金属膜の
表面に生成する酸化膜の厚さは、被酸化金属膜と陰極と
の間に印加する化成電圧によって決まるとされており、
そのため従来は、被酸化金属膜と陰極との間に印加する
化成電圧を次のように制御して金属膜の陽極酸化を行な
っている。
By the way, it is said that the thickness of the oxide film formed on the surface of the metal film in the above anodic oxidation is determined by the formation voltage applied between the metal film to be oxidized and the cathode.
Therefore, conventionally, the anodic oxidation of the metal film is performed by controlling the formation voltage applied between the metal film to be oxidized and the cathode as follows.

【0012】図4は従来の陽極酸化方法における化成電
圧の制御パターンを示しており、従来は、被酸化金属膜
と陰極との間に印加する化成電圧を、被酸化金属膜に流
れる化成電流(電解液を介して被酸化金属膜と陰極との
間に流れる電流)の値を一定に保ちながら所定の電圧値
まで上昇させて行き、電圧値が所定値に達した後は、そ
の値の化成電圧の印加をある時間だけ保持し、その後、
電圧印加を停止して陽極酸化を終了している。
FIG. 4 shows a control pattern of the formation voltage in the conventional anodic oxidation method. In the conventional case, the formation voltage applied between the metal film to be oxidized and the cathode is changed by the formation current (current) flowing through the metal film to be oxidized. The current flowing between the metal film to be oxidized and the cathode through the electrolytic solution is kept constant and is raised to a predetermined voltage value. After the voltage value reaches the predetermined value, the formation of the value is performed. Hold the voltage application for a certain time, and then
The application of the voltage is stopped to end the anodic oxidation.

【0013】すなわち、この陽極酸化方法は、被酸化金
属膜と陰極との間に印加する化成電圧を定電流モードで
所定値まで上昇させ、その後、前記所定値の化成電圧を
定電圧モードである時間だけ印加するものであり、従来
は、前記定電圧モードでの化成電圧の印加を、被酸化金
属膜に流れる電流値がある設定値(ほとんど0に近い
値)Va以下になるまで継続し、電流値が設定値Va以
下になったときに酸化膜の膜厚が所望の値になったと判
定して、この時点で陽極酸化を終了している。
That is, in this anodic oxidation method, the formation voltage applied between the metal film to be oxidized and the cathode is increased to a predetermined value in a constant current mode, and then the formation voltage of the predetermined value is set in a constant voltage mode. Conventionally, the application of the formation voltage in the constant voltage mode is continued until the value of the current flowing through the metal film to be oxidized becomes equal to or less than a set value (almost a value close to 0) Va, When the current value falls below the set value Va, it is determined that the thickness of the oxide film has reached a desired value, and the anodic oxidation has been completed at this point.

【0014】図5は上記従来の陽極酸化方法で陽極酸化
された金属膜(例えば基板10上に形成されたゲート配
線)11の断面図であり、この金属膜11の表面に生成
した酸化膜12は、前記金属膜11の非酸化部分と酸化
膜12上に形成した他の導電膜(図示せず)との間に上
記化成電圧とほぼ同じ値の絶縁耐圧をもっている。
FIG. 5 is a cross-sectional view of a metal film 11 (for example, a gate wiring formed on a substrate 10) anodized by the above-described conventional anodizing method, and an oxide film 12 formed on the surface of the metal film 11 is formed. Has a withstand voltage of substantially the same value as the formation voltage between the non-oxidized portion of the metal film 11 and another conductive film (not shown) formed on the oxide film 12.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上記従
来の陽極酸化方法で金属膜の表面に生成された酸化膜
は、図5に示したような欠陥部aをもっており、そのた
め、金属膜の非酸化部分と酸化膜上に形成した他の導電
膜との間に電圧を印加したときに前記欠陥部aの近傍で
酸化膜が絶縁破壊してしまうという問題をもっていた。
However, the oxide film formed on the surface of the metal film by the above-mentioned conventional anodic oxidation method has a defect a as shown in FIG. There is a problem that when a voltage is applied between the portion and another conductive film formed on the oxide film, the oxide film is broken down in the vicinity of the defective portion a.

【0016】本発明は、金属膜の表面に生成する酸化膜
の欠陥の発生を未然に防いで、全域にわたって十分な絶
縁耐圧をもつ信頼性の高い酸化膜を得ることができる金
属膜の陽極酸化方法を提供することを目的としたもので
ある。
According to the present invention, anodic oxidation of a metal film capable of obtaining a highly reliable oxide film having a sufficient withstand voltage over the entire area by preventing defects of an oxide film formed on the surface of the metal film from occurring. It is intended to provide a method.

【0017】[0017]

【課題を解決するための手段】本発明の陽極酸化方法
は、被酸化金属膜と陰極との間に印加する電圧を、電流
値を一定に保ちながら上昇させて行き、電圧値が陽極酸
化膜の膜厚に対応する所定値に達したときに電圧印加を
停止することを特徴とするとするものである。
According to the anodic oxidation method of the present invention, the voltage applied between the metal film to be oxidized and the cathode is increased while the current value is kept constant, and the voltage value is increased. The voltage application is stopped when a predetermined value corresponding to the film thickness is reached.

【0018】[0018]

【作用】すなわち、本発明の陽極酸化方法は、被酸化金
属膜と陰極との間に印加する化成電圧を定電流モードで
所定値まで上昇させ、その後は従来の陽極酸化方法にお
ける定電圧モードでの電圧印加は行なわずに、直ちに電
圧印加を停止して陽極酸化を終了するものであり、この
陽極酸化方法によって被酸化金属膜の表面に生成された
酸化膜は、欠陥のないほぼ均質な酸化膜であり、その絶
縁耐圧も酸化膜全域にわたって十分である。
According to the anodic oxidation method of the present invention, the formation voltage applied between the metal film to be oxidized and the cathode is increased to a predetermined value in a constant current mode, and thereafter, in a constant voltage mode in a conventional anodic oxidation method. The anodic oxidation is terminated by immediately stopping the voltage application without applying the voltage, and the oxide film formed on the surface of the metal film to be oxidized by this anodic oxidation method has a substantially uniform oxide without defects. It is a film, and its withstand voltage is sufficient throughout the oxide film.

【0019】[0019]

【実施例】以下、本発明の一実施例を図1および図2を
参照して説明する。図1は被酸化金属膜と陰極との間に
印加する化成電圧の制御パターンを示す図、図2は陽極
酸化された金属膜の断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a control pattern of a formation voltage applied between a metal film to be oxidized and a cathode, and FIG. 2 is a cross-sectional view of the anodized metal film.

【0020】この実施例の陽極酸化方法は、基板上に形
成された金属膜の表面を図3に示した陽極酸化装置を用
いて陽極酸化するものであり、この陽極酸化方法では、
図1に示した化成電圧の制御パターンのように、基板上
の被酸化金属膜と陰極との間に印加する化成電圧を、被
酸化金属膜に流れる化成電流(電解液を介して被酸化金
属膜と陰極との間に流れる電流)の値を一定に保ちなが
ら所定の電圧値まで上昇させて行き、電圧値が所定値に
達したときに電圧印加を停止する。
In the anodizing method of this embodiment, the surface of the metal film formed on the substrate is anodized using the anodizing apparatus shown in FIG.
As shown in the control pattern of the formation voltage shown in FIG. 1, the formation voltage applied between the metal film to be oxidized on the substrate and the cathode is changed by the formation current flowing through the metal film to be oxidized. While maintaining the value of the current flowing between the membrane and the cathode constant, the voltage is raised to a predetermined voltage value, and when the voltage value reaches the predetermined value, the voltage application is stopped.

【0021】すなわち、この陽極酸化方法は、被酸化金
属膜と陰極との間に印加する化成電圧を定電流モードで
所定値まで上昇させ、その後は従来の陽極酸化方法にお
ける定電圧モードでの電圧印加は行なわずに、直ちに電
圧印加を停止して陽極酸化を終了するものである。
That is, in this anodizing method, the formation voltage applied between the metal film to be oxidized and the cathode is increased to a predetermined value in a constant current mode, and thereafter, the voltage in the constant voltage mode in the conventional anodizing method is increased. Without applying the voltage, the voltage application is immediately stopped to end the anodic oxidation.

【0022】この陽極酸化方法によって表面を陽極酸化
する被酸化金属膜について説明すると、図2に示した金
属膜11は、例えばTFTパネルの基板10上に形成さ
れたゲート配線であり、この金属膜11は、低抵抗金属
であるAl (アルミニウム)にTi (チタン)またはT
a (タンタル)等の高融点金属を数重量%程度含有させ
たAl 系合金で形成されている。
The metal film to be oxidized whose surface is anodized by the anodic oxidation method will be described. The metal film 11 shown in FIG. 2 is, for example, a gate wiring formed on a substrate 10 of a TFT panel. Numeral 11 denotes Ti (titanium) or T on aluminum (Al) which is a low resistance metal.
a It is formed of an Al-based alloy containing a high melting point metal such as tantalum (about several weight%).

【0023】このように、被酸化金属膜を高融点金属を
含有させたAl 系合金で形成しているのは、金属膜表面
に良好な酸化膜12を生成させるためであり、純Al 膜
はこれを陽極酸化しても良好な酸化膜は得られないが、
被酸化金属膜を、Ti またはTa 等の高融点金属を含有
するAl 系合金膜とすれば、その表面に良好な膜質の酸
化膜(Al 2 3 膜)12を生成させることができる。
なお、このAl 系合金膜の陽極酸化は、例えば低濃度の
硼酸アンモニウム水溶液等を電解液として行なうことが
できる。
The reason why the metal film to be oxidized is made of an Al-based alloy containing a high melting point metal is to form a good oxide film 12 on the surface of the metal film. A good oxide film cannot be obtained by anodizing this,
If the metal film to be oxidized is an Al-based alloy film containing a high melting point metal such as Ti or Ta, an oxide film (Al 2 O 3 film) 12 of good film quality can be formed on the surface.
The anodic oxidation of the Al-based alloy film can be performed using, for example, a low-concentration aqueous solution of ammonium borate as an electrolytic solution.

【0024】そして、上記陽極酸化方法では、被酸化金
属膜と陰極との間に印加する化成電圧を定電流モードで
所定値まで上昇させた後に直ちに電圧印加を停止してい
るため、金属膜11の表面に生成した酸化膜12は、図
2に示したように、欠陥箇所のないほぼ均一な膜厚の酸
化膜であり、その絶縁耐圧も酸化膜全域にわたって十分
である。
In the anodic oxidation method, the voltage application is stopped immediately after the formation voltage applied between the metal film to be oxidized and the cathode is increased to a predetermined value in the constant current mode. As shown in FIG. 2, the oxide film 12 formed on the surface is an oxide film having a substantially uniform thickness without any defective portions, and has a sufficient withstand voltage throughout the oxide film.

【0025】この陽極酸化方法に対して、従来の陽極酸
化方法では、金属膜の表面に生成した酸化膜に欠陥が発
生するが、この欠陥部は次のようにして発生すると考え
られる。
In contrast to this anodic oxidation method, in the conventional anodic oxidation method, a defect occurs in the oxide film formed on the surface of the metal film. It is considered that this defective portion occurs as follows.

【0026】すなわち、従来の陽極酸化方法では、化成
電圧を定電流モードで所定値まで上昇させた後、その値
の電圧を定電圧モードである時間だけ(被酸化金属膜に
流れる電流値がある設定値以下になるまで)印加し続け
ているが、このように化成電圧を所定値まで上昇させた
後も電圧を印加し続けると、定電流モードでの電圧印加
中に金属膜の表面に生成した酸化膜のうちの絶縁耐圧が
弱い部分に絶縁破壊を生じ、この絶縁破壊が生じた箇所
を通って金属膜から電解液へと化成電流が流れ、金属膜
の電流経路となった部分がさらに陽極酸化されるため、
金属膜の表面に生成された酸化膜に、図5に示したよう
な欠陥部aが発生する。なお、化成電流は、金属膜の電
流経路となった部分がさらに陽極酸化されるのにともな
って図4に示したように減少する。
That is, in the conventional anodic oxidation method, after the formation voltage is increased to a predetermined value in the constant current mode, the voltage of that value is increased for a certain period of time in the constant voltage mode (there is a current value flowing through the metal film to be oxidized. (Until the voltage drops below the set value), but if the voltage is continuously applied after the formation voltage is increased to the predetermined value, the voltage is generated on the surface of the metal film during the voltage application in the constant current mode. The dielectric breakdown occurs in the portion of the oxide film that has a low withstand voltage, a formation current flows from the metal film to the electrolyte through the portion where the breakdown has occurred, and the portion that has become the current path of the metal film is further reduced. To be anodized
A defect a as shown in FIG. 5 occurs in the oxide film formed on the surface of the metal film. The formation current decreases as shown in FIG. 4 as the portion of the metal film that has become the current path is further anodized.

【0027】そして、従来の陽極酸化方法で金属膜の表
面に生成された酸化膜は、部分的に見ればどの箇所も十
分な絶縁耐圧をもっているが、この酸化膜は均質でない
ため、金属膜の非酸化部分と酸化膜上に形成した他の導
電膜との間に電圧が印加されたときに前記欠陥部aの近
傍で酸化膜が絶縁破壊してしまう。
The oxide film formed on the surface of the metal film by the conventional anodic oxidation method has a sufficient withstand voltage at every part when viewed partially. However, since this oxide film is not homogeneous, the oxide film is not uniform. When a voltage is applied between the non-oxidized portion and another conductive film formed on the oxide film, the oxide film is broken down near the defect portion a.

【0028】これに対して、上記実施例の陽極酸化方法
では、化成電圧を定電流モードで所望の酸化膜の膜厚に
対応する所定値まで上昇させた後に直ちに電圧印加を停
止することによって均質な酸化膜が形成されるため、そ
の絶縁耐圧は十分高い。
On the other hand, in the anodic oxidation method of the above embodiment, the voltage application is stopped immediately after the formation voltage is increased to a predetermined value corresponding to a desired thickness of the oxide film in the constant current mode. Since a suitable oxide film is formed, its dielectric strength is sufficiently high.

【0029】したがって、この陽極酸化方法で金属膜1
1の表面に生成した酸化膜12は、金属膜11の非酸化
部分と酸化膜12上に形成した他の導電膜との間に電圧
を印加したときに絶縁破壊してしまうことはない。
Therefore, the metal film 1 is formed by this anodic oxidation method.
The oxide film 12 formed on the surface of the metal film 11 does not break down when a voltage is applied between the non-oxidized portion of the metal film 11 and another conductive film formed on the oxide film 12.

【0030】[0030]

【発明の効果】本発明の陽極酸化方法は、被酸化金属膜
と陰極との間に印加する電圧を、電流値を一定に保ちな
がら上昇させて行き、電圧値が所定値に達したときに電
圧印加を停止するものであるため、金属膜の表面に生成
する酸化膜に欠陥が発生するのを未然に防いで、全域に
わたって十分な絶縁耐圧をもつ信頼性の高い酸化膜を得
ることができる。
According to the anodic oxidation method of the present invention, the voltage applied between the metal film to be oxidized and the cathode is increased while the current value is kept constant, and when the voltage value reaches a predetermined value. Since the voltage application is stopped, it is possible to prevent a defect from occurring in the oxide film formed on the surface of the metal film, and to obtain a highly reliable oxide film having a sufficient withstand voltage over the entire region. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す被酸化金属膜と陰極と
の間に印加する化成電圧の制御パターン図。
FIG. 1 is a control pattern diagram of a formation voltage applied between a metal oxide film and a cathode according to an embodiment of the present invention.

【図2】本発明の陽極酸化方法によって陽極酸化された
金属膜の断面図。
FIG. 2 is a cross-sectional view of a metal film anodized by the anodizing method of the present invention.

【図3】陽極酸化装置の斜視図。FIG. 3 is a perspective view of an anodizing apparatus.

【図4】従来の陽極酸化方法を示す被酸化金属膜と陰極
との間に印加する化成電圧の制御パターン図。
FIG. 4 is a control pattern diagram of a formation voltage applied between a metal film to be oxidized and a cathode, showing a conventional anodic oxidation method.

【図5】従来の陽極酸化方法によって陽極酸化された金
属膜の断面図。
FIG. 5 is a cross-sectional view of a metal film anodized by a conventional anodizing method.

【符号の説明】[Explanation of symbols]

10…基板 11…被酸化金属膜 12…酸化膜 DESCRIPTION OF SYMBOLS 10 ... Substrate 11 ... Metal film to be oxidized 12 ... Oxide film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25D 11/00 - 11/24 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C25D 11/00-11/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板の上に形成された金属膜を電界
液中において陰極と対向させ、この金属膜と前記陰極と
の間に電圧を印加して前記金属膜の表面を陽極酸化する
方法において、 被酸化金属膜と前記陰極との間に印加する電圧を、電流
値を一定に保ちながら上昇させて行き、電圧値が陽極酸
化膜の膜厚に対応する所定値に達したときに電圧印加を
停止することを特徴とする陽極酸化方法。
1. A metal film formed on an insulating substrate is opposed to a cathode in an electrolytic solution, and a voltage is applied between the metal film and the cathode to anodize the surface of the metal film. In the method, the voltage applied between the metal film to be oxidized and the cathode is increased while keeping the current value constant, and when the voltage value reaches a predetermined value corresponding to the thickness of the anodized film. An anodic oxidation method comprising stopping voltage application.
【請求項2】被酸化金属膜は、高融点金属を含有するA
l 系合金膜であることを特徴とする請求項1に記載の陽
極酸化方法。
2. A method according to claim 1, wherein the metal film to be oxidized comprises a metal containing a high melting point metal.
The anodic oxidation method according to claim 1, wherein the anodic oxidation method is an l-based alloy film.
JP32383592A 1992-11-10 1992-11-10 Anodizing method Expired - Fee Related JP3180474B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP32383592A JP3180474B2 (en) 1992-11-10 1992-11-10 Anodizing method
US08/147,129 US5441618A (en) 1992-11-10 1993-11-02 Anodizing apparatus and an anodizing method
KR1019930023837A KR960002417B1 (en) 1992-11-10 1993-11-10 Anodizing apparatus and an anodizing method
US08/694,210 US5733420A (en) 1992-11-10 1996-08-08 Anodizing apparatus and an anodizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32383592A JP3180474B2 (en) 1992-11-10 1992-11-10 Anodizing method

Publications (2)

Publication Number Publication Date
JPH06146077A JPH06146077A (en) 1994-05-27
JP3180474B2 true JP3180474B2 (en) 2001-06-25

Family

ID=18159128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32383592A Expired - Fee Related JP3180474B2 (en) 1992-11-10 1992-11-10 Anodizing method

Country Status (1)

Country Link
JP (1) JP3180474B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6558649B2 (en) * 2017-08-23 2019-08-14 株式会社アルバック Surface treatment method and surface treatment apparatus
CN110257875A (en) * 2018-03-12 2019-09-20 深圳市裕展精密科技有限公司 Anode oxide film and preparation method thereof
CN110257876A (en) * 2018-03-12 2019-09-20 深圳市裕展精密科技有限公司 The production method of anode oxide film

Also Published As

Publication number Publication date
JPH06146077A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
EP0466495B1 (en) Liquid crystal display apparatus
JP3153065B2 (en) Method for manufacturing electrode of semiconductor integrated circuit
US5352907A (en) Thin-film transistor
US5471329A (en) Active matrix type liquid crystal display panel and a method for producing the same, having a construction capable of preventing breakdown of the switching elements or deterioration due to static electricity
JP3180474B2 (en) Anodizing method
KR960006110B1 (en) Semiconductor device and manufacturing method thereof
JP2002090774A5 (en) Manufacturing method of liquid crystal display device
JPH0843859A (en) Active matrix circuit
JPH05142554A (en) Active matrix substrate
JP3094610B2 (en) Method for manufacturing thin film transistor
US5300209A (en) Anodizing method and apparatus
JP3433351B2 (en) Anodizing method
JPH01219721A (en) Metal insulator construction and liquid crystal display device
JP3161003B2 (en) Anodizing method for wiring surface
JPH05271993A (en) Production of insulating film
JP3149034B2 (en) Thin film transistor
JP3231395B2 (en) Active matrix substrate manufacturing method
JPH04365016A (en) Active matrix board
KR920010427B1 (en) Thin film transistor
JP3384022B2 (en) Liquid crystal device and nonlinear resistance element
JPH06216389A (en) Manufacture of thin film transistor and the same transistor
JP3535428B2 (en) Manufacturing method of active matrix circuit
JP3339133B2 (en) Anodizing method and thin film transistor using the same
JPH05203989A (en) Short-circuit elimination method
JP2001033826A (en) Thin film transistor panel and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees