[go: up one dir, main page]

JP3178217B2 - Direct conversion receiver - Google Patents

Direct conversion receiver

Info

Publication number
JP3178217B2
JP3178217B2 JP02227394A JP2227394A JP3178217B2 JP 3178217 B2 JP3178217 B2 JP 3178217B2 JP 02227394 A JP02227394 A JP 02227394A JP 2227394 A JP2227394 A JP 2227394A JP 3178217 B2 JP3178217 B2 JP 3178217B2
Authority
JP
Japan
Prior art keywords
signal
demodulation
frequency
symbol
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02227394A
Other languages
Japanese (ja)
Other versions
JPH07231338A (en
Inventor
政博 三村
高明 岸上
誠 長谷川
靖也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP02227394A priority Critical patent/JP3178217B2/en
Priority to US08/302,982 priority patent/US5617451A/en
Priority to CNB011452285A priority patent/CN1170399C/en
Priority to CN94116307.5A priority patent/CN1097922C/en
Publication of JPH07231338A publication Critical patent/JPH07231338A/en
Priority to US09/332,078 priority patent/US6236690B1/en
Application granted granted Critical
Publication of JP3178217B2 publication Critical patent/JP3178217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主としてデジタル無線
通信の直接変換受信機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct conversion receiver for digital radio communication.

【0002】[0002]

【従来の技術】最近、無線周波搬送波上の周波数偏移変
調(FSK:Frequency Shift Key
ing;フィリケンシイー・シフト・キーイング)等の
デジタル変調信号の受信機として、直接変換受信機が集
積回路化に適した構成として検討されている。
2. Description of the Related Art Recently, frequency shift keying (FSK: Frequency Shift Key) on a radio frequency carrier.
For example, as a receiver of a digital modulation signal such as frequency-shifting keying, a direct conversion receiver is being studied as a configuration suitable for integration into an integrated circuit.

【0003】例えば、特開昭55−14701号公報に
記載されている構成が知られている。以下、図6を参照
して従来のFSKデータ復調器について簡単に説明す
る。
[0003] For example, a configuration described in Japanese Patent Application Laid-Open No. 55-14701 is known. Hereinafter, a conventional FSK data demodulator will be briefly described with reference to FIG.

【0004】図6において、アンテナ30により受信さ
れたFSK受信信号は、信号増幅器31により振幅を増
幅し、ミキサ32に供給すると同時に、ミキサ33に供
給する。局部発振器34の信号はミキサ32と、90度
移相器35を通してミキサ33に供給され、それぞれ受
信機入力端30の信号と混合することにより入力信号を
ダウンコンバートし、ベースバンド信号のみを通過する
低域通過濾波器36、37を通し、お互いに直交位相
で、かつFSK信号の周波数偏移の上下により互いの位
相遅延関係が反転する関係にあるI信号38とQ信号3
9を得る。I信号38、Q信号39はそれぞれ、振幅制
限増幅器40、41を通し、デジタル信号42、43を
得る。そして、Dフリップフロップ44のD入力端子と
クロック入力端子に、デジタル信号42、43を入力
し、Dフリップフロップ44の出力信号45を用いてデ
ータの復調を行なう。
In FIG. 6, an FSK received signal received by an antenna 30 is amplified by a signal amplifier 31 and supplied to a mixer 32 and at the same time is supplied to a mixer 33. The signal of the local oscillator 34 is supplied to the mixer 33 through the mixer 32 and the 90-degree phase shifter 35, and down-converts the input signal by mixing with the signal of the receiver input terminal 30, and passes only the baseband signal. The I signal 38 and the Q signal 3 which pass through the low-pass filters 36 and 37, are in a quadrature phase with each other, and whose phase delay relationship is inverted by the frequency shift of the FSK signal.
Get 9. The I signal 38 and the Q signal 39 pass through amplitude limiting amplifiers 40 and 41, respectively, to obtain digital signals 42 and 43. Then, digital signals 42 and 43 are input to the D input terminal and the clock input terminal of the D flip-flop 44, and data is demodulated using the output signal 45 of the D flip-flop 44.

【0005】次に、出力信号45は低域フィルタ46に
より波形整形の後、クロック同期回路47によりシンボ
ル周期を検出し、そのシンボル周期でシンボル判定回路
48により、シンボル中央におけるサンプルによる符号
判定を行ない、最終的な復調結果49を得る。
Next, after the output signal 45 is shaped by a low-pass filter 46, the symbol period is detected by a clock synchronizing circuit 47, and the symbol judgment circuit 48 judges the sign based on the sample at the center of the symbol in the symbol period. , A final demodulation result 49 is obtained.

【0006】[0006]

【発明が解決しようとする課題】さて、局部発振器と送
信搬送波信号の間に周波数差が生じた場合、周波数差が
前記IQベースバンド信号の周波数に直接影響して、受
信シンボルの符号変化に伴い、ベースバンド信号の周波
数が変化する。一般に、直接変換受信機は集積化が容易
である事から、従来の技術で述べたようなデジタル復調
方式を採ることが多いが、このようなデジタル復調方式
ではベースバンド信号を2値化して復調を行なう。この
とき、2値化により前記IQベースバンド信号の伝達は
零クロス点のみで行われる事になり、前記IQベースバ
ンド信号の位相情報が消失していることから、復調にお
ける送信シンボルの符号変化検出の遅延原因となる場合
が多い。さらに、高速での通信を行なう場合、変調指数
が低くなる傾向があるため、以上に述べた遅延による復
調結果への影響は増大し、特に受信機の局部発振器に対
する、許容周波数偏差量が少なくなるという課題を有し
ていた。
When a frequency difference occurs between the local oscillator and the transmission carrier signal, the frequency difference directly affects the frequency of the IQ baseband signal, and is accompanied by a change in the sign of the received symbol. , The frequency of the baseband signal changes. In general, since a direct conversion receiver can be easily integrated, a digital demodulation method as described in the related art is often used. In such a digital demodulation method, a baseband signal is binarized and demodulated. Perform At this time, the transmission of the IQ baseband signal is performed only at the zero crossing point due to the binarization, and since the phase information of the IQ baseband signal has been lost, the code change detection of the transmission symbol in demodulation is performed. Often causes delay. Furthermore, when performing high-speed communication, since the modulation index tends to be low, the influence of the above-described delay on the demodulation result increases, and in particular, the amount of allowable frequency deviation with respect to the local oscillator of the receiver decreases. There was a problem that.

【0007】また、CPU等の動作時に雑音の発生しや
すい回路を、シンボル周期と同期させて間欠的に動作す
る場合、前記シンボル判定手段におけるシンボル判定時
に動作するようにCPUが動作する事が多いが、動作雑
音の復調回路への漏洩により、受信感度が劣化するとい
う課題を有していた。
Further, when a circuit which easily generates noise during operation of a CPU or the like operates intermittently in synchronization with a symbol period, the CPU often operates so as to operate at the time of symbol judgment by the symbol judgment means. However, there is a problem that the reception sensitivity is deteriorated due to the leakage of the operation noise to the demodulation circuit.

【0008】本発明は上記課題を解決するもので、復調
器における符号判定手段におけるシンボル判定点と、C
PUの動作タイミングを制御することにより、狭帯域、
高速デジタル変調に対応した高感度直接変換受信機を得
る事を目的とするものである。
The present invention has been made to solve the above-mentioned problems.
By controlling the operation timing of PU, narrow band,
It is an object of the present invention to obtain a high-sensitivity direct conversion receiver compatible with high-speed digital modulation.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の第1の技術的解決手段は、受信FSK搬送
波と局部発振器間の周波数差により、前記IQベースバ
ンド信号の周波数に変化が生じた場合、周波数変化によ
り検出した前記周波数ずれの程度に応じて、前記クロッ
ク同期回路の位相制御を行ない、前記符号判定手段にお
ける判定点のシンボル中の位置を変化させ、復調手段に
おける判定遅延量に応じたシンボル判定を行なうこと
で、受信感度の向上を図るものである。
In order to achieve the above-mentioned object, a first technical solution of the present invention is that a change in the frequency of the IQ baseband signal is caused by a frequency difference between a received FSK carrier and a local oscillator. If it occurs, the phase of the clock synchronization circuit is controlled in accordance with the degree of the frequency shift detected by the frequency change, the position of the determination point in the symbol determination unit in the symbol is changed, and the determination delay amount in the demodulation unit is changed. Is performed to improve the receiving sensitivity.

【0010】また、本発明の第2の技術的解決手段は、
CPU等の、動作による雑音の発生が予想される回路が
データ判定に同期して動作する場合、動作タイミングを
シンボル判定に影響の少ない場合に動作するように制御
する構成を有するものである。
[0010] The second technical solution of the present invention is as follows.
When a circuit, such as a CPU, which is expected to generate noise due to the operation operates in synchronization with the data determination, the operation timing is controlled so as to operate when the influence on the symbol determination is small.

【0011】[0011]

【作用】本発明は上記の構成により、復調器の符号(シ
ンボル)判定手段において、従来シンボル中央に設けて
いた符号判定点を中央よりも後方に設けることにより、
以上に説明した遅延の影響で復調結果における符号変化
点が、シンボル後方に移動した場合でも、正確な符号判
定が可能となり、送信搬送波と局所発振器の間に周波数
ずれがある場合における受信感度の向上を図る事ができ
る。
According to the present invention, the code (symbol) judging means of the demodulator is provided with the code judging point, which is conventionally provided at the center of the symbol, behind the center.
Even if the code change point in the demodulation result moves behind the symbol due to the influence of the delay described above, accurate code determination is possible, and the reception sensitivity is improved when there is a frequency shift between the transmission carrier and the local oscillator. Can be planned.

【0012】また、CPU等の動作タイミングをシンボ
ル判定点の後に設定する事により、動作雑音の影響が軽
減され、高感度な受信を可能とするものである。
Further, by setting the operation timing of the CPU or the like after the symbol judgment point, the influence of the operation noise is reduced and high-sensitivity reception is enabled.

【0013】さらに、本発明は直接変換復調手段の構成
に付加することにより受信感度を改善するものであり、
復調手段、上記構成ともにデジタル信号処理により実現
できることから、復調器全体の集積回路化が容易であ
り、受信機の小型化と低消費電力化を同時に実現でき
る。
Further, the present invention is to improve the receiving sensitivity by adding to the configuration of the direct conversion demodulation means.
Since both the demodulation means and the above configuration can be realized by digital signal processing, it is easy to integrate the entire demodulator into an integrated circuit, and it is possible to simultaneously reduce the size and power consumption of the receiver.

【0014】[0014]

【実施例】【Example】

(実施例1)以下、図1、図2、図3を参照しながら本
発明の第1の実施例について説明する。図1は本発明の
第1の実施例における直接変換受信機に適用した復調回
路の主要部の回路系統図である。なお、本実施例は、直
接変換受信機の構成であるため、従来の技術において説
明した直接変換により得られる前記I信号38と前記Q
信号39を用いて復調を行なうものとする。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a circuit diagram of a main part of a demodulation circuit applied to a direct conversion receiver according to a first embodiment of the present invention. In this embodiment, since the direct conversion receiver is configured, the I signal 38 and the Q signal obtained by the direct conversion described in the related art are used.
Demodulation is performed using the signal 39.

【0015】なお、図1において、信号増幅器31、ミ
キサ32、ミキサ33、局部発振器34、90度移相器
35、低域通過濾波器36、37は図6の構成と同等の
ものである。
In FIG. 1, a signal amplifier 31, a mixer 32, a mixer 33, a local oscillator 34, a 90-degree phase shifter 35, and low-pass filters 36 and 37 are equivalent to those in FIG.

【0016】図1において、1は前記I信号38、Q信
号39を入力として、前記信号38、39は送信信号の
符号変化により位相関係が反転することから、お互いの
位相関係を検出して、位相関係の反転により送信データ
の変化を検出する復調手段である。当該復調手段1は、
より具体的には、図6に示した振幅制限増幅器40、4
1、及びDフリップフロップ44により構成してもよ
い。あるいは前記I信号38、Q信号39を90度位相
器により90度位相してI`信号38`、Q`信号39
`とし、前記I信号38とQ`信号39`を混合器によ
りミキシングするとともに、前記Q信号39とI`信号
38`を混合器によりミキシングして、双方のミキシン
グ出力の和を演算器によりとるような構成でも実現でき
る。
In FIG. 1, reference numeral 1 designates an input of the I signal 38 and the Q signal 39, and the signals 38 and 39 are inverted in phase relationship due to a sign change of a transmission signal. This is a demodulation means for detecting a change in transmission data by reversing the phase relationship. The demodulation means 1
More specifically, the amplitude limiting amplifiers 40 and 4 shown in FIG.
1 and a D flip-flop 44. Alternatively, the I signal 38 and the Q signal 39 are phase-shifted by 90 degrees by a
, And the I signal 38 and the Q signal 39 are mixed by a mixer, and the Q signal 39 and the I signal 38 are mixed by a mixer, and the sum of both mixing outputs is obtained by an arithmetic unit. Such a configuration can also be realized.

【0017】2は復調手段1の出力信号、3は復調手段
1の出力信号2を波形整形する低域通過濾波器、4は前
記I信号38、Q信号39の周波数を検出する周波数検
出手段、5は周波数検出手段4の出力信号、6は低域通
過濾波器3の出力信号における符号変化からシンボル変
化点の検出により、シンボル中央のタイミングを推定し
たクロック信号7を出力するクロック同期手段、8は前
記信号5に応じた量の遅延を前記クロック信号7に加え
る信号遅延手段、9は低域通過濾波器3の出力信号から
信号遅延手段8の出力信号のタイミングを用いてシンボ
ル判定を行なうシンボル判定手段、10はシンボル判定
手段9により得られる最終的な復調結果である。
Reference numeral 2 denotes an output signal of the demodulation means 1, 3 denotes a low-pass filter for shaping the waveform of the output signal 2 of the demodulation means 1, 4 denotes frequency detection means for detecting the frequencies of the I signal 38 and the Q signal 39, 5 is an output signal of the frequency detecting means 4; 6 is a clock synchronizing means for outputting a clock signal 7 which estimates the timing of the center of the symbol by detecting a symbol change point from a code change in the output signal of the low-pass filter 3; Is a signal delay means for adding an amount of delay corresponding to the signal 5 to the clock signal 7, and 9 is a symbol for making a symbol determination from the output signal of the low-pass filter 3 using the timing of the output signal of the signal delay means 8. The determination means 10 is the final demodulation result obtained by the symbol determination means 9.

【0018】以上のような構成において、以下その動作
を説明する。まず、前記I信号38、Q信号39は常に
90度の位相差を保つが、送信信号の符号変化に伴な
い、お互いの位相関係は反転する。復調手段1は、前記
I信号38、Q信号39相互の位相関係の検出により、
送信信号の符号を判定する。判定した復調結果2は低域
通過濾波器3に通すことにより波形整形を行ない、クロ
ック同期手段6とシンボル判定手段9に供給される。こ
こで、受信FSK信号の搬送波と局部発振器34間に周
波数差がある場合、送信シンボルの変化に伴い、前記I
信号38、Q信号39としたベースバンド信号の周波数
が変化する。
The operation of the above configuration will be described below. First, the I signal 38 and the Q signal 39 always maintain a phase difference of 90 degrees, but their phase relationship is inverted with a change in the sign of the transmission signal. The demodulation means 1 detects the phase relationship between the I signal 38 and the Q signal 39,
The sign of the transmission signal is determined. The determined demodulation result 2 is passed through a low-pass filter 3 to perform waveform shaping, and is supplied to a clock synchronization unit 6 and a symbol determination unit 9. Here, if there is a frequency difference between the carrier of the received FSK signal and the local oscillator 34, the above-mentioned I
The frequency of the baseband signal as the signal 38 and the Q signal 39 changes.

【0019】図2(a)は受信FSK信号の搬送波と局
部発振器間に周波数差がない場合、図2(b)は周波数
差がある場合で、それぞれ送信信号(イ)、ベースバン
ド信号(ロ)、復調結果(ハ)の関係を示したものであ
る。(ニ)は、受信FSK信号と局部発振器34の出力
信号間の周波数関係である。
FIG. 2A shows the case where there is no frequency difference between the carrier of the received FSK signal and the local oscillator, and FIG. 2B shows the case where there is a frequency difference. ) And demodulation results (c). (D) is the frequency relationship between the received FSK signal and the output signal of the local oscillator 34.

【0020】それぞれ受信FSK信号の搬送波周波数は
FRF、局部発振器の発振周波数はFLOとし、FSK
周波数偏移はFDとする。図2(a)の場合は、(イ)
に示した送信信号の符号変化に関係なく、(ロ)に示し
たベースバンド信号の周波数はFDとなる。ここで、一
般に復調手段1における符号検出の遅延量は、FDに反
比例する。この場合、符号間におけるI信号の周波数が
同一なため、符号検出の遅延量が常にほぼ一定値となる
ので、復調結果(ハ)に示した復調結果におけるデュー
テイ比は1/2程度となる。
The carrier frequency of the received FSK signal is FRF, and the oscillation frequency of the local oscillator is FLO.
The frequency shift is FD. In the case of FIG.
The frequency of the baseband signal shown in (b) becomes FD regardless of the sign change of the transmission signal shown in (b). Here, generally, the amount of delay in code detection in the demodulation means 1 is inversely proportional to FD. In this case, since the frequency of the I signal between codes is the same, the amount of delay in code detection is always substantially constant, so that the duty ratio in the demodulation result shown in demodulation result (c) is about 1/2.

【0021】また、図2(b)は受信FSK信号搬送波
と局部発振器間に周波数差がある場合における関係であ
るが、この場合、(ニ)に示すように、FRFとFLO
間に周波数差があるため、(イ)に示した送信信号の符
号変化に伴い、(ロ)に示したベースバンド信号の周波
数がFD1とFD2に変化する。
FIG. 2B shows the relationship when there is a frequency difference between the received FSK signal carrier and the local oscillator. In this case, as shown in FIG.
Since there is a frequency difference therebetween, the frequency of the baseband signal shown in (b) changes to FD1 and FD2 with the sign change of the transmission signal shown in (a).

【0022】前記復調手段1における符号判定の遅延量
は、ベースバンド信号の周波数にほぼ反比例するため、
ベースバンド信号の周波数が変化することにより、シン
ボル間での符号判定の遅延量も変化することになる。従
って、図2(b)(ハ)に示したように、ベースバンド
信号の周波数がFD1と低くなる場合の遅延が大きくな
り、極端な場合はシンボル中央付近にまで達することも
ある。このような場合、シンボル判定手段8において、
従来行われているようなシンボル中央における符号判定
を行うと、符号判定結果に誤差が多くなることが予想さ
れる。
The amount of delay in code determination in the demodulation means 1 is almost inversely proportional to the frequency of the baseband signal.
As the frequency of the baseband signal changes, the amount of delay in code determination between symbols also changes. Accordingly, as shown in FIGS. 2B and 3C, when the frequency of the baseband signal is as low as FD1, the delay increases, and in extreme cases, it may reach the center of the symbol. In such a case, the symbol determination means 8
If the sign determination at the center of the symbol is performed as in the related art, it is expected that the sign determination result will have a large error.

【0023】ここで、常にシンボル中央における符号判
定を行なうのではなく、前記遅延量に応じて符号判定点
をシンボル中央から後方へ移行させることにより、復調
誤差を少なくする事ができる。図1の構成では、クロッ
ク同期手段6は、低域通過濾波器3の出力信号における
符号変化からシンボル変化点の検出を行ない、シンボル
中央のタイミングを推定する。そして、前記IQベース
バンド信号38、39の周波数変化を周波数検出手段4
により検出し、周波数検出手段4の出力信号5を信号遅
延手段8に供給する。そして、信号遅延手段8は、クロ
ック同期手段6により推定されたシンボル中央位置を示
すクロック信号7に対して、前記出力信号5に応じた遅
延をした信号をシンボル判定手段9に供給する事によ
り、前記IQベースバンド信号の周波数の変化程度に応
じて符号判定手段9の符号判定点をシンボル後方へ移動
する。即ち、受信FSK搬送波信号と局部発振器間の周
波数差に応じて、予想される前記IQベースバンド信号
38、39の判定遅延量分だけ後方に移動したシンボル
判定点により、シンボルの符号判定を行ない、最終的な
復調結果10を得る。
Here, the demodulation error can be reduced by shifting the code decision point from the symbol center to the rear according to the delay amount instead of always performing the code decision at the symbol center. In the configuration of FIG. 1, the clock synchronization means 6 detects a symbol change point from a code change in the output signal of the low-pass filter 3, and estimates the timing of the center of the symbol. Then, the frequency change of the IQ baseband signals 38 and 39 is
And outputs the output signal 5 of the frequency detecting means 4 to the signal delaying means 8. Then, the signal delay unit 8 supplies the symbol determination unit 9 with a delayed signal corresponding to the output signal 5 with respect to the clock signal 7 indicating the symbol center position estimated by the clock synchronization unit 6, The code determination point of the code determination means 9 is moved to the rear of the symbol according to the degree of change in the frequency of the IQ baseband signal. That is, the symbol determination of the symbol is performed by the symbol determination point moved backward by the expected determination delay amount of the IQ baseband signals 38 and 39 according to the frequency difference between the received FSK carrier signal and the local oscillator, A final demodulation result 10 is obtained.

【0024】以上に説明した構成では、周波数検出手段
4により受信FSK搬送波信号と局部発振器間の周波数
差を検出し、シンボル判定手段8において前記周波数差
に応じたシンボル判定点の移行を行なうとしているが、
前記周波数差に関わらずシンボル判定点を単に一定量、
後方に移動させておくことによっても、前記周波数差が
生じた時の感度を向上させることが可能である。その場
合、周波数検出手段4と信号遅延手段8は省く事ができ
る。
In the configuration described above, the frequency detecting means 4 detects the frequency difference between the received FSK carrier signal and the local oscillator, and the symbol determining means 8 shifts the symbol determination point according to the frequency difference. But,
The symbol determination point is simply a fixed amount regardless of the frequency difference,
By moving it backward, it is possible to improve the sensitivity when the frequency difference occurs. In that case, the frequency detecting means 4 and the signal delaying means 8 can be omitted.

【0025】図3は、図1における周波数検出手段4と
信号遅延手段8を省いた構成の復調機を想定した、計算
機シミュレーションによる特性改善結果である。図3に
おいて、横軸はシンボル判定手段9におけるシンボル判
定の位置を1シンボルを100%として示しており、縦
軸はその位置よるシンボル判定を行なった場合における
BER(ビットエラーレート)である。BERは総送信
データ数に対する復調データにおける誤りデータのビッ
ト比率である。ここでは受信FSK搬送波信号と局部発
振器間の周波数差を0から3kHzと変化させている
が、特に前記周波数差が3kHzの場合、シンボル判定
の位置をシンボル中央に設定したときにBERは約0.04
となるが、1シンボル長の3/4、75%の位置に設定し
たときにはBERが約0.004となり、誤り率の低減が確
認された。誤り率の低減は、直接受信感度の向上につな
がるため、本発明の構成による、受信感度の改善効果が
確認されたことになる。
FIG. 3 shows the result of the characteristic improvement by computer simulation assuming a demodulator having a configuration in which the frequency detection means 4 and the signal delay means 8 in FIG. 1 are omitted. In FIG. 3, the horizontal axis indicates the symbol determination position in the symbol determination means 9 assuming that one symbol is 100%, and the vertical axis indicates the BER (bit error rate) when the symbol determination based on the position is performed. BER is a bit ratio of error data in demodulated data to the total number of transmission data. Here, the frequency difference between the received FSK carrier signal and the local oscillator is changed from 0 to 3 kHz. In particular, when the frequency difference is 3 kHz, the BER becomes about 0.04 when the symbol determination position is set at the center of the symbol.
However, when the BER was set at a position of 3/4 or 75% of one symbol length, the BER was about 0.004, and a reduction in the error rate was confirmed. Since the reduction of the error rate directly leads to the improvement of the receiving sensitivity, the effect of improving the receiving sensitivity by the configuration of the present invention has been confirmed.

【0026】(実施例2)以下、図4、図5を参照しな
がら本発明の第2の実施例について説明する。図4は本
発明の第2の実施例における直接変換受信機に適用した
復調回路の主要部の回路系統図である。本実施例も図1
と同様に、直接変換受信機の構成であるため、従来の技
術において説明した直接変換により得られる前記I信号
38とQ信号39を用いて復調を行なうものとする。よ
って、図4において、信号増幅器31、ミキサ32、ミ
キサ33、局部発振器34、90度移相器35、低域通
過濾波器36、37は図6の構成と同等のものである。
また、図4において、1は復調手段であり、2は復調手
段1の出力信号、3は復調手段1の出力信号2を波形整
形する低域通過濾波器で、以上の構成は図1と同様であ
る。
(Embodiment 2) Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a circuit diagram of a main part of a demodulation circuit applied to a direct conversion receiver according to a second embodiment of the present invention. This embodiment is also shown in FIG.
Similarly to the above, since the configuration of the direct conversion receiver is used, demodulation is performed using the I signal 38 and the Q signal 39 obtained by the direct conversion described in the related art. Therefore, in FIG. 4, the signal amplifier 31, the mixer 32, the mixer 33, the local oscillator 34, the 90-degree phase shifter 35, and the low-pass filters 36 and 37 are equivalent to the configuration of FIG.
In FIG. 4, reference numeral 1 denotes a demodulation unit, 2 denotes an output signal of the demodulation unit 1, and 3 denotes a low-pass filter for shaping the waveform of the output signal 2 of the demodulation unit 1. The above configuration is the same as in FIG. It is.

【0027】一方、6は低域通過濾波器3の出力信号に
おける符号変化からシンボル変化点の検出により、シン
ボル中央のタイミングを推定したクロック信号7を出力
するクロック同期手段、9は低域通過濾波器3の出力信
号から前記クロック信号7のタイミングを用いてシンボ
ル判定を行なうシンボル判定手段、11はCPU等の演
算処理手段、10はシンボル判定手段9により得られる
最終的な復調結果である。
On the other hand, 6 is a clock synchronizing means for outputting a clock signal 7 which estimates the timing of the center of the symbol by detecting a symbol change point from a code change in the output signal of the low-pass filter 3, and 9 is a low-pass filter. Symbol determination means for performing symbol determination from the output signal of the signal generator 3 using the timing of the clock signal 7; 11, an arithmetic processing means such as a CPU; and 10, a final demodulation result obtained by the symbol determination means 9.

【0028】以上のような構成において、以下その動作
を説明する。この第2の実施例における低域通過濾波器
3の出力信号を得るまでの動作は、前記第1の実施例と
同様であるので、それ以降の動作についての説明を行な
う。
The operation of the above configuration will be described below. The operation up to obtaining the output signal of the low-pass filter 3 in the second embodiment is the same as that in the first embodiment, and the subsequent operation will be described.

【0029】クロック同期手段6は、低域通過濾波器3
の出力信号における符号変化からシンボル変化点の検出
を行ない、シンボル中央のタイミングを推定したクロッ
ク信号7をシンボル判定手段9に供給する。そして、低
域通過濾波器3の出力信号は、シンボル判定手段9にお
いて、クロック信号7のタイミングによりシンボル中央
でのシンボル判定を行ない、最終的な復調結果10を得
る。
The clock synchronization means 6 includes the low-pass filter 3
, A symbol change point is detected from the code change in the output signal, and a clock signal 7 in which the timing at the center of the symbol is estimated is supplied to the symbol determination means 9. The output signal of the low-pass filter 3 is subjected to symbol determination at the center of the symbol by the symbol determination means 9 at the timing of the clock signal 7 to obtain a final demodulation result 10.

【0030】ここで、復調動作に演算処理による操作を
加える構成を採る場合等に、演算処理手段11をシンボ
ル周期に同期して間欠的に動作することがある。このと
き、演算処理手段11がデジタル回路により構成されて
いる場合、動作による雑音の発生と、その復調部への漏
洩による受信感度の劣化が問題になる事が多い。
Here, when adopting a configuration in which an operation by arithmetic processing is added to the demodulation operation, the arithmetic processing means 11 may operate intermittently in synchronization with the symbol period. At this time, when the arithmetic processing means 11 is constituted by a digital circuit, the generation of noise due to the operation and the deterioration of the receiving sensitivity due to leakage to the demodulation unit often cause problems.

【0031】本実施例は、演算処理手段11を、クロッ
ク同期手段6から供給されるクロック信号7により同期
的に動作させ、さらに動作開始のタイミングをシンボル
判定手段9におけるシンボル判定点の後とするものであ
る。このことにより、演算処理手段11の動作を、シン
ボル判定手段9におけるシンボル判定時に影響の少ない
タイミングで行なうことができ、演算処理手段11の動
作雑音の漏洩による受信感度の劣化を最小限にとどめる
構成とするものである。
In this embodiment, the arithmetic processing means 11 is operated synchronously by the clock signal 7 supplied from the clock synchronizing means 6, and the operation start timing is after the symbol judgment point in the symbol judgment means 9. Things. Thus, the operation of the arithmetic processing means 11 can be performed at a timing with little influence on the symbol determination by the symbol determining means 9, and the deterioration of the receiving sensitivity due to the leakage of the operation noise of the arithmetic processing means 11 is minimized. It is assumed that.

【0032】図5は、図4に示した構成の復調機を想定
した、計算機シミュレーションによる特性改善結果であ
る。図5において、横軸は毎シンボルにおける演算処理
手段11の動作開始位置を1シンボルを100%として
示しており、縦軸はそのときのBERである。図5に示
した実施例ではシンボル判定をシンボル中央に設定して
いるため、シンボル判定点の以前に雑音の発生要因があ
ると、雑音の混入による影響が大きくなるため、感度が
劣化している事がわかる。また、演算処理手段11の動
作開始点をシンボル判定点後に設定する事により、漏洩
した雑音による影響が少なくなっている。
FIG. 5 shows the result of the characteristic improvement by computer simulation assuming the demodulator having the configuration shown in FIG. In FIG. 5, the horizontal axis indicates the operation start position of the arithmetic processing unit 11 for each symbol, where one symbol is 100%, and the vertical axis is the BER at that time. In the embodiment shown in FIG. 5, since the symbol determination is set at the center of the symbol, if there is a noise generation factor before the symbol determination point, the influence of the noise is increased, and the sensitivity is degraded. I understand that. Further, by setting the operation start point of the arithmetic processing means 11 after the symbol determination point, the influence of the leaked noise is reduced.

【0033】従って、雑音の発生が予想される演算処理
手段11等の回路を、シンボル周期と同期して動作させ
る必要がある場合、演算処理手段11等の動作を、前記
クロック信号7により動作の開始を行なう構成とする事
により、シンボル判定手段8のシンボル判定後に、演算
処理手段11を動作させることが可能となり、以上図5
を用いて説明したように、受信感度の向上が、比較的簡
易な方法により可能となる。
Therefore, when it is necessary to operate circuits such as the arithmetic processing means 11 in which noise is expected to occur in synchronization with the symbol period, the operation of the arithmetic processing means 11 and the like is controlled by the clock signal 7. By performing the start, the arithmetic processing means 11 can be operated after the symbol judgment by the symbol judgment means 8, and
As described above, the reception sensitivity can be improved by a relatively simple method.

【0034】いずれの実施例でも、受信信号の変調形式
は、FSKである場合について説明したが、復調手段1
に他の変調変調方式に対応した復調器を用いる事によ
り、他の変調方式における受信機としても、本発明の復
調を適用できることは明らかである。
In each embodiment, the case where the modulation format of the received signal is FSK has been described.
It is obvious that the demodulation according to the present invention can be applied to a receiver using another modulation scheme by using a demodulator corresponding to another modulation scheme.

【0035】ここでは、いずれの実施例でも、受信方式
を直接変換受信方式とした場合について説明したが、搬
送波信号を中間周波数信号とすれば、ヘテロダイン方式
の復調方式として本発明の復調を適用できることは明ら
かである。
Here, in each embodiment, the case where the receiving system is the direct conversion receiving system has been described. However, if the carrier signal is an intermediate frequency signal, the demodulation of the present invention can be applied as a heterodyne demodulating system. Is clear.

【0036】[0036]

【発明の効果】以上のように本発明によれば、ダイレク
トコンバージョン受信において、大きな問題である、受
信FSK信号の搬送波と、受信機の局部発振器の間に周
波数差が生じた場合においても、より正確なシンボル判
定が可能であるため、より狭帯域、高速FSKに対応し
た復調器が実現できる。
As described above, according to the present invention, even if a frequency difference occurs between the carrier of the received FSK signal and the local oscillator of the receiver, which is a major problem in direct conversion reception, the present invention is more effective. Since accurate symbol determination is possible, a demodulator that supports narrower bandwidth and higher speed FSK can be realized.

【0037】また本発明によれば、CPU等の演算処理
手段を組み込んだ受信機の場合、演算処理手段により発
生する雑音の影響を軽減することが可能であるため、よ
り高感度な復調が可能となる。
According to the present invention, in the case of a receiver incorporating arithmetic processing means such as a CPU, it is possible to reduce the influence of noise generated by the arithmetic processing means, thereby enabling more sensitive demodulation. Becomes

【0038】また、構成要素がデジタル回路素子でも実
現できるため、集積回路化が可能であり、小形化および
低価格化に対応でき、その工業的な効果は大きい。
Further, since the components can also be realized by digital circuit elements, integration into a circuit is possible, miniaturization and cost reduction are possible, and the industrial effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における直接変換受信機
に適用した復調回路の主要部の回路系統図
FIG. 1 is a circuit diagram of a main part of a demodulation circuit applied to a direct conversion receiver according to a first embodiment of the present invention.

【図2】同実施例における復調動作を示した波形図FIG. 2 is a waveform chart showing a demodulation operation in the embodiment.

【図3】同実施例による復調感度改善の効果を示した特
性図
FIG. 3 is a characteristic diagram showing an effect of improving demodulation sensitivity according to the embodiment.

【図4】本発明の第2の実施例における直接変換受信機
に適用した復調回路の主要部の回路系統図
FIG. 4 is a circuit diagram of a main part of a demodulation circuit applied to a direct conversion receiver according to a second embodiment of the present invention.

【図5】同実施例による復調感度改善の効果を示した特
性図
FIG. 5 is a characteristic diagram showing an effect of improving demodulation sensitivity according to the embodiment.

【図6】従来の受信機の構成によるFSK復調方式を適
用した復調回路の主要部を示す回路系統図
FIG. 6 is a circuit diagram showing a main part of a demodulation circuit to which an FSK demodulation method according to a conventional receiver configuration is applied.

【符号の説明】[Explanation of symbols]

1 復調手段 3 低域通過濾波器 4 周波数検出手段 6 クロック同期手段 8 信号遅延手段 9 符号判定手段 32、33 ミキサ 34 局部発振器 35 90度移相器 36、37 低域通過濾波器 DESCRIPTION OF SYMBOLS 1 Demodulation means 3 Low-pass filter 4 Frequency detection means 6 Clock synchronization means 8 Signal delay means 9 Code determination means 32, 33 Mixer 34 Local oscillator 35 90-degree phase shifter 36, 37 Low-pass filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 靖也 神奈川県横浜市港北区綱島四丁目3番1 号 松下通信工業株式会社内 (56)参考文献 特開 平3−139941(JP,A) 特開 平6−6397(JP,A) 特開 平3−62753(JP,A) 特開 平4−335733(JP,A) 特開 昭64−58043(JP,A) 特開 平5−250058(JP,A) (58)調査した分野(Int.Cl.7,DB名) H04L 27/14 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yasushi Tanaka 4-3-1 Tsunashima, Kohoku-ku, Yokohama-shi, Kanagawa Prefecture Inside Matsushita Communication Industrial Co., Ltd. (56) References JP-A-3-139941 (JP, A) JP-A-6-6397 (JP, A) JP-A-3-62753 (JP, A) JP-A-4-335733 (JP, A) JP-A-64-58043 (JP, A) JP-A-5-250058 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H04L 27/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直接変換受信によるIQベースバンド信
号の符号変化により位相関係が反転することから、お互
いの位相関係を検出して、位相関係の反転により送信デ
ータの変化を検出する復調手段と、その復調検出信号の
符号変化からシンボル変化点を検出し、シンボル中央の
タイミングを推定したクロック信号を出力するクロック
同期手段と、前記IQベースバンド信号を入力とし、入
力信号の周波数変化を検出する周波数検出手段と、前記
周波数検出手段の出力信号を制御信号とし、前記クロッ
ク信号を前記制御信号に応じた時間遅延する信号遅延手
段と、前記信号遅延手段の出力信号のタイミングで、前
記復調検出信号の符号判定を行なう符号判定手段とを具
備し、前記周波数検出手段は、前記IQベースバンド信
号の周波数変化により受信機局部発振器の受信FSK搬
送波周波数に対する周波数ずれを検出して、前記制御信
号として前記信号遅延手段に供給し、前記信号遅延手段
は、前記クロック信号を、前記周波数ずれに応じて1/
2シンボル長以下の遅延を行ない前記符号判定手段に供
給し、前記符号判定手段は、前記信号遅延手段の出力信
号に同期して、前記復調検出信号の符号判定を行なうこ
とにより、前記周波数検出手段において検出された前記
局部発振器の周波数ずれに応じて、前記クロック信号に
よるシンボル中心推定点から、符号判定点の遅延量を変
化させる直接変換受信機。
1. A demodulation means for detecting a phase relationship between each other because a phase relationship is inverted by a code change of an IQ baseband signal due to direct conversion reception, and detecting a change in transmission data by inverting the phase relationship. Clock synchronization means for detecting a symbol change point from the code change of the demodulation detection signal and outputting a clock signal in which the timing of the symbol center is estimated; and a frequency for receiving the IQ baseband signal and detecting a frequency change of the input signal Detection means, signal output means of the frequency detection means as a control signal, signal delay means for delaying the clock signal by time according to the control signal, at the timing of the output signal of the signal delay means, the demodulation detection signal Sign determination means for performing code determination, wherein the frequency detection means detects a change in frequency of the IQ baseband signal. The local oscillator detects a frequency shift with respect to the received FSK carrier frequency of the receiver local oscillator and supplies the control signal as the control signal to the signal delay means. The signal delay means divides the clock signal by 1 / according to the frequency shift.
A delay of two symbol lengths or less is supplied to the code judging means, and the code judging means makes a code judgment of the demodulation detection signal in synchronization with an output signal of the signal delaying means, whereby the frequency detecting means A direct conversion receiver that changes a delay amount of a code determination point from a symbol center estimation point by the clock signal in accordance with the frequency shift of the local oscillator detected in the above.
【請求項2】 直接変換受信によるIQベースバンド信
号の符号変化により位相関係が反転することから、お互
いの位相関係を検出して、位相関係の反転により送信デ
ータの変化を検出する復調手段と、前記復調手段からの
出力信号である復調検出信号の符号判定を行う符号判定
手段と、前記復調検出信号の符号変化からシンボル変化
点を検出し、シンボル中央のタイミングを推定したクロ
ック信号を前記符号判定手段に供給するクロック同期手
段と、前記復調検出信号と同期的に動作する演算処理手
段とを具備し、前記演算処理手段は、前記クロック信号
のタイミングを用い、前記符号判定手段における符号判
定点の後で間欠的に動作することにより、動作雑音が復
調部へ漏洩することによる復調結果への影響が少ないタ
イミングにおいて動作し、前記符号判定手段は、前記ク
ロック信号を用いたタイミングにおける前記復調検出信
号の符号を判定し、復調符号判定結果として出力し、当
該復調符号判定結果を用いて復調を行なう直接変換受信
機。
2. Demodulation means for detecting a phase relationship between each other because a phase relationship is inverted by a sign change of an IQ baseband signal due to direct conversion reception, and detecting a change in transmission data by inverting the phase relationship. Code determination means for determining the sign of a demodulation detection signal which is an output signal from the demodulation means; and detecting a symbol change point from a code change of the demodulation detection signal and estimating a symbol center timing. Clock synchronizing means for supplying to the means, and arithmetic processing means operating synchronously with the demodulation detection signal, wherein the arithmetic processing means uses the timing of the clock signal to determine the sign judgment point in the sign judging means. By operating intermittently later, it operates at a timing when the effect of leakage of operation noise to the demodulation unit on demodulation results is small. A direct conversion receiver that determines a code of the demodulation detection signal at a timing using the clock signal, outputs the result as a demodulation code determination result, and performs demodulation using the demodulation code determination result. .
JP02227394A 1993-09-13 1994-02-21 Direct conversion receiver Expired - Lifetime JP3178217B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP02227394A JP3178217B2 (en) 1994-02-21 1994-02-21 Direct conversion receiver
US08/302,982 US5617451A (en) 1993-09-13 1994-09-12 Direct-conversion receiver for digital-modulation signal with signal strength detection
CNB011452285A CN1170399C (en) 1993-09-13 1994-09-13 A frequency shift keying demodulator
CN94116307.5A CN1097922C (en) 1993-09-13 1994-09-13 Direct exchangable receiver and shift frequency key controlled demodulator
US09/332,078 US6236690B1 (en) 1993-09-13 1999-06-14 Direct-conversion receiver for digital-modulation signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02227394A JP3178217B2 (en) 1994-02-21 1994-02-21 Direct conversion receiver

Publications (2)

Publication Number Publication Date
JPH07231338A JPH07231338A (en) 1995-08-29
JP3178217B2 true JP3178217B2 (en) 2001-06-18

Family

ID=12078161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02227394A Expired - Lifetime JP3178217B2 (en) 1993-09-13 1994-02-21 Direct conversion receiver

Country Status (1)

Country Link
JP (1) JP3178217B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990048041A (en) * 1997-12-08 1999-07-05 이형도 Modulator demodulator of personal communication terminal
JP4542398B2 (en) * 2004-09-08 2010-09-15 オリンパス株式会社 Receiver
DE602005027857D1 (en) 2004-09-07 2011-06-16 Olympus Corp RECEIVING DEVICE WITH ANTENNA UNIT
JP4583240B2 (en) 2005-05-20 2010-11-17 Okiセミコンダクタ株式会社 FSK demodulator

Also Published As

Publication number Publication date
JPH07231338A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
JPH0382248A (en) 90× phase shifter and data receiver
US6549588B2 (en) Communications system and corresponding receiver unit
JPH07297870A (en) Tdma data receiver
JP3087459B2 (en) FSK data demodulator
JP3178217B2 (en) Direct conversion receiver
JP2006109476A (en) Frequency-shift-keying demodulator and frequency-shift keying demodulation
JP2848440B2 (en) Line quality monitoring circuit
EP0412291B1 (en) Quadrature FSK receiver with compensation for frequency offset
JP2959498B2 (en) Automatic frequency control circuit
JPH09153920A (en) Digital demodulator
US20060062331A1 (en) Demodulator for use in wireless communications and receiver, method and terminal using it
JPH06268694A (en) Fsk demodulator for direct converter receiver
JP3178277B2 (en) Direct conversion receiver
JP3966022B2 (en) Receiving machine
JPS63200652A (en) Fsk receiver
JP2584171B2 (en) FSK data demodulator
JP2000244598A (en) Controller, frequency offset compensator and demodulator using the same
JP3305560B2 (en) Baseband signal processing device
JPH08186606A (en) Reception device
JPH11266230A (en) Radio receiver
JPH05110613A (en) Angular modulation signal demodulating circuit
JPH0785563B2 (en) Data receiver
JPH07107127A (en) Fsk demodulator
WO1996031970A1 (en) A demodulator for transmission systems and use of such a demodulator
JPH05347645A (en) Receiver

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 13

EXPY Cancellation because of completion of term