JP3173251B2 - Method for producing silicon nitride sintered body and turbo rotor - Google Patents
Method for producing silicon nitride sintered body and turbo rotorInfo
- Publication number
- JP3173251B2 JP3173251B2 JP26719193A JP26719193A JP3173251B2 JP 3173251 B2 JP3173251 B2 JP 3173251B2 JP 26719193 A JP26719193 A JP 26719193A JP 26719193 A JP26719193 A JP 26719193A JP 3173251 B2 JP3173251 B2 JP 3173251B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- heat treatment
- silicon nitride
- treatment step
- nitride sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims description 24
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title description 5
- 238000010438 heat treatment Methods 0.000 claims description 58
- 239000013078 crystal Substances 0.000 claims description 40
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- 230000000052 comparative effect Effects 0.000 description 27
- 239000012299 nitrogen atmosphere Substances 0.000 description 16
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical group CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 14
- 238000002441 X-ray diffraction Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 238000005245 sintering Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 238000010304 firing Methods 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000013001 point bending Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 229910020068 MgAl Inorganic materials 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- -1 fiber Chemical compound 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Landscapes
- Supercharger (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Ceramic Products (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、強度及び靱性に優れた
窒化珪素焼結体の製造方法及びターボロータに関する。
本発明により得られる窒化珪素焼結体は、例えば自動車
用エンジンのピストンピン、バルブ、ターボロータなど
に有用である。BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method for manufacturing a silicon nitride sintered body and a turbo rotor .
The silicon nitride sintered body obtained by the present invention is useful, for example, for a piston pin, a valve, a turbo rotor, and the like of an automobile engine.
【0002】[0002]
【従来の技術】窒化珪素焼結体は、自動車用エンジン部
品その他の高温高強度材料用セラミックスとして注目さ
れ、研究開発が盛んに進められている。ところが窒化珪
素焼結体は高強度といえどもセラミックスであり、破壊
靱性が低いという欠点がある。この靱性を高めるため
に、例えば繊維強化による複合化が試みられている。し
かし繊維の用意や混入方法などに手間がかかり、コスト
面で不具合がある。また繊維という窒化珪素以外の補強
材の混入により、窒化珪素焼結体としての本来の効果が
低減する場合もあった。さらにターボロータ等の複雑形
状の部品では、成形・焼結が非常に困難である。2. Description of the Related Art Sintered silicon nitride has attracted attention as a ceramic for high-temperature, high-strength materials such as engine parts for automobiles and has been actively researched and developed. However, the silicon nitride sintered body is a ceramic even though it has high strength, and has a drawback of low fracture toughness. In order to increase the toughness, for example, composite formation by fiber reinforcement has been attempted. However, it takes time and effort to prepare and mix fibers, and there is a problem in terms of cost. In addition, the mixing of a reinforcing material other than silicon nitride, such as fiber, may reduce the original effect of the silicon nitride sintered body. Further, molding and sintering of a component having a complicated shape such as a turbo rotor is very difficult.
【0003】そこで本願出願人は、α−Si3 N4 を焼
結によりβ−Si3 N4 に転移させ、アスペクト比が1
0以上の長柱状晶であるβ−Si3 N4 の作用により靱
性を高めた窒化珪素焼結体を開示している(特開昭63-3
10771 号公報)。The applicant of the present invention has converted α-Si 3 N 4 into β-Si 3 N 4 by sintering, and has an aspect ratio of 1
A silicon nitride sintered body having improved toughness by the action of β-Si 3 N 4 which is a long columnar crystal of 0 or more is disclosed (Japanese Patent Application Laid-Open No. 63-3 / 1988).
No. 10771).
【0004】[0004]
【発明が解決しようとする課題】上記した先願発明で
は、50μm以上に大きく成長させたβ−Si3 N4 柱
状晶を5〜50体積%含有させることにより、窒化珪素
焼結体に高い靱性を付与している。ところが強度につい
ては、β−Si3 N4 柱状晶の大きさや含有量を変化さ
せてもほとんど変化がなく、30体積%以上の含有では
むしろ強度が低下するという問題があった。In the above-mentioned prior invention, the silicon nitride sintered body is made to have high toughness by containing 5 to 50% by volume of β-Si 3 N 4 columnar crystals grown to a size of 50 μm or more. Has been granted. However, there was a problem that the strength hardly changed even when the size and content of the β-Si 3 N 4 columnar crystal were changed, and the strength was rather lowered when the content was 30% by volume or more.
【0005】本発明はこのような事情に鑑みてなされた
ものであり、窒化珪素焼結体の強度と靱性の両方を向上
させることを目的とする。The present invention has been made in view of such circumstances, and has as its object to improve both the strength and toughness of a silicon nitride sintered body.
【0006】[0006]
【0007】本発明のターボロータは、実質的にβ−S
i3 N4 柱状晶からなり、ハブ背面及び出口側翼付け根
部にβ−Si3 N4 柱状晶が所定方向に一次元配向した
配向部をもち、配向部ではβ−Si3 N4 柱状晶の20
体積%以上が外周側から軸方向に向かって一定方向に一
次元配向していることを特徴とする。[0007] The turbo rotor of the present invention has a substantially β-S
i 3 N 4 consists columnar crystal has an orientation unit which hub rear and exit side blade root portion to β-Si 3 N 4 columnar crystals are oriented one-dimensionally in a predetermined direction, the alignment portion β-Si 3 N 4 columnar crystals of 20
It is characterized in that at least the volume% is one-dimensionally oriented in a certain direction from the outer peripheral side toward the axial direction.
【0008】配向部における、全β−Si3 N4 柱状晶
体積に対する一次元配向したβ−Si3 N4 柱状晶の体
積の比率(以下、配向率という)が20体積%より少な
いと、強度及び靱性の向上がほとんどみられない。なお
配向率を測定するには、例えば配向部を一次元配向方向
に平行な平面で切断・研磨し、化学エッチング後SEM
写真撮影して、アスペクト比が10以上の柱状晶の面積
率を測定することで測定することができる。If the ratio of the volume of the one-dimensionally oriented β-Si 3 N 4 columnar crystal to the total β-Si 3 N 4 columnar crystal volume (hereinafter referred to as the orientation ratio) in the oriented portion is less than 20% by volume, the strength is increased. And little improvement in toughness. In order to measure the orientation ratio, for example, the orientation portion is cut and polished on a plane parallel to the one-dimensional orientation direction, and after chemical etching, SEM
It can be measured by taking a photograph and measuring the area ratio of columnar crystals having an aspect ratio of 10 or more.
【0009】本発明の高強度及び高靱性を有する窒化珪
素焼結体の製造方法は、α−Si3N4 を20体積%以
上含みかつ相対密度が98%以上の窒化珪素焼結体を準
備する工程と、温度勾配を与えながら窒化珪素焼結体を
1500℃以上で熱処理し、α−β転移によりβ−Si
3 N4 柱状晶を一定方向に一次元配向させて析出させる
第1熱処理工程と、第1熱処理工程後の窒化珪素焼結体
を1500℃以上に保持し、析出したβ−Si3 N4 柱
状晶を粒成長させる第2熱処理工程と、を順に行うこと
を特徴とする。The method for producing a silicon nitride sintered body having high strength and high toughness according to the present invention comprises preparing a silicon nitride sintered body containing 20% by volume or more of α-Si 3 N 4 and having a relative density of 98% or more. And heat-treating the silicon nitride sintered body at a temperature of 1500 ° C. or more while giving a temperature gradient to β-Si by α-β transition.
A first heat treatment step of one-dimensionally orienting and depositing 3 N 4 columnar crystals in a fixed direction, and holding the silicon nitride sintered body after the first heat treatment step at 1500 ° C. or higher to form the precipitated β-Si 3 N 4 columnar crystals. And a second heat treatment step of growing grains.
【0010】Si3 N4 にはα,β二つの結晶相が存在
し、熱処理によりα−Si3 N4 は高温で安定なβ相に
転移する。そしてβ相は六角柱の柱状晶に成長する傾向
がある。したがって第1熱処理工程前の窒化珪素焼結体
中のα−Si3 N4 が20体積%未満であるとすると、
残りのSi3 N4 成分はβ−Si3 N4 柱状晶であり、
それがランダムに配向していることになるので、第1熱
処理工程でα−Si3N4 が一次元配向したβ−Si3
N4 柱状晶に転移してもその量は20体積%未満とな
り、配向率が20体積%未満となってしまう。There are two crystal phases, α and β, in Si 3 N 4, and α-Si 3 N 4 is transformed into a stable β phase at a high temperature by heat treatment. The β phase tends to grow into hexagonal columnar crystals. Therefore, assuming that α-Si 3 N 4 in the silicon nitride sintered body before the first heat treatment step is less than 20% by volume,
The remaining Si 3 N 4 components are β-Si 3 N 4 columnar crystals,
Because it will have been randomly oriented, α-Si 3 N 4 in the first heat treatment step are oriented one-dimensional beta-Si 3
Even if it transforms into N 4 columnar crystals, the amount becomes less than 20% by volume, and the orientation ratio becomes less than 20% by volume.
【0011】また第1熱処理工程前の窒化珪素焼結体の
相対密度が98%未満であると、第1熱処理工程中に焼
結(緻密化)が生じる。本発明では熱処理中に温度勾配
が与えられるので、相対密度が98%未満であると焼結
により応力が発生し焼結体に反りや割れが生じるように
なる。第1熱処理工程前の窒化珪素焼結体の相対密度は
99%以上が特に望ましい。If the relative density of the silicon nitride sintered body before the first heat treatment step is less than 98%, sintering (densification) occurs during the first heat treatment step. In the present invention, since a temperature gradient is given during the heat treatment, when the relative density is less than 98%, stress is generated by sintering, and the sintered body is warped or cracked. It is particularly desirable that the relative density of the silicon nitride sintered body before the first heat treatment step is 99% or more.
【0012】第1熱処理工程において、加熱手段はマイ
クロ波加熱装置を用いることが好ましい。通常の加熱手
段では焼結体の内部と表面で温度勾配が発生しやすく、
β−Si3 N4 柱状晶を目的の方向に配向させることが
困難となりやすいからであり、マイクロ波によれば材料
自体から発熱するため内部と表面の温度分布が生じない
からである。さらに、マイクロ波によれば局部的な温度
勾配を容易に設けることができ、局部毎に配向方向を異
ならせることも容易に行うことができる。In the first heat treatment step, it is preferable to use a microwave heating device as a heating means. With ordinary heating means, a temperature gradient easily occurs inside and on the surface of the sintered body,
This is because it is easy to orient the β-Si 3 N 4 columnar crystal in a desired direction, and the microwave generates heat from the material itself, so that there is no temperature distribution between the inside and the surface. Furthermore, according to the microwave, a local temperature gradient can be easily provided, and the alignment direction can be easily varied for each local area.
【0013】また第1熱処理工程の熱処理温度が150
0℃未満ではα−β転移が生じないから1500℃以上
としたのであり、大気圧の窒素雰囲気中で熱処理する場
合はSi3 N4 の分解しない1800℃以下とされる。
第2熱処理工程の温度が1500℃未満では、配向させ
たβ−Si3 N4 柱状晶を所望の大きさまで成長させる
ことができない。また第1熱処理工程において局部的に
熱処理した場合は、未転移のα−Si3 N4 のβ−Si
3 N4 柱状晶への転移が困難である。また上記と同様に
分解を防止するために、そして温度が高すぎると柱状晶
が太くなって強度が低下するので、粒成長時の加熱温度
は1800℃以下とするのが望ましい。The heat treatment temperature of the first heat treatment step is 150
Is less than 0 ℃ and than was because 1500 ° C. or more does not cause alpha-beta transition, when the heat treatment in a nitrogen atmosphere at atmospheric pressure are 1800 ° C. or less, which does not decompose the Si 3 N 4.
If the temperature of the second heat treatment step is lower than 1500 ° C., the oriented β-Si 3 N 4 columnar crystal cannot be grown to a desired size. In the case where heat treatment is locally performed in the first heat treatment step, β-Si of untransformed α-Si 3 N 4
3 N 4 transition to columnar crystals is difficult. In order to prevent the decomposition as described above, and if the temperature is too high, the columnar crystals become thick and the strength is reduced. Therefore, the heating temperature during grain growth is desirably 1800 ° C. or less.
【0014】[0014]
【作用】本発明のターボロータでは、β−Si3 N4 柱
状晶が一定方向に一次元配向し、配向率が20体積%以
上の配向部をもつ。したがって配向部においては、β−
Si3 N4 柱状晶の配向方向と平行方向の圧縮・引っ張
り強度が格段に向上し、配向方向と直角方向のクラック
の進展抵抗、つまり破壊靱性が格段に向上する。In the turbo rotor of the present invention, the β-Si 3 N 4 columnar crystals are one-dimensionally oriented in a certain direction, and have an oriented portion having an orientation ratio of 20% by volume or more. Therefore, in the orientation part, β-
The compressive / tensile strength of the Si 3 N 4 columnar crystal in the direction parallel to the orientation direction is remarkably improved, and the crack propagation resistance in the direction perpendicular to the orientation direction, that is, the fracture toughness, is remarkably improved.
【0015】また本発明の窒化珪素焼結体の製造方法で
は、温度勾配を与えて加熱処理している。これによりα
相は液相を介してβ相に転移し、六角柱状のβ−Si3
N4柱状晶が析出するが、温度勾配によりその析出方向
が規制されβ−Si3 N4 柱状晶は温度勾配の方向に平
行に確実に一次元配向する。そして一定方向に配向して
析出したβ−Si3 N4 柱状晶を粒成長させることで、
高強度及び高靱性の配向部をもつ窒化珪素焼結体とな
る。Further, in the method for producing a silicon nitride sintered body of the present invention, a heat treatment is performed by giving a temperature gradient. This gives α
The phase is transformed into the β phase via the liquid phase, and the hexagonal columnar β-Si 3
Although N 4 columnar crystals are precipitated, the precipitation direction is regulated by the temperature gradient, and the β-Si 3 N 4 columnar crystals are surely one-dimensionally oriented parallel to the direction of the temperature gradient. Then, by growing β-Si 3 N 4 columnar crystals which are oriented in a certain direction and precipitated,
A silicon nitride sintered body having a high strength and high toughness oriented portion is obtained.
【0016】[0016]
【実施例】以下、実施例により具体的に説明する。 (実施例1〜8) <成形工程>Si3 N4 粉末(平均粒径0.2μm、α
化率ほぼ100%)に、焼結助剤としてのY2 O3 粉末
(平均粒径0.3μm、純度99.9%)とMgAl2
O4粉末(平均粒径0.3μm、純度99.9%)を表
1に示す組成でSi3 N4 製のボールミル中でエタノー
ル中で均一に混合した後、乾燥して混合粉末を得た。そ
れを200kgf/cm2 の圧力で加圧成形した。その成形体
を薄ゴム袋に詰め、真空封入後CIPにて3000kgf/
cm2 の圧力で加圧して、5×6×50mmの成形体を形
成した。 <焼成工程>上記成形体を窒素雰囲気の炉内で表1に示
す条件で焼結した。昇温速度は5℃/毎分であり、最高
温度に到達するまでは1気圧とした。そして最高温度到
達後は、最高圧力まで15気圧/毎分の昇圧速度で加圧
した。また最高温度及び最高圧力での保持時間は4時間
である。The present invention will be specifically described below with reference to examples. (Examples 1 to 8) <Molding Step> Si 3 N 4 powder (average particle size 0.2 μm, α
Conversion rate of about 100%), Y 2 O 3 powder (average particle size 0.3 μm, purity 99.9%) as a sintering aid and MgAl 2
O 4 powder (average particle size 0.3 μm, purity 99.9%) was uniformly mixed in a Si 3 N 4 ball mill in ethanol with the composition shown in Table 1, and then dried to obtain a mixed powder. . It was pressed under a pressure of 200 kgf / cm 2 . The molded body is packed in a thin rubber bag, vacuum sealed and 3,000 kgf / CIP.
Pressing was performed at a pressure of cm 2 to form a molded body of 5 × 6 × 50 mm. <Firing step> The above-mentioned molded body was sintered in a furnace in a nitrogen atmosphere under the conditions shown in Table 1. The rate of temperature rise was 5 ° C./minute, and the pressure was 1 atm until the maximum temperature was reached. After reaching the maximum temperature, the pressure was increased to the maximum pressure at a pressure increase rate of 15 atm / minute. The holding time at the highest temperature and the highest pressure is 4 hours.
【0017】得られた焼結体の寸法は約4×4.8×4
0mmであり、相対密度及びα−Si3 N4 分率(α化
率)を表1に示す。なお、相対密度はn−ブタノール置
換法により求め、α化率はX線回折法により求めた。 <第1熱処理工程>上記焼結体をジャイロトロン(28
GHz、15kw高周波高出力発振管)を用いたマイク
ロ波加熱装置に配置し、1気圧の窒素雰囲気下で熱処理
を行った。この時、マイクロ波には、図1に示すように
焼結体1の長手方向に沿って一端10から他端11に向
かうにつれて出力が小さくなるように出力分布が設けら
れ、一端10の最高温度は1600℃とされた。そして
マイクロ波の出力を時間とともに変化させ、図1に示す
ように10分後には他端11も1600℃となるように
調整した。 <第2熱処理工程>その後、上記焼成工程と同一の炉内
にて、表1に示す温度・圧力条件で4時間の熱処理を行
った。 <試験>得られた焼結体についてX線回折分析を行い、
α化率とβ−Si3 N4 柱状晶の配向率を表2に示す。
β−Si3 N4 柱状晶は、全体的に長手方向に平行に配
向していた。すなわち、実施例1〜9の焼結体は全体が
配向部12となっている。またJIS R-1601に準じて加工
後に室温4点曲げ強度を測定した結果と、JIS R-1607に
準じて加工後に破壊靱性値を測定した結果を表2に示
す。 (比較例1)「マイクロ波以外の加熱」 <焼成工程>実施例1〜8と同様に形成された成形体
を、表1に示す条件にて実施例1〜8と同様に焼結し
た。得られた焼結体の寸法は約4×4.8×40mmで
あり、相対密度及びα化率を表1に示す。 <第1熱処理工程>図2に模式図を示すように、カーボ
ンヒータ2a〜2dを用い、1気圧の窒素雰囲気下で焼
結体1の長手方向に温度分布を設けた。一端10側のヒ
ータ2aの温度を1600℃とし、次に2番目のヒータ
2b、3番目のヒータ2cと順に1600℃に昇温し、
10分後に他端11側のヒータ2dが1600℃となる
ようにした。 <第2熱処理工程>その後、表1に示す温度・圧力条件
で実施例1〜8と同様に4時間の熱処理を行った。 <試験>得られた焼結体についてX線回折分析を行い、
α化率とβ−Si3 N4 柱状晶の配向率を表2に示す。
またJIS R-1601に準じて加工後に室温4点曲げ強度を測
定した結果と、JIS R-1607に準じて加工後に破壊靱性値
を測定した結果を表2に示す。 (比較例2)「従来法」 <焼成工程>実施例1〜8と同様に形成された成形体
を、窒素雰囲気の炉内にて1600℃で焼結した。昇温
速度は5℃/毎分であり、1600℃に到達するまでは
1気圧とした。そして1600℃到達後は、2000気
圧まで15気圧/毎分の昇圧速度で加圧した。また16
00℃及び2000気圧での保持時間は4時間である。The dimensions of the obtained sintered body are about 4 × 4.8 × 4
0 mm, and the relative density and α-Si 3 N 4 fraction (α conversion) are shown in Table 1. In addition, the relative density was determined by the n-butanol substitution method, and the ratio of gelatinization was determined by the X-ray diffraction method. <First heat treatment step> The above sintered body was gyrotron (28
GHz, 15 kW high-frequency high-output oscillation tube), and heat-treated in a nitrogen atmosphere at 1 atm. At this time, the microwave is provided with an output distribution such that the output becomes smaller from one end 10 to the other end 11 along the longitudinal direction of the sintered body 1 as shown in FIG. Was set to 1600 ° C. Then, the output of the microwave was changed with time, and the other end 11 was adjusted to 1600 ° C. after 10 minutes as shown in FIG. <Second heat treatment step> Thereafter, heat treatment was performed for 4 hours under the temperature and pressure conditions shown in Table 1 in the same furnace as the above-mentioned baking step. <Test> X-ray diffraction analysis was performed on the obtained sintered body,
Table 2 shows the α conversion and β-Si 3 N 4 columnar crystal orientation ratio.
The β-Si 3 N 4 columnar crystals were generally oriented parallel to the longitudinal direction. That is, the sintered bodies of Examples 1 to 9 are all oriented portions 12. Table 2 shows the results of measuring the four-point bending strength at room temperature after processing according to JIS R-1601 and the results of measuring the fracture toughness after processing according to JIS R-1607. (Comparative Example 1) "Heating other than microwave"<FiringStep> The compacts formed in the same manner as in Examples 1 to 8 were sintered in the same manner as in Examples 1 to 8 under the conditions shown in Table 1. The dimensions of the obtained sintered body were about 4 × 4.8 × 40 mm, and the relative densities and α conversions are shown in Table 1. <First heat treatment step> As shown in a schematic diagram in FIG. 2, a temperature distribution was provided in the longitudinal direction of the sintered body 1 under a nitrogen atmosphere of 1 atm using carbon heaters 2a to 2d. The temperature of the heater 2a on the one end 10 side is set to 1600 ° C., and then the temperature is raised to 1600 ° C. in the order of the second heater 2b and the third heater 2c.
After 10 minutes, the temperature of the heater 2d on the other end 11 side was set to 1600 ° C. <Second heat treatment step> Thereafter, heat treatment was performed for 4 hours in the same manner as in Examples 1 to 8 under the temperature and pressure conditions shown in Table 1. <Test> X-ray diffraction analysis was performed on the obtained sintered body,
Table 2 shows the α conversion and β-Si 3 N 4 columnar crystal orientation ratio.
Table 2 shows the results of measuring the four-point bending strength at room temperature after processing according to JIS R-1601 and the results of measuring the fracture toughness after processing according to JIS R-1607. (Comparative Example 2) "Conventional Method"<FiringStep> The compacts formed in the same manner as in Examples 1 to 8 were sintered at 1600 ° C in a furnace in a nitrogen atmosphere. The rate of temperature rise was 5 ° C./minute, and 1 atm until reaching 1600 ° C. After the temperature reached 1600 ° C., the pressure was increased to 2,000 at a pressure of 15 atm / minute. 16
The holding time at 00 ° C. and 2000 atm is 4 hours.
【0018】得られた焼結体の寸法は約4×4.8×4
0mmであり、相対密度及びα化率を表1に示す。 <試験>得られた焼結体についてX線回折分析を行い、
α化率とβ−Si3 N4 柱状晶の配向率を表2に示す。
またJIS R-1601に準じて加工後に室温4点曲げ強度を測
定した結果と、JIS R-1607に準じて加工後に破壊靱性値
を測定した結果を表2に示す。 (比較例3〜4)「上限・下限の限定」 <焼成工程>実施例1〜8と同様に形成された成形体
を、表1に示す条件にて実施例1〜8と同様に焼結し
た。得られた焼結体の寸法は約4×4.8×40mmで
あり、相対密度及びα化率を表1に示す。 <第1熱処理工程>実施例1〜8と全く同様に熱処理を
行ったところ、比較例3の焼結体には反りが発生したた
め、比較例3についてはその時点で処理を中止した。 <第2熱処理工程>比較例4の焼結体について、表1に
示す条件で実施例1〜8と同様に4時間の熱処理を行っ
た。 <試験>得られた焼結体についてX線回折分析を行い、
α化率とβ−Si3 N4 柱状晶の配向率を表2に示す。
またJIS R-1601に準じて加工後に室温4点曲げ強度を測
定した結果と、JIS R-1607に準じて加工後に破壊靱性値
を測定した結果を表2に示す。 (評価)比較例1では、カーボンヒータ2a〜2dによ
って温度分布を与えて第1熱処理工程を行ったため、マ
イクロ波を用いた実施例に比べて配向率が8%と低くな
っている。したがって、強度は実施例6と同等であるも
のの、破壊靱性値の向上がみられない。The size of the obtained sintered body is about 4 × 4.8 × 4
0 mm, and the relative density and the ratio of pregelatinization are shown in Table 1. <Test> X-ray diffraction analysis was performed on the obtained sintered body,
Table 2 shows the α conversion and β-Si 3 N 4 columnar crystal orientation ratio.
Table 2 shows the results of measuring the four-point bending strength at room temperature after processing according to JIS R-1601 and the results of measuring the fracture toughness after processing according to JIS R-1607. (Comparative Examples 3 and 4) "Limitations of upper limit and lower limit"<Firingstep> A molded body formed in the same manner as in Examples 1 to 8 was sintered as in Examples 1 to 8 under the conditions shown in Table 1. did. The dimensions of the obtained sintered body were about 4 × 4.8 × 40 mm, and the relative densities and α conversions are shown in Table 1. <First heat treatment step> When heat treatment was performed in exactly the same manner as in Examples 1 to 8, warpage occurred in the sintered body of Comparative Example 3, and thus the treatment of Comparative Example 3 was stopped at that point. <Second heat treatment step> The sintered body of Comparative Example 4 was heat-treated for 4 hours under the conditions shown in Table 1 in the same manner as in Examples 1 to 8. <Test> X-ray diffraction analysis was performed on the obtained sintered body,
Table 2 shows the α conversion and β-Si 3 N 4 columnar crystal orientation ratio.
Table 2 shows the results of measuring the four-point bending strength at room temperature after processing according to JIS R-1601 and the results of measuring the fracture toughness after processing according to JIS R-1607. (Evaluation) In Comparative Example 1, since the first heat treatment step was performed by giving a temperature distribution by the carbon heaters 2a to 2d, the orientation ratio was as low as 8% as compared with the embodiment using microwaves. Therefore, although the strength is equivalent to that of Example 6, no improvement in the fracture toughness value is observed.
【0019】比較例2では、焼成工程後の焼結体のα化
率は0%であり、その時点で全てβ−Si3 N4 柱状晶
は三次元ランダム方向に析出している。よってその配向
率は4%と低く、その結果曲げ強度と破壊靱性値は実施
例に比べて低い値となっている。また比較例3では、焼
成工程後の焼結体の相対密度が65.9%と低いため
に、第1熱処理工程で変形が生じた。また比較例4で
は、焼成工程後の焼結体のα化率が2%と低く、比較例
2と同様にその時点でほとんどのβ−Si3 N4 柱状晶
は三次元ランダム方向に析出している。よって第2熱処
理工程を実施してもβ−Si3 N4 柱状晶を配向させる
ことができず、配向率も3%であって、比較例2と同様
に曲げ強度と破壊靱性値は実施例に比べて低い値となっ
ている。In Comparative Example 2, the α-form of the sintered body after the firing step was 0%, and at that time, β-Si 3 N 4 columnar crystals were all precipitated in three-dimensional random directions. Therefore, the orientation ratio is as low as 4%, and as a result, the bending strength and the fracture toughness value are lower than those of the examples. In Comparative Example 3, since the relative density of the sintered body after the firing step was as low as 65.9%, deformation occurred in the first heat treatment step. Further, in Comparative Example 4, the α-formation ratio of the sintered body after the firing step was as low as 2%, and almost all β-Si 3 N 4 columnar crystals were precipitated in a three-dimensional random direction at that time as in Comparative Example 2. ing. Therefore, even if the second heat treatment step was performed, the β-Si 3 N 4 columnar crystals could not be oriented, the orientation ratio was 3%, and the bending strength and the fracture toughness were the same as in Comparative Example 2. It is a low value compared to.
【0020】一方、実施例の各焼結体は高い曲げ強度と
破壊靱性値を示し、高強度・高靱性である。これは配向
率が高いことに基づくものである。また実施例1〜8と
比較例1との比較より、マイクロ波加熱によらなければ
高い配向率が得られないことが明らかである。なお、実
施例2と比較例2の焼結体について、1000℃大気中
における4点曲げ強度を測定したところ、それぞれ17
60MPaと1280MPaであり、実施例の焼結体は
高温強度においても従来の焼結体に優っていることが明
らかとなった。On the other hand, each of the sintered bodies of the examples shows high bending strength and fracture toughness, and has high strength and high toughness. This is based on the high orientation ratio. From the comparison between Examples 1 to 8 and Comparative Example 1, it is clear that a high orientation ratio cannot be obtained unless microwave heating is used. When the four-point bending strength of the sintered bodies of Example 2 and Comparative Example 2 in the air at 1000 ° C. was measured, each was 17%.
It was 60 MPa and 1280 MPa, and it was clear that the sintered body of the example was superior to the conventional sintered body even in high-temperature strength.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【表2】 (実施例9) <成形工程>Si3 N4 粉末(平均粒径0.2μm、α
化率ほぼ100%)に、焼結助剤として6重量%のY2
O3 粉末(平均粒径0.3μm、純度99.9%)と、
4重量%のMgAl2 O4 粉末(平均粒径0.3μm、
純度99.9%)をエタノール中で混合し、乾燥・粉砕
後シリコンチューブに詰めて800kgf/cm2 の圧力でC
IP成形した。その成形体を薄ゴム袋に詰め、真空封入
後再度CIPにて3000kgf/cm2 の圧力で加圧して、
それを旋盤加工してφ24mm×長さ100mmのピス
トンピン形状の円柱状成形体を得た。 <焼成工程>上記成形体を窒素雰囲気の炉内で1400
℃で焼結した。昇温速度は5℃/毎分であり、1400
℃に到達するまでは1気圧とした。そして1400℃到
達後は、2000気圧まで15気圧/毎分の昇圧速度で
加圧した。また最高温度及び最高圧力での保持時間は4
時間である。[Table 2] Example 9 <Molding Step> Si 3 N 4 powder (average particle size 0.2 μm, α
6% by weight of Y 2 as a sintering aid.
O 3 powder (average particle size 0.3 μm, purity 99.9%),
4 wt% MgAl 2 O 4 powder (average particle size 0.3 μm,
(Pure 99.9%) in ethanol, dried and pulverized, packed in a silicon tube, and pressurized with a pressure of 800 kgf / cm 2 to form C.
IP molded. The molded body was packed in a thin rubber bag, vacuum-encapsulated, and then pressurized again with CIP at a pressure of 3000 kgf / cm 2 ,
It was then subjected to lathe processing to obtain a piston pin-shaped cylindrical body having a diameter of 24 mm and a length of 100 mm. <Firing step> The above compact was placed in a furnace in a nitrogen atmosphere for 1400
Sintered at ℃. The rate of temperature rise is 5 ° C./minute, and 1400
The pressure was kept at 1 atm until the temperature reached ° C. After reaching 1400 ° C., the pressure was increased to 2000 atm at a pressure increase rate of 15 atm / min. The holding time at the maximum temperature and pressure is 4
Time.
【0023】得られた焼結体の寸法はφ19mm×長さ
80mmであり、n−ブタノール置換法により求めた相
対密度は99.3%、X線回折法により求めたα−Si
3 N 4 分率は55%であった。 <第1熱処理工程>焼結体をジャイロトロン(28GH
z、15kw高周波高出力発振管)を用いたマイクロ波
加熱装置に配置し、軸32を中心に回転させながら1気
圧の窒素雰囲気下で熱処理を行った。この時、マイクロ
波には、図3に示すように焼結体3の長手方向に沿って
一端30から他端31に向かうにつれて出力が小さくな
るように出力分布が設けられ、一端30の最高温度は1
600℃とされた。そしてマイクロ波の出力を時間とと
もに変化させ、30分後には他端31も1600℃とな
るように調整した。 <第2熱処理工程>その後、上記焼成工程と同一の炉内
にて、1600℃で2000気圧の窒素雰囲気下で4時
間の熱処理を行った。The dimensions of the obtained sintered body are φ19 mm × length
80 mm, phase determined by the n-butanol substitution method
The pair density is 99.3%, α-Si determined by X-ray diffraction
ThreeN FourThe fraction was 55%. <First heat treatment step> The sintered body was gyrotron (28GH)
Microwave using high frequency high power oscillation tube
Place it on the heating device and rotate it around
The heat treatment was performed under a high pressure nitrogen atmosphere. At this time, micro
As shown in FIG. 3, the waves are applied along the longitudinal direction of the sintered body 3.
The output decreases from one end 30 to the other end 31.
Power distribution is provided so that the maximum temperature at one end 30 is 1
The temperature was set to 600 ° C. And the output of microwave is time and
After 30 minutes, the other end 31 also reaches 1600 ° C.
Was adjusted to <Second heat treatment step> Then, in the same furnace as the above-mentioned baking step
At 1600 ° C under a nitrogen atmosphere of 2000 atm for 4 hours
During the heat treatment.
【0024】得られた焼結体についてX線回折分析を行
ったところ、α化率は0%で全てβ−Si3 N4 に転移
していた。またβ−Si3 N4 柱状晶は全体的に長手方
向に平行に配向し、全体が配向部33となっていた。 (比較例5)実施例9と同様に形成された成形体を、窒
素雰囲気の炉内にて1600℃で焼結した。昇温速度は
5℃/毎分であり、1600℃に到達するまでは1気圧
とした。そして1600℃到達後は、2000気圧まで
15気圧/毎分の昇圧速度で加圧した。また1600℃
及び2000気圧での保持時間は4時間である。When the obtained sintered body was analyzed by X-ray diffraction, it was found that the α-conversion rate was 0% and that all of the sintered body was converted to β-Si 3 N 4 . Further, the β-Si 3 N 4 columnar crystal was entirely oriented in parallel with the longitudinal direction, and the whole was the oriented part 33. Comparative Example 5 A compact formed in the same manner as in Example 9 was sintered at 1600 ° C. in a furnace in a nitrogen atmosphere. The rate of temperature rise was 5 ° C./minute, and 1 atm until reaching 1600 ° C. After the temperature reached 1600 ° C., the pressure was increased to 2,000 at a pressure of 15 atm / minute. 1600 ° C
And the holding time at 2000 atmospheres is 4 hours.
【0025】得られた焼結体のn−ブタノール置換法に
より求められた相対密度は99.3%であった。 (評価)実施例9と比較例5のピストンピン形状の焼結
体を、それぞれφ18mm×長さ40mm、表面粗度
0.2Zに機械加工し、図4に示す装置で焼結体3の破
壊荷重を測定した。その結果、 実施例9:破壊荷重245kN(n=3の平均、応力で
1600MPa) 比較例5:破壊荷重160kN(n=3の平均、応力で
1045MPa) であって、実施例9は比較例5に比べて格段に高い値を
示した。 (実施例10) <成形工程>実施例9と同様にして、CIP成形により
ステム部径φ12mm×長さ150mm、傘部外径60
mmのバルブ形状の成形体を形成した。 <焼成工程>この成形体を実施例9と同様に焼結した。
図5に示すように、得られた焼結体4の形状は、ステム
部40の径9.5mm×長さ120mm、傘部41の外
径48mmであった。そしてn−ブタノール置換法によ
り求めた相対密度は99.2%、X線回折法により求め
たα化率は55%であった。 <第1熱処理工程>焼結体をジャイロトロン(28GH
z、15kw高周波高出力発振管)を用いたマイクロ波
加熱装置に配置し、軸42を中心に回転させながら1気
圧の窒素雰囲気下で熱処理を行った。この熱処理は、ス
テム部40と傘部41のそれぞれに分けて行った。The relative density of the obtained sintered body determined by the n-butanol substitution method was 99.3%. (Evaluation) The piston pin-shaped sintered bodies of Example 9 and Comparative Example 5 were machined to φ18 mm × length 40 mm and surface roughness 0.2Z, respectively, and the sintered body 3 was broken by the apparatus shown in FIG. The load was measured. As a result, Example 9: Breaking load of 245 kN (average of n = 3, stress of 1600 MPa) Comparative Example 5: Breaking load of 160 kN (average of n = 3, stress of 1045 MPa), and Example 9 is Comparative Example 5 The value was significantly higher than that of. (Example 10) <Molding step> In the same manner as in Example 9, stem diameter φ12 mm × length 150 mm, umbrella part outer diameter 60 by CIP molding.
mm was formed into a bulb-shaped compact. <Firing Step> The molded body was sintered in the same manner as in Example 9.
As shown in FIG. 5, the shape of the obtained sintered body 4 was 9.5 mm in diameter of the stem portion 40 × 120 mm in length, and the outer diameter of the umbrella portion 41 was 48 mm. The relative density determined by the n-butanol substitution method was 99.2%, and the degree of pregelatinization determined by the X-ray diffraction method was 55%. <First heat treatment step> The sintered body was gyrotron (28GH)
z, 15 kW high-frequency high-power oscillation tube), and heat-treated in a nitrogen atmosphere at 1 atm while rotating about a shaft 42. This heat treatment was performed separately for each of the stem portion 40 and the umbrella portion 41.
【0026】ステム部40は、図5に示すように実施例
9と同様に一端40aから他端40bに向かうにつれて
出力が小さくなるように出力分布が設けられ、一端40
aの最高温度は1600℃とされた。そしてマイクロ波
の出力を時間とともに変化させ、30分後には他端40
bも1600℃となるように調整した。傘部41は図5
に示すように、ステム部40の軸方向と傾斜する方向か
らマイクロ波を照射し、ステム部40の軸方向を含む平
面上で稜線方向に出力分布が設けられ、傘部41先端4
1a側の最高温度は1600℃とされた。そしてマイク
ロ波の出力を時間とともに変化させ、30分後には付け
根41b側も1600℃となるように調整した。 <第2熱処理工程>その後、上記焼成工程と同一の炉内
にて、1600℃で2000気圧の窒素雰囲気下で4時
間の熱処理を行った。As shown in FIG. 5, the stem portion 40 is provided with an output distribution such that the output decreases from one end 40a to the other end 40b as in the ninth embodiment.
The maximum temperature of a was 1600 ° C. Then, the output of the microwave is changed with time, and after 30 minutes, the other end 40
b was also adjusted to 1600 ° C. Umbrella part 41 is shown in FIG.
As shown in the figure, the microwave is irradiated from a direction inclined with respect to the axial direction of the stem portion 40, and an output distribution is provided in a ridge direction on a plane including the axial direction of the stem portion 40, and
The maximum temperature on the 1a side was 1600 ° C. Then, the output of the microwave was changed with time, and the base 41b side was adjusted to 1600 ° C. after 30 minutes. <Second heat treatment step> Thereafter, heat treatment was performed for 4 hours at 1600 ° C under a nitrogen atmosphere of 2000 atm in the same furnace as the above-mentioned baking step.
【0027】得られた焼結体についてX線回折分析を行
ったところ、α化率は0%で全てβ−Si3 N4 に転移
していた。またβ−Si3 N4 柱状晶は、ステム部40
では長手方向に平行に配向し、傘部41では稜線方向に
放射状に配向していた。すなわち、ステム部40及び傘
部41にそれぞれ配向部43,44が形成されている。 (比較例6)実施例10と同様に形成された成形体を、
窒素雰囲気の炉内にて1600℃で焼結した。昇温速度
は5℃/毎分であり、1600℃に到達するまでは1気
圧とした。そして1600℃到達後は、2000気圧ま
で15気圧/毎分の昇圧速度で加圧した。また1600
℃及び2000気圧での保持時間は4時間である。When the obtained sintered body was analyzed by X-ray diffraction, it was found that the α-form was 0% and all of the sintered body was transformed into β-Si 3 N 4 . The β-Si 3 N 4 columnar crystal has a stem portion 40.
In the umbrella part 41, it was oriented radially in the ridge line direction. That is, the orientation portions 43 and 44 are formed on the stem portion 40 and the umbrella portion 41, respectively. (Comparative Example 6) A molded article formed in the same manner as in Example 10
Sintering was performed at 1600 ° C. in a furnace in a nitrogen atmosphere. The rate of temperature rise was 5 ° C./minute, and 1 atm until reaching 1600 ° C. After the temperature reached 1600 ° C., the pressure was increased to 2,000 at a pressure of 15 atm / minute. Also 1600
The retention time at 2000C and 2000C is 4 hours.
【0028】得られた焼結体のn−ブタノール置換法に
より求められた相対密度は99.3%であった。 (評価)実施例10と比較例6のバルブ形状の焼結体
を、それぞれステム部φ8mm×長さ120mm、傘部
外形φ30mm、表面粗度0.2Zに機械加工し、図6
に示す装置で焼結体4の破壊荷重を測定した。その結
果、 実施例10:破壊荷重16.4kN(n=3の平均、応
力で1600MPa) 比較例 6:破壊荷重 9.9kN(n=3の平均、応
力で1045MPa) であって、実施例10は比較例6に比べて格段に高い値
を示した。 (実施例11) <成形工程>Si3 N4 粉末(平均粒径0.2μm、α
化率ほぼ100%)に焼結助剤として6重量%のY2 O
3 粉末(平均粒径0.3μm、純度99.9%)と4重
量%のMgAl2 O4 粉末(平均粒径0.3μm、純度
99.9%)をエタノール中で混合し乾燥・粉砕後の粉
末100重量部、エチレン酢酸ビニル共重合体5重量
部、ポリブチルメタクリレート5重量部、変性ワックス
5重量部、ジブチルフタレート1重量部からなる組成の
原料を、加圧ニーダを用いて混合し、射出成形した。The relative density of the obtained sintered body determined by the n-butanol substitution method was 99.3%. (Evaluation) The valve-shaped sintered bodies of Example 10 and Comparative Example 6 were machined to a stem of φ8 mm × length of 120 mm, an umbrella outer shape of φ30 mm, and a surface roughness of 0.2Z.
The breaking load of the sintered body 4 was measured using the apparatus shown in FIG. As a result, Example 10: Breaking load 16.4 kN (average of n = 3, stress of 1600 MPa) Comparative Example 6: Breaking load of 9.9 kN (average of n = 3, stress of 1045 MPa) Showed a significantly higher value than Comparative Example 6. (Example 11) <Molding step> Si 3 N 4 powder (average particle size 0.2 μm, α
6% by weight of Y 2 O as a sintering aid.
3 powder (average particle diameter 0.3 μm, purity 99.9%) and 4 wt% MgAl 2 O 4 powder (average particle diameter 0.3 μm, purity 99.9%) are mixed in ethanol, dried and pulverized. A raw material having a composition consisting of 100 parts by weight of powder, 5 parts by weight of ethylene-vinyl acetate copolymer, 5 parts by weight of polybutyl methacrylate, 5 parts by weight of modified wax, and 1 part by weight of dibutyl phthalate was mixed using a pressure kneader, Injection molded.
【0029】これを450〜500℃の窒素雰囲気で脱
脂した後、液状ゴムで皮膜を作り乾燥後CIPにて30
00kgf/cm2 の圧力で加圧してラジアルターボロータ用
成形体とした。 <焼成工程>この成形体を実施例9と同様に焼結した。
得られた焼結体の形状は、入口径φ68mm×出口径φ
52mmであった。そしてn−ブタノール置換法により
求めた相対密度は99.2%、X線回折法により求めた
α化率は55%であった。 <第1熱処理工程>焼結体5をジャイロトロン(28G
Hz、15kw高周波高出力発振管)を用いたマイクロ
波加熱装置に配置し、軸中心に回転させながら1気圧の
窒素雰囲気下で熱処理を行った。この熱処理は、入口側
ハブ背面50と出口側翼付け根部51のそれぞれに分け
て行った。After degreased in a nitrogen atmosphere at 450 to 500 ° C., a film is formed from liquid rubber, dried, and then dried by CIP.
It was pressurized at a pressure of 00 kgf / cm 2 to obtain a molded body for a radial turbo rotor. <Firing Step> The molded body was sintered in the same manner as in Example 9.
The shape of the obtained sintered body is an inlet diameter φ 68 mm × an outlet diameter φ
It was 52 mm. The relative density determined by the n-butanol substitution method was 99.2%, and the degree of pregelatinization determined by the X-ray diffraction method was 55%. <First heat treatment step> The sintered body 5 was gyrotron (28G
(Hz, 15 kW high-frequency high-output oscillation tube), and heat-treated in a nitrogen atmosphere at 1 atm while rotating about a shaft. This heat treatment was performed separately on the inlet-side hub rear surface 50 and the outlet-side wing root portion 51.
【0030】入口側ハブ背面50及び出口側翼付け根部
51では、それぞれ図7に示すようにマイクロ波の焦点
を40mmに絞り、外周側から軸中心に向かって出力分
布を設けた。そして外周側の最高温度を1600℃と
し、マイクロ波の出力を時間とともに変化させ、30分
後には軸中心側も1600℃となるように調整した。 <第2熱処理工程>その後、上記焼成工程と同一の炉内
にて、1600℃で2000気圧の窒素雰囲気下で4時
間の熱処理を行った。At the inlet-side hub rear surface 50 and the outlet-side wing root portion 51, as shown in FIG. 7, the focus of the microwave was narrowed to 40 mm, and an output distribution was provided from the outer peripheral side toward the axial center. Then, the maximum temperature on the outer peripheral side was set to 1600 ° C., and the output of the microwave was changed with time, and the axial center side was adjusted to 1600 ° C. after 30 minutes. <Second heat treatment step> Thereafter, heat treatment was performed for 4 hours at 1600 ° C under a nitrogen atmosphere of 2000 atm in the same furnace as the above-mentioned baking step.
【0031】得られた焼結体についてX線回折分析を行
ったところ、α化率は0%で全てβ−Si3 N4 に転移
していた。またβ−Si3 N4 柱状晶は、入口側ハブ背
面50及び出口側翼付け根部51ともに外周から軸中心
に向かって配向し、それぞれ配向部52,53が形成さ
れていた。 (比較例7)実施例11と同様に形成された成形体を、
窒素雰囲気の炉内にて1600℃で焼結した。昇温速度
は5℃/毎分であり、1600℃に到達するまでは1気
圧とした。そして1600℃到達後は、2000気圧ま
で15気圧/毎分の昇圧速度で加圧した。また1600
℃及び2000気圧での保持時間は4時間である。When the obtained sintered body was analyzed by X-ray diffraction, it was found that the α-conversion rate was 0% and that all of the sintered body was converted to β-Si 3 N 4 . Further, the β-Si 3 N 4 columnar crystal was oriented from the outer periphery toward the axial center from the outer periphery of the inlet-side hub rear surface 50 and the outlet-side wing root portion 51, and oriented portions 52 and 53 were formed, respectively. (Comparative Example 7) A molded body formed in the same manner as in Example 11 was
Sintering was performed at 1600 ° C. in a furnace in a nitrogen atmosphere. The rate of temperature rise was 5 ° C./minute, and 1 atm until reaching 1600 ° C. After the temperature reached 1600 ° C., the pressure was increased to 2,000 at a pressure of 15 atm / minute. Also 1600
The retention time at 2000C and 2000C is 4 hours.
【0032】得られた焼結体のn−ブタノール置換法に
より求められた相対密度は99.3%であった。 (評価)実施例11と比較例7のターボロータのハブ背
面を表面粗度3.2Zに機械加工し、ろう焼き嵌めにて
φ6mmの金属製シャフトを接合してコールドスピンテ
ストを行い、破壊回転数をそれぞれ測定した。その結
果、 実施例11:破壊回転数17.2万回転/分(n=3の
平均) 比較例 7:破壊回転数13.7万回転/分(n=3の
平均) であって、実施例11は比較例7に比べて格段に高い値
を示した。The relative density of the obtained sintered body determined by the n-butanol substitution method was 99.3%. (Evaluation) The rear surfaces of the hubs of the turbo rotors of Example 11 and Comparative Example 7 were machined to a surface roughness of 3.2Z, a metal shaft having a diameter of 6 mm was joined by means of a soldering fit, and a cold spin test was performed. The numbers were each measured. As a result, Example 11: Breaking rotation speed 1720,000 rotations / minute (average of n = 3) Comparative Example 7: Breaking rotation speed 1370,000 rotations / minute (average of n = 3) Example 11 showed a markedly higher value than Comparative Example 7.
【0033】[0033]
【発明の効果】すなわち本発明のターボロータによれ
ば、従来困難とされていた高強度及び高靱性の両性能を
具備し、利用分野が益々拡大される。そして本発明の製
造方法によれば、高強度及び高靱性を有する窒化珪素焼
結体を容易にかつ確実に製造することができる。That is, according to the turbo rotor of the present invention, both the high strength and high toughness, which have been considered difficult in the past, can be obtained.
Provided, the field of use will be expanded more and more. According to the manufacturing method of the present invention, a silicon nitride sintered body having high strength and high toughness can be easily and reliably manufactured.
【図1】本発明の第1実施例において第1熱処理工程を
行っている様子を示す説明図である。FIG. 1 is an explanatory view showing a state in which a first heat treatment step is performed in a first embodiment of the present invention.
【図2】第1比較例において第1熱処理工程を行ってい
る様子を示す説明図である。FIG. 2 is an explanatory diagram showing a state in which a first heat treatment step is performed in a first comparative example.
【図3】本発明の第9実施例において第1熱処理工程を
行っている様子を示す説明図である。FIG. 3 is an explanatory view showing a state in which a first heat treatment step is performed in a ninth embodiment of the present invention.
【図4】本発明の第9実施例において破壊強度試験を行
っている様子を示す説明図である。FIG. 4 is an explanatory view showing a state in which a breaking strength test is performed in a ninth embodiment of the present invention.
【図5】本発明の第10実施例において第1熱処理工程
を行っている様子を示す説明図である。FIG. 5 is an explanatory view showing a state in which a first heat treatment step is performed in a tenth embodiment of the present invention.
【図6】本発明の第10実施例において破壊強度試験を
行っている様子を示す説明図である。FIG. 6 is an explanatory view showing a state in which a breaking strength test is performed in a tenth embodiment of the present invention.
【図7】本発明の第11実施例において第1熱処理工程
を行っている様子を示す説明図である。FIG. 7 is an explanatory view showing a state in which a first heat treatment step is performed in an eleventh embodiment of the present invention.
1,3,4,5:焼結体 12,33,43,4
4,52,53:配向部1,3,4,5: Sintered body 12,33,43,4
4, 52, 53: orientation part
Claims (2)
つ相対密度が98%以上の窒化珪素焼結体を準備する工
程と、 温度勾配を与えながら前記窒化珪素焼結体を1500℃
以上で熱処理し、α−β転移によりβ−Si3 N4 柱状
晶を一定方向に一次元配向させて析出させる第1熱処理
工程と、 前記第1熱処理工程後の前記窒化珪素焼結体を1500
℃以上に保持し、析出したβ−Si3 N4 柱状晶を粒成
長させる第2熱処理工程と、を順に行うことを特徴とす
る高強度及び高靱性を有する窒化珪素焼結体の製造方
法。1. A step of preparing a silicon nitride sintered body containing 20% by volume or more of α-Si 3 N 4 and having a relative density of 98% or more, and applying a temperature gradient to the silicon nitride sintered body at 1500 ° C.
A first heat treatment step in which the heat treatment is performed as described above, and β-Si 3 N 4 columnar crystals are one-dimensionally oriented in a certain direction and precipitated by α-β transition; and the silicon nitride sintered body after the first heat treatment step is 1500
A high-strength and high-toughness silicon nitride sintered body, characterized by sequentially performing a second heat treatment step of maintaining the temperature at not less than 0 ° C. or more and growing the precipitated β-Si 3 N 4 columnar crystals in grains.
り、ハブ背面及び出口側翼付け根部にβ−Si3 N4 柱
状晶が所定方向に一次元配向した配向部をもち、該配向
部ではβ−Si3 N4 柱状晶の20体積%以上が外周側
から軸方向に向かって一定方向に一次元配向しているこ
とを特徴とするターボロータ。2. An oriented part substantially consisting of β-Si 3 N 4 columnar crystals, wherein the β-Si 3 N 4 columnar crystals are one-dimensionally oriented in a predetermined direction on the back surface of the hub and at the root of the outlet side wing. A turbo rotor, wherein at least 20% by volume of β-Si 3 N 4 columnar crystals are one-dimensionally oriented in a fixed direction from the outer peripheral side toward the axial direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26719193A JP3173251B2 (en) | 1993-10-26 | 1993-10-26 | Method for producing silicon nitride sintered body and turbo rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26719193A JP3173251B2 (en) | 1993-10-26 | 1993-10-26 | Method for producing silicon nitride sintered body and turbo rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07126071A JPH07126071A (en) | 1995-05-16 |
JP3173251B2 true JP3173251B2 (en) | 2001-06-04 |
Family
ID=17441385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26719193A Expired - Fee Related JP3173251B2 (en) | 1993-10-26 | 1993-10-26 | Method for producing silicon nitride sintered body and turbo rotor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3173251B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2615437B2 (en) * | 1994-09-20 | 1997-05-28 | 工業技術院長 | High strength and high toughness silicon nitride sintered body and method for producing the same |
JP4562333B2 (en) * | 2001-09-27 | 2010-10-13 | 京セラ株式会社 | Flow rate adjusting valve and variable turbocharger using the same |
JP2005132651A (en) * | 2003-10-29 | 2005-05-26 | Ngk Spark Plug Co Ltd | Ceramic sintered compact, cutting insert, and cutting tool |
-
1993
- 1993-10-26 JP JP26719193A patent/JP3173251B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07126071A (en) | 1995-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wakai et al. | Superplasticity of hot isostatically pressed hydroxyapatite | |
WO2009128386A1 (en) | Anti-wear member, anti-wear instrument and method of producing anti-wear member | |
JP3173251B2 (en) | Method for producing silicon nitride sintered body and turbo rotor | |
JP2829724B2 (en) | Silicon nitride composite ceramics and method for producing the same | |
JP2944953B2 (en) | Forming method of silicon nitride ceramics | |
US4752427A (en) | Method for plastic working of ceramics | |
JP2003095748A (en) | Silicon nitride ceramics and sintering / molding method | |
JP2662863B2 (en) | Method for producing silicon nitride based sintered body | |
JP2631115B2 (en) | Manufacturing method of silicon nitride sintered body | |
JP2600116B2 (en) | Superplastic silicon nitride sintered body and its manufacturing method | |
JP3173947B2 (en) | Method for producing silicon nitride sintered body | |
JP2890849B2 (en) | Method for producing silicon nitride sintered body | |
JP2881189B2 (en) | Method for producing silicon nitride-silicon carbide composite ceramics | |
JP3653533B2 (en) | Silicon nitride composite material and method for producing the same | |
JP3139646B2 (en) | Method for producing silicon nitride sintered body | |
JPH0699192B2 (en) | Manufacturing method of high toughness silicon nitride sintered body | |
JP2004091243A (en) | Method for producing silicon nitride based sintered body and silicon nitride based sintered body | |
JPH11130543A (en) | Beta-type silicon nitride crystal and its production and production of silicon nitride-based sintered compact | |
JPH1179845A (en) | Manufacturing method of high toughness silicon carbide ceramics | |
JPH03164472A (en) | Production of silicon nitride sintered body | |
JPH06166569A (en) | Production of sintered silicon nitride | |
JPS6241773A (en) | Manufacture of composite ceramics | |
JPH0733529A (en) | Method for manufacturing silicon carbide sintered body | |
JPH11116342A (en) | Silicon nitride sintered product and its production | |
JPH0633171B2 (en) | Silicon nitride sintered body and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |