[go: up one dir, main page]

JP3178189B2 - Ferroelectric transmission line - Google Patents

Ferroelectric transmission line

Info

Publication number
JP3178189B2
JP3178189B2 JP25686393A JP25686393A JP3178189B2 JP 3178189 B2 JP3178189 B2 JP 3178189B2 JP 25686393 A JP25686393 A JP 25686393A JP 25686393 A JP25686393 A JP 25686393A JP 3178189 B2 JP3178189 B2 JP 3178189B2
Authority
JP
Japan
Prior art keywords
transmission line
line
microwave
ferroelectric
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25686393A
Other languages
Japanese (ja)
Other versions
JPH07111407A (en
Inventor
秀樹 桐野
郁裕 城石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP25686393A priority Critical patent/JP3178189B2/en
Publication of JPH07111407A publication Critical patent/JPH07111407A/en
Application granted granted Critical
Publication of JP3178189B2 publication Critical patent/JP3178189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Connection Structure (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguides (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はマイクロ波回路を構成す
る強誘電体伝送路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric transmission line constituting a microwave circuit.

【0002】[0002]

【従来の技術】近年、常誘電体上に構成したマイクロ波
伝送線路と半導体ダイオードを組み合わせて、電圧制御
が可能なフィルタ回路、電圧制御が可能な共振回路、変
調回路、検波回路、周波数変換回路などのマイクロ波回
路が実現されている。
2. Description of the Related Art In recent years, by combining a microwave transmission line and a semiconductor diode formed on a paraelectric material, a voltage-controllable filter circuit, a voltage-controllable resonance circuit, a modulation circuit, a detection circuit, and a frequency conversion circuit have been developed. And other microwave circuits.

【0003】以下に従来の半導体ダイオードを使用した
マイクロ波回路について説明する。図4(a)は代表的
なマイクロ波伝送線路の斜視図を示すものである。同図
(a)において、41は常誘電体基材、42は導体パタ
ーン、43は接地導体である。また同図(b)はマイク
ロ波伝送線路と半導体ダイオードと組み合わせて実現し
た電圧制御フィルタ回路の平面図を示すものである。
Hereinafter, a microwave circuit using a conventional semiconductor diode will be described. FIG. 4A is a perspective view of a typical microwave transmission line. In FIG. 2A, reference numeral 41 denotes a paraelectric substrate, reference numeral 42 denotes a conductor pattern, and reference numeral 43 denotes a ground conductor. FIG. 1B is a plan view of a voltage control filter circuit realized by combining a microwave transmission line and a semiconductor diode.

【0004】電圧制御フィルタ回路44は、1/2波長
の伝送線路46の一部にバラクタダイオード45を接続
して構成され、1/2波長の伝送線路46は前後の伝送
線路と電界結合されて、目的の周波数のマイクロ波を伝
送する帯域通過フィルタとなる。制御電圧は1/4波長
の伝送線路の組み合わせによるマイクロ波チョーク線路
47を通して供給される。そして印加する電圧によりバ
ラクタダイオード45の等価線路長が変化することを利
用して中心周波数の制御が行なわれる。
The voltage control filter circuit 44 is constructed by connecting a varactor diode 45 to a part of a half-wavelength transmission line 46, and the half-wavelength transmission line 46 is electric-field-coupled to the preceding and following transmission lines. , A band-pass filter for transmitting microwaves of a target frequency. The control voltage is supplied through a microwave choke line 47 that is a combination of quarter-wave transmission lines. The center frequency is controlled by utilizing the fact that the equivalent line length of the varactor diode 45 changes according to the applied voltage.

【0005】以上のような構成の電圧制御フィルタの
他、電圧制御共振回路、変調回路、検波回路、及び周波
数変換回路等のマイクロ波回路についても、バラクタダ
イオード、PINダイオード、ショットキーダイオード
等を利用して構成されている。
In addition to the voltage control filter having the above-described configuration, varactor diodes, PIN diodes, Schottky diodes, and the like are used for microwave circuits such as a voltage control resonance circuit, a modulation circuit, a detection circuit, and a frequency conversion circuit. It is configured.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、それぞれの回路に半導体ダイオードが必
要になるため、マイクロ波回路が高価になるという問題
点がある。また特に、マイクロ波の周波数が高くなる
程、半導体ダイオードを実装する際の寄生リアクタンス
成分の影響が大きくなり、高周波回路の設計製作が複雑
になるという問題がある。
However, in the above-mentioned conventional configuration, there is a problem that a microwave circuit becomes expensive because a semiconductor diode is required for each circuit. In particular, there is a problem that as the frequency of the microwave increases, the influence of the parasitic reactance component when mounting the semiconductor diode increases, which complicates the design and manufacture of the high-frequency circuit.

【0007】本発明は上記従来の問題点を解決するもの
であり、半導体ダイオードを用いず、基板材料と導体パ
ターンのみでマイクロ波伝送線路を構成することによ
り、低価格化が可能で寄生リアクタンス成分の影響のな
い各種のマイクロ波回路を提供することを目的とするも
のである。
The present invention solves the above-mentioned conventional problems. By forming a microwave transmission line using only a substrate material and a conductor pattern without using a semiconductor diode, the cost can be reduced and the parasitic reactance component can be reduced. It is an object of the present invention to provide various microwave circuits which are not affected by the above.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明の強誘電体伝送線路は、印加電界の大きさによ
り誘電率が変化する強誘電体材料を接地導体上に設け、
前記強誘電体材料上にマイクロ波を伝搬させる伝送線路
を導体パターンで形成し、前記導体パターンに印加する
電圧によって、前記強誘電体材料の誘電率を変化させる
ことにより、前記マイクロ波の特性を変化させることを
特徴とするものである。
In order to achieve this object, a ferroelectric transmission line according to the present invention is provided with a ferroelectric material whose permittivity changes according to the magnitude of an applied electric field on a ground conductor.
A transmission line for propagating microwaves on the ferroelectric material is formed by a conductor pattern, and by changing a dielectric constant of the ferroelectric material by a voltage applied to the conductor pattern, the characteristics of the microwave are changed. It is characterized by being changed.

【0009】[0009]

【作用】上記構成によれば、強誘電体の誘電率を変化さ
せることにより、線路上波長短縮率つまり等価線路長の
制御を行うことができるので、導体パターンで例えば電
圧制御フィルタ回路、電圧制御共振回路を構成すること
ができる。また強誘電体の誘電率を変化させることによ
り、線路の特性インピーダンス、つまり負荷線路から見
た信号源インピーダンスを制御することができるので、
導体パターンにより、例えば変調回路、検波回路、周波
数変換回路を構成することができる。
According to the above structure, the on-line wavelength shortening rate, that is, the equivalent line length can be controlled by changing the dielectric constant of the ferroelectric substance. A resonance circuit can be configured. Also, by changing the dielectric constant of the ferroelectric, it is possible to control the characteristic impedance of the line, that is, the signal source impedance seen from the load line,
The conductor pattern can form, for example, a modulation circuit, a detection circuit, and a frequency conversion circuit.

【0010】[0010]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。図1は本発明の強誘電体伝送線路の一
実施例を示すものであり、図(a)は強誘電体伝送線路
の構成図を、図(b)は代表的な強誘電体における電界
と誘電分極特性、即ち非線形誘電率を表わすものであ
る。
Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B show an embodiment of a ferroelectric transmission line according to the present invention. FIG. 1A is a configuration diagram of a ferroelectric transmission line, and FIG. It represents the dielectric polarization characteristic, that is, the nonlinear dielectric constant.

【0011】図(a)において1は強誘電体基板材、2
は常誘電体基板材、3は導体パターン、4は接地導体を
それぞれ示している。また5の矢印は伝送されるマイク
ロ波信号がつくる電界を、6の矢印はバイアスの直流電
圧がつくる電界を示しており、2つの電界が同一方向で
あることを示している。一般に強誘電体の誘電率はテン
ソル量であり、図(b)に示すように、横軸の電界方向
に測った強誘電体基材1の誘電率は曲線の傾きで表わさ
れ、印加する電界の大きさにより誘電率が変化すること
を示している。本発明の強誘電体伝送線路は、強誘電体
の持つ非線形誘電率を有効に利用するものであり、以下
各種マイクロ波回路を構成した具体例について説明す
る。
In FIG. 1A, reference numeral 1 denotes a ferroelectric substrate material;
Denotes a paraelectric substrate material, 3 denotes a conductor pattern, and 4 denotes a ground conductor. Arrow 5 indicates the electric field generated by the transmitted microwave signal, and arrow 6 indicates the electric field generated by the bias DC voltage, and indicates that the two electric fields are in the same direction. Generally, the dielectric constant of a ferroelectric is a tensor quantity, and as shown in FIG. 3B, the dielectric constant of the ferroelectric substrate 1 measured in the direction of the electric field on the horizontal axis is represented by the slope of a curve and applied. This shows that the dielectric constant changes depending on the magnitude of the electric field. The ferroelectric transmission line of the present invention effectively utilizes the nonlinear dielectric constant of a ferroelectric, and specific examples of various microwave circuits will be described below.

【0012】図2(a)は電圧制御フィルタ回路に応用
した実施例、同図(b)は電圧制御共振回路に応用した
実施例、図3(a)は変調回路に応用した実施例、同図
(b)は検波回路に応用した実施例、同図(c)は周波
数変換回路に応用した実施例を示すものでる。
FIG. 2A is an embodiment applied to a voltage control filter circuit, FIG. 2B is an embodiment applied to a voltage control resonance circuit, and FIG. 3A is an embodiment applied to a modulation circuit. FIG. 1B shows an embodiment applied to a detection circuit, and FIG. 2C shows an embodiment applied to a frequency conversion circuit.

【0013】図2(a)に示す電圧制御フィルタ回路1
1は、制御信号の印加される中心線路12は、その線路
長が丁度1/2波長となるマイクロ波を中心周波数とす
るバンドパスフィルタであり、その導体パターンは強誘
電体基材領域A上に形成してある。また制御電圧は1/
4波長の伝送線路の組み合わせによるマイクロ波チョー
ク線路13を通して供給され、チョーク線路13はその
チョーク効果が制御電圧により劣化しないように常誘電
体領域Bに形成している。
The voltage control filter circuit 1 shown in FIG.
Reference numeral 1 denotes a band-pass filter having a center line 12 to which a control signal is applied and a center frequency of a microwave having a line length of exactly 1 / wavelength, and a conductor pattern formed on the ferroelectric substrate region A. It is formed in. The control voltage is 1 /
The power is supplied through a microwave choke line 13 composed of a combination of four wavelength transmission lines, and the choke line 13 is formed in the paraelectric region B so that the choke effect is not deteriorated by a control voltage.

【0014】中心線路12上を、その電界強度が線路基
板材の誘電率の非線形さに対して十分小さいマイクロ波
を伝搬させるとともに、中心線路12に印加する制御信
号として、その電界強度が線路基板材の誘電率を変化さ
せるに十分な大きさを持つ信号を使用する。そして中心
線路12上でのマイクロ波の波長は、線路基板材の誘電
率により変化するということを利用して、フィルタの中
心周波数を制御電圧により変化させることが可能とな
る。
A microwave whose electric field strength is sufficiently small with respect to the non-linearity of the dielectric constant of the line substrate material is propagated on the center line 12, and the electric field intensity is controlled by the line base as a control signal applied to the center line 12. Use a signal that is large enough to change the dielectric constant of the plate. Using the fact that the wavelength of the microwave on the center line 12 changes depending on the dielectric constant of the line substrate material, the center frequency of the filter can be changed by the control voltage.

【0015】同図(b)に示す電圧制御共振回路14
は、制御信号が印加されるリング型線路15の線路長が
丁度1波長となるマイクロ波を共振周波数とする共振回
路であり、その導体パターンは強誘電体基材領域A上に
形成してある。制御電圧は1/4波長の伝送線路の組み
合わせによるマイクロ波チョーク線路16を通して供給
され、チョーク線路16は、そのチョーク効果が制御電
圧により劣化しないように常誘電体領域Bに形成してい
る。
The voltage control resonance circuit 14 shown in FIG.
Is a resonance circuit having a microwave whose resonance frequency is such that the line length of the ring-type line 15 to which the control signal is applied is just one wavelength, and its conductor pattern is formed on the ferroelectric substrate region A. . The control voltage is supplied through a microwave choke line 16 composed of a combination of 1 / wavelength transmission lines. The choke line 16 is formed in the paraelectric region B so that the choke effect is not deteriorated by the control voltage.

【0016】リング型線路15上を、その電界強度が線
路基板材の誘電率の非線形さに対して十分小さいマイク
ロ波を伝搬させるとともに、リング型線路に印加する制
御信号として、その電界強度が線路基板材の誘電率を変
化させるに十分な大きさを持つ信号を使用する。すると
電圧制御フィルタ回路11と同様に、リング型線路15
上でのマイクロ波の波長は線路基板材の誘電率により変
化するということを利用して、共振周波数を制御電圧に
より変化させることが可能となる。
On the ring type line 15, a microwave whose electric field intensity is sufficiently small with respect to the nonlinearity of the dielectric constant of the line substrate material is propagated, and the electric field intensity is controlled as a control signal applied to the ring type line. Use a signal that is large enough to change the dielectric constant of the substrate material. Then, similarly to the voltage control filter circuit 11, the ring type line 15
By utilizing the fact that the wavelength of the microwave changes depending on the dielectric constant of the line board material, the resonance frequency can be changed by the control voltage.

【0017】次に図3(a)に示す変調回路17は、変
調信号が印加される変調用線路18の特性インピーダン
スを変化させることにより、入出力間の整合度を変化さ
せ、伝送されるマイクロ波電力を制御するよう構成した
ものであり、その導体パターンは、強誘電体基材領域A
上に形成してある。また変調信号は1/4波長の伝送線
路の組み合わせによるマイクロ波チョーク線路19を通
して供給され、チョーク線路19はそのチョーク効果が
制御電圧により劣化しないように常誘電体領域Bに形成
し、変調用線路と入出力線路とは変調信号が入出力線路
へ影響しないようにキャパシタ20を介して結合してい
る。
Next, the modulation circuit 17 shown in FIG. 3A changes the degree of matching between the input and output by changing the characteristic impedance of the modulation line 18 to which the modulation signal is applied, and transmits the transmitted micro-signal. And the conductor pattern of the ferroelectric substrate region A
Formed above. The modulation signal is supplied through a microwave choke line 19 composed of a combination of quarter-wave transmission lines. The choke line 19 is formed in a paraelectric region B so that the choke effect is not deteriorated by a control voltage. The input and output lines are coupled via a capacitor 20 so that the modulation signal does not affect the input and output lines.

【0018】中心線路18上を、その電界強度が線路基
板材の誘電率の非線形さに対して十分小さいマイクロ波
を伝搬させるとともに、中心線路18に印加する変調信
号として、その電界強度が線路基板材の誘電率を変化さ
せるに十分な大きさを持つ信号を使用すれば、中心線路
18の特性インピーダンスは、線路基板材の誘電率によ
り変化するということを利用して、入出力間の整合度を
変調信号により変化させてマイクロ波を変調することが
可能となる。
A microwave whose electric field strength is sufficiently small with respect to the non-linearity of the dielectric constant of the line board material is propagated on the center line 18, and the electric field strength is applied to the center line 18 as a modulation signal. If a signal having a magnitude sufficient to change the dielectric constant of the plate material is used, the characteristic impedance of the center line 18 changes according to the dielectric constant of the line board material, and the matching between input and output is used. Can be modulated by the modulation signal to modulate the microwave.

【0019】同図(b)に示す検波回路21は、検波用
マイクロ波が印加される検波用線路22の特性インピー
ダンスがマイクロ波電界の正側と負側で異なる時、検波
用線路22には印加マイクロ波振幅に応じた低周波電圧
が発生することを利用して検波をおこなうよう構成して
あり、その導体パターンを強誘電体基材領域A上に形成
してある。またバイアス電圧は、1/4波長の伝送線路
の組み合わせによるマイクロ波チョーク線路23を通し
て供給され、チョーク線路23はそのチョーク効果が制
御電圧により劣化しないように常誘電体領域Bに形成
し、検波用線路22と入力線路aおよび整合線路bとは
バイアス電圧dが入力線路a、整合線路bへ影響しない
ようにキャパシタ24を介して結合している。
The detection circuit 21 shown in FIG. 2B is connected to the detection line 22 when the characteristic impedance of the detection line 22 to which the detection microwave is applied is different between the positive side and the negative side of the microwave electric field. The detection is performed by utilizing the generation of a low-frequency voltage corresponding to the amplitude of the applied microwave, and the conductor pattern is formed on the ferroelectric substrate region A. The bias voltage is supplied through a microwave choke line 23 formed by a combination of quarter-wave transmission lines. The choke line 23 is formed in the paraelectric region B so that the choke effect is not deteriorated by the control voltage. The line 22 is coupled to the input line a and the matching line b via the capacitor 24 so that the bias voltage d does not affect the input line a and the matching line b.

【0020】検波用線路22上を、その電界強度が線路
基板材の誘電率を変化させるに十分な大きさを持つマイ
クロ波を伝搬させるとともに、検波用線路22に線路基
板材の誘電率特性を片側へシフトさせるに十分な電界強
度を持つバイアス電圧を印加する。すると、線路を伝搬
するマイクロ波に対する検波用線路22の特性インピー
ダンスはマイクロ波電界の正側と負側で異なり、ダイオ
ード検波回路と同様、検波負荷から見たときの信号源イ
ンピーダンスがマイクロ波の正側と負側で異なることか
らマイクロ波の検波が可能となる。
A microwave whose electric field intensity is large enough to change the dielectric constant of the line substrate material is propagated on the detection line 22 and the dielectric characteristic of the line substrate material is transmitted to the detection line 22. A bias voltage having an electric field strength sufficient to shift to one side is applied. Then, the characteristic impedance of the detection line 22 with respect to the microwave propagating through the line differs between the positive side and the negative side of the microwave electric field, and similarly to the diode detection circuit, the signal source impedance viewed from the detection load has the positive polarity of the microwave. The difference between the negative side and the negative side enables microwave detection.

【0021】同図(c)に示す周波数変換回路26は、
検波回路21と同様に、周波数変換用線路27の特性イ
ンピーダンスがマイクロ波電界の正側と負側で異なる
時、周波数変換用線路27には印加される2つのマイク
ロ波の差の周波数の電圧が発生することを利用して周波
数変換をおこなうよう構成し、その導体パターンは強誘
電体基材領域A上に形成してある。バイアス電圧は1/
4波長の伝送線路の組み合わせによるマイクロ波チョー
ク線路29を通して供給する。チョーク線路28はその
チョーク効果が制御電圧により劣化しないように常誘電
体領域Bに形成してあり、周波数変換用線路27と入力
線路a,bとは、バイアス電圧が入力線路へ影響しない
ようにキャパシタ29を介して結合している。
The frequency conversion circuit 26 shown in FIG.
Similarly to the detection circuit 21, when the characteristic impedance of the frequency conversion line 27 is different between the positive side and the negative side of the microwave electric field, the voltage of the difference frequency of the two microwaves applied to the frequency conversion line 27 is applied to the frequency conversion line 27. The conductor pattern is formed on the ferroelectric base material region A so as to perform frequency conversion utilizing the occurrence. The bias voltage is 1 /
The power is supplied through a microwave choke line 29 formed by a combination of four wavelength transmission lines. The choke line 28 is formed in the paraelectric region B so that the choke effect is not deteriorated by the control voltage. The frequency conversion line 27 and the input lines a and b are formed so that the bias voltage does not affect the input lines. They are connected via a capacitor 29.

【0022】周波数変換用線路27上を、その電界強度
が線路基板材の誘電率を変化させるに十分な大きさを持
つ2つの周波数のマイクロ波を伝搬させるとともに、周
波数変換用線路27に線路基板材の誘電率特性を片側へ
シフトさせるに十分な電界強度を持つバイアス電圧を印
加する。すると、線路を伝搬する2つの周波数のマイク
ロ波に対する周波数変換用線路27の特性インピーダン
スは、マイクロ波電界の正側と負側で異なり、ダイオー
ド周波数変換回路と同様、周波数変換負荷から見たとき
の信号源インピーダンスがマイクロ波の正側と負側で異
なることからマイクロ波の周波数変換が可能となる。
On the frequency conversion line 27, microwaves of two frequencies whose electric field strength is large enough to change the dielectric constant of the line board material are propagated. A bias voltage having an electric field strength sufficient to shift the dielectric constant of the plate material to one side is applied. Then, the characteristic impedance of the frequency conversion line 27 with respect to the microwave of two frequencies propagating through the line differs between the positive side and the negative side of the microwave electric field, and similarly to the diode frequency conversion circuit, when viewed from the frequency conversion load. Since the signal source impedance is different between the positive side and the negative side of the microwave, frequency conversion of the microwave becomes possible.

【0023】以上のように本実施例の強誘電体伝送線路
によれば、半導体ダイオードを用いないで各マイクロ波
回路を実現することができる。
As described above, according to the ferroelectric transmission line of this embodiment, each microwave circuit can be realized without using a semiconductor diode.

【0024】[0024]

【発明の効果】以上のように本発明の強誘電体伝送線路
は、半導体ダイオードを用いないで、強誘電体を含む誘
電体材料と導体パターンのみで構成し、強誘電体の誘電
率の非線形特性を積極的に利用するものである。このた
め、従来の半導体ダイオードを使用したマイクロ波回路
に替わる機能を持ちながら、低価格で寄生リアクタンス
成分の影響のない電圧制御フィルタ回路、電圧制御共振
回路、変調回路、検波回路、周波数変換回路等のマイク
ロ波回路を構成することができる。
As described above, the ferroelectric transmission line according to the present invention does not use a semiconductor diode but is composed of only a dielectric material including a ferroelectric and a conductor pattern, and has a non-linear dielectric constant of the ferroelectric. It actively utilizes characteristics. For this reason, while having the function to replace the microwave circuit using the conventional semiconductor diode, a low-cost, voltage-controlled filter circuit, voltage-controlled resonance circuit, voltage-controlled resonance circuit, modulation circuit, detection circuit, frequency conversion circuit, etc., which is free from the influence of the parasitic reactance component, etc. Can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の強誘電体伝送線路の構成図と、非線形
誘電率を示す説明図
FIG. 1 is a configuration diagram of a ferroelectric transmission line according to the present invention and an explanatory diagram showing a nonlinear dielectric constant.

【図2】本発明の強誘電体伝送線路により構成した各種
マイクロ波回路の実施例を示す平面図
FIG. 2 is a plan view showing an embodiment of various microwave circuits constituted by the ferroelectric transmission line of the present invention.

【図3】従来のマイクロ波伝送線路の説明図FIG. 3 is an explanatory diagram of a conventional microwave transmission line.

【図4】従来のマイクロ波回路の構成図FIG. 4 is a configuration diagram of a conventional microwave circuit.

【符号の説明】[Explanation of symbols]

1 強誘電体基板材 2,41 常誘電体基板材 3,42 導体パターン 4,43 接地導体 11,44 電圧制御フィルタ回路 14 電圧制御共振回路 17 変調回路 21 検波回路 26 周波数変換回路 45 バラクタダイオード DESCRIPTION OF SYMBOLS 1 Ferroelectric substrate material 2, 41 Paraelectric substrate material 3, 42 Conductor pattern 4, 43 Ground conductor 11, 44 Voltage control filter circuit 14 Voltage control resonance circuit 17 Modulation circuit 21 Detection circuit 26 Frequency conversion circuit 45 Varactor diode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01P 3/08 H01P 1/00 H01P 1/203 H01P 7/08 H03D 3/16 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01P 3/08 H01P 1/00 H01P 1/203 H01P 7/08 H03D 3/16

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】印加電界の大きさにより誘電率が変化する
強誘電体材料を接地導体上に設け、前記強誘電体材料上
にマイクロ波を伝搬させる伝送線路を導体パターンで形
成し、前記導体パターンに印加する電圧によって、前記
強誘電体材料の誘電率を変化させることにより、前記マ
イクロ波の特性を変化させることを特徴とする強誘電体
伝送線路。
A ferroelectric material whose permittivity varies according to the magnitude of an applied electric field is provided on a ground conductor, and a transmission line for transmitting microwaves on the ferroelectric material is formed by a conductor pattern; A ferroelectric transmission line, wherein a characteristic of the microwave is changed by changing a dielectric constant of the ferroelectric material according to a voltage applied to a pattern.
【請求項2】入力線路及び出力線路のそれぞれに電界で
結合され、伝送線路上を伝搬するマイクロ波の中心周波
数を、印加する電圧によって制御可能なように、強誘電
体材料の誘電率の変化に伴ってマイクロ波の波長短縮率
を変化させるフィルタ回路を導体パターンで形成したこ
とを特徴とする請求項1記載の強誘電体伝送線路。
2. A change in the dielectric constant of a ferroelectric material so that the center frequency of a microwave that is coupled to each of an input line and an output line by an electric field and propagates on a transmission line can be controlled by an applied voltage. 2. The ferroelectric transmission line according to claim 1, wherein a filter circuit for changing a wavelength shortening rate of the microwave is formed by a conductor pattern.
【請求項3】入出力を共用させた線路に電界で結合さ
れ、伝送線路上で共振するマイクロ波の周波数を、印加
する電圧によって制御可能なように、強誘電体材料の誘
電率の変化に伴ってマイクロ波の波長短縮率を変化させ
る共振回路を導体パターンで形成したことを特徴とする
請求項1記載の強誘電体伝送線路。
3. The method according to claim 1, wherein the frequency of the microwaves coupled to the input / output shared line by an electric field and resonating on the transmission line can be controlled by the applied voltage. 2. The ferroelectric transmission line according to claim 1, wherein a resonance circuit for changing the wavelength shortening rate of the microwave is formed by a conductor pattern.
【請求項4】入力線路及び出力線路のそれぞれに電界で
結合され、伝送線路上を伝搬するマイクロ波の電力を、
印加する電圧によって制御可能なように、強誘電体材料
の誘電率の変化に伴って伝送線路の特性インピーダンス
を変化させる変調回路を導体パターンで形成したことを
特徴とする請求項1記載の強誘電体伝送線路。
4. The power of a microwave coupled to an input line and an output line by an electric field and propagating on a transmission line,
2. The ferroelectric circuit according to claim 1, wherein a modulation circuit for changing a characteristic impedance of the transmission line in accordance with a change in a dielectric constant of the ferroelectric material is formed by a conductor pattern so as to be controllable by an applied voltage. Body transmission line.
【請求項5】入力線路に電界で結合され、伝送線路上を
伝搬するマイクロ波の電力に応じた電圧信号を発生する
ように、印加する電圧によって強誘電体材料の誘電率
を、前記マイクロ波電圧の正側と負側で異ならしめる検
波回路を導体パターンで形成したことを特徴とする請求
項1記載の強誘電体伝送線路。
5. The method according to claim 1, wherein the ferroelectric material has a dielectric constant, which is coupled to the input line by an electric field and generates a voltage signal corresponding to the power of the microwave propagating on the transmission line. 2. The ferroelectric transmission line according to claim 1, wherein a detection circuit for differentiating between the positive side and the negative side of the voltage is formed by a conductor pattern.
【請求項6】2つの入力線路に電界で結合され、入力さ
れる2つのマイクロ波の差の周波数の信号を発生するよ
うに、印加する電圧によって強誘電体材料の誘電率を、
前記2つのマイクロ波電圧の正側と負側で異ならしめる
周波数変換回路を導体パターンで形成したことを特徴と
する請求項1記載の強誘電体伝送線路。
6. A ferroelectric material, which is coupled to two input lines by an electric field and generates a signal having a frequency corresponding to a difference between two input microwaves, according to an applied voltage.
2. The ferroelectric transmission line according to claim 1, wherein a frequency conversion circuit for making the positive and negative sides of the two microwave voltages different from each other is formed by a conductor pattern.
JP25686393A 1993-10-14 1993-10-14 Ferroelectric transmission line Expired - Fee Related JP3178189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25686393A JP3178189B2 (en) 1993-10-14 1993-10-14 Ferroelectric transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25686393A JP3178189B2 (en) 1993-10-14 1993-10-14 Ferroelectric transmission line

Publications (2)

Publication Number Publication Date
JPH07111407A JPH07111407A (en) 1995-04-25
JP3178189B2 true JP3178189B2 (en) 2001-06-18

Family

ID=17298467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25686393A Expired - Fee Related JP3178189B2 (en) 1993-10-14 1993-10-14 Ferroelectric transmission line

Country Status (1)

Country Link
JP (1) JP3178189B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6055144B1 (en) * 2016-04-06 2016-12-27 鈴木 矩子 Fashionable wear for wheelchairs

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463763B1 (en) 1998-12-14 2004-12-29 마츠시타 덴끼 산교 가부시키가이샤 Active phased array antenna and antenna controller
US6727785B2 (en) 2002-06-27 2004-04-27 Harris Corporation High efficiency single port resonant line
RU2258279C1 (en) * 2004-02-16 2005-08-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" Slotted line
US7902938B2 (en) 2004-03-29 2011-03-08 Nec Corporation Data transmitter, data transmission line, and data transmission method
WO2008114519A1 (en) 2007-03-16 2008-09-25 Nec Corporation Transmission line filter
JP4731515B2 (en) * 2007-03-29 2011-07-27 富士通株式会社 Tunable filter and manufacturing method thereof
WO2008139239A1 (en) * 2007-05-14 2008-11-20 Nokia Corporation Apparatus and method for affecting an electric field during a communication
JP4915747B2 (en) * 2008-03-31 2012-04-11 国立大学法人徳島大学 High frequency signal transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6055144B1 (en) * 2016-04-06 2016-12-27 鈴木 矩子 Fashionable wear for wheelchairs

Also Published As

Publication number Publication date
JPH07111407A (en) 1995-04-25

Similar Documents

Publication Publication Date Title
US4541120A (en) Transmitter-receiver module
JP3178189B2 (en) Ferroelectric transmission line
JP7609533B2 (en) Flux bias for pulse shaping of microwave signals.
US6011446A (en) RF/microwave oscillator having frequency-adjustable DC bias circuit
US5280290A (en) Self-oscillating mixer circuits, and FMCW radar
US10476436B2 (en) Resonant unit, voltage controlled oscillator (VCO) implementing the same, and push-push oscillator implementing a pair of VCOs
US4189690A (en) Resonant linear frequency modulator
US7016554B2 (en) Optical modulator
White et al. Travelling wave electro-optic modulators
US3705366A (en) Two-terminal reactive hybrid microcircuit having capacitive diode termination
US9835880B2 (en) Driver and capacitive load integration
US6873750B2 (en) Electro-optic modulator with resonator
US3961286A (en) Reflection type phase modulator having reduced temperature sensitivity and reduced distortion
Takayama Power amplification with IMPATT diodes in stable and injection-locked modes
US20040202395A1 (en) Tunable re-lightwave modulator
US3095543A (en) Means for modulating high frequency generators
US3461395A (en) Amplifier circuits employing varactors for controlling power gain and bandwidth
US6380814B1 (en) Voltage-controlled oscillator having a variable capacitive element with an electrode coupled to a resonator
US6172577B1 (en) Oscillator and oscillation apparatus using the oscillator
JP2944007B2 (en) Phase shifter and oscillation circuit using the same
US5159293A (en) Voltage-controlled oscillator with wide modulation bandwidth
JP4086160B2 (en) High frequency oscillator functional circuit
Betts et al. High-sensitivity bandpass RF modulator in LiNbO3
US3579147A (en) Phase modulator
JP2559724Y2 (en) Microwave modulator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees