JP3165758B2 - Polypropylene long fiber non-woven fabric - Google Patents
Polypropylene long fiber non-woven fabricInfo
- Publication number
- JP3165758B2 JP3165758B2 JP5971293A JP5971293A JP3165758B2 JP 3165758 B2 JP3165758 B2 JP 3165758B2 JP 5971293 A JP5971293 A JP 5971293A JP 5971293 A JP5971293 A JP 5971293A JP 3165758 B2 JP3165758 B2 JP 3165758B2
- Authority
- JP
- Japan
- Prior art keywords
- nonwoven fabric
- polypropylene
- fiber
- copolymer
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Nonwoven Fabrics (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は,熱収縮性,熱成形時の
形態保持性及び軽量性が優れたポリプロピレン系長繊維
不織布に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polypropylene-based long-fiber nonwoven fabric which is excellent in heat shrinkability, shape retention during thermoforming and lightweight.
【0002】[0002]
【従来の技術】従来から,熱収縮性が優れた熱可塑性合
成長繊維からなる不織布として,溶融紡糸速度を下限付
近まで低速化させて得た低配向度のポリエステル長繊維
からなる不織布が知られている。しかしながら,この不
織布は,低配向度のポリエステル長繊維自体が低配向の
故に熱に対して脆く,不織布として耐磨耗性が劣るとい
う問題を有しており,しかも合成繊維中では比較的比重
が大きいポリエステル繊維からなるため,不織布とした
ときに軽量性が劣るという問題も有している。一方,熱
収縮性が優れた熱可塑性合成長繊維からなる他の不織布
として,異収縮性の重合体成分を溶融複合紡糸して得た
捲縮性長繊維あるいは溶融紡糸直後の紡出フイラメント
冷却時に非対称冷却を行って得た捲縮性長繊維からなる
不織布が知られている。しかしながら,これらの不織布
は,熱収縮応力が低いため,熱成形したときに形態保持
性が著しく劣るという問題を有している。2. Description of the Related Art Conventionally, as a non-woven fabric made of thermoplastic synthetic long fibers having excellent heat shrinkability, a non-woven fabric made of low-oriented polyester long fibers obtained by reducing the melt spinning speed to near the lower limit has been known. ing. However, this non-woven fabric has the problem that the polyester fiber itself having a low degree of orientation is brittle to heat because of its low orientation, and the abrasion resistance of the non-woven fabric is inferior. Since it is made of a large polyester fiber, there is also a problem that the lightness is inferior when made into a nonwoven fabric. On the other hand, as other nonwoven fabrics made of thermoplastic synthetic filaments with excellent heat shrinkability, crimped filaments obtained by melt-composite spinning of different shrinkage polymer components or spun filaments immediately after melt spinning are cooled. Nonwoven fabrics comprising crimped long fibers obtained by performing asymmetric cooling are known. However, these nonwoven fabrics have a problem that shape retention is remarkably inferior when thermoformed due to low heat shrinkage stress.
【0003】[0003]
【発明が解決しようとする課題】本発明は,前記問題を
解決し,熱収縮性,熱成形時の形態保持性及び軽量性が
優れ,特に容器保護用フイルタ等の熱成形用素材あるい
は軽量化素材として好適なポリプロピレン系長繊維不織
布を提供しようとするものである。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems and is excellent in heat shrinkability, shape retention during thermoforming and light weight. An object is to provide a polypropylene-based long-fiber nonwoven fabric suitable as a material.
【0004】[0004]
【課題を解決するための手段】本発明者らは、前記問題
を解決すべく鋭意検討の結果、本発明に到達した。すな
わち、本発明は、92重量%以上97重量%以下のプロ
ピレンと3重量%以上8重量%以下のエチレンとがラン
ダム共重合されたポリプロピレン系共重合体のみから構
成され、メルトフローレート値が15g/10分以上8
0g/10分以下、単繊維繊度が10デニール以下、強
度が2g/デニール以上の長繊維を構成要素として少な
くとも50重量%含有するスパンボンド法により製造さ
れた不織布であって、該不織布中の少なくとも前記長繊
維同士は接着面積率が3%以上50%以下で部分的に熱
接着され、かつ温度100℃における乾熱面積収縮率が
15%以上であることを特徴とするポリプロピレン系長
繊維不織布、を要旨とするものである。また、本願発明
は、前記ポリプロピレン系共重合体において、Q値(重
量平均分子量/数平均分子量)が8以下であることを特
徴とするポリプロピレン系長繊維不織布、を要旨とする
ものである。Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention. That is, the present invention comprises only a polypropylene copolymer obtained by random copolymerization of 92% by weight or more and 97% by weight or less of propylene and 3% by weight or more and 8% by weight or less of ethylene, and has a melt flow rate of 15 g. / 10 minutes or more 8
0 g / 10 minutes or less, a single fiber fineness of 10 denier or less, of produced by spunbond method strength of at least 50 wt.% Containing as components a 2 g / denier or more long fiber
At least the long fibers in the nonwoven fabric are partially thermally bonded to each other at an adhesion area ratio of 3% or more and 50% or less, and a dry heat area shrinkage ratio at a temperature of 100 ° C. of 15% or more. The present invention is characterized by a polypropylene-based long-fiber nonwoven fabric, which is characterized in that there is a nonwoven fabric. Further, the present invention is the polypropylene-based copolymer, especially the Q value (weight average molecular weight / number average molecular weight) is 8 or less
The present invention provides a polypropylene-based long-fiber nonwoven fabric.
【0005】次に,本発明を詳細に説明する。本発明の
不織布を構成する長繊維は,92重量%以上97重量%
以下のプロピレンと3重量%以上8重量%以下のエチレ
ンとがランダム共重合されたポリプロピレン系共重合体
から構成されるものである。この共重合体においては,
エチレンの共重合が共重合体の融点降下と熱収縮性に大
きく影響し,共重合量に比例して共重合体の融点を降下
させ,かつ熱収縮性を増大させる。この共重合量が3重
量%未満であると共重合体の融点降下が小さくなって,
長繊維を熱処理したときの熱収縮率が低下するので好ま
しくない。一方,この共重合量が8重量%を超えると重
合するに際し重合溶媒(炭化水素)に可溶性の副生物の
生成割合が増加し生産性が低下して工業的に不経済とな
るので好ましくない。したがって,本発明では,この共
重合量を3重量%以上8重量%以下とし,好ましくは
3.2重量%以上7.0重量%以下,特に好ましくは
3.5重量%以上6.0重量%以下とする。また,この
共重合体は,前記3重量%以上8重量%以下のエチレン
と92重量%以上97重量%以下のプロピレンとがラン
ダム共重合されたものであり,このランダム共重合は,
共重合体の均一な熱収縮特性と曵糸性の点で極めて重要
である。他の共重合形態としてブロツク共重合が挙げら
れるが,この共重合では,ポリプロピレンの構造の中に
エチレンの構造部がブロツク単位で存在するため,共重
合体の熱収縮特性が不均一となり,しかも曵糸性が極度
に低下するという問題が生じるので好ましくない。Next, the present invention will be described in detail. The long fiber constituting the nonwoven fabric of the present invention is at least 92% by weight and 97% by weight.
It is composed of a polypropylene copolymer in which the following propylene and 3% by weight to 8% by weight of ethylene are randomly copolymerized. In this copolymer,
The copolymerization of ethylene has a significant effect on the drop in the melting point and the heat shrinkage of the copolymer, lowering the melting point of the copolymer in proportion to the copolymerization amount and increasing the heat shrinkage. If the copolymerization amount is less than 3% by weight, the decrease in the melting point of the copolymer becomes small,
It is not preferable because the heat shrinkage rate when the long fiber is heat-treated decreases. On the other hand, if the copolymerization amount exceeds 8% by weight, the rate of formation of by-products soluble in the polymerization solvent (hydrocarbon) during polymerization increases, and the productivity decreases, which is not industrially uneconomical. Therefore, in the present invention, this copolymerization amount is set to 3% by weight or more and 8% by weight or less, preferably 3.2% by weight or more and 7.0% by weight or less, particularly preferably 3.5% by weight or more and 6.0% by weight or less. The following is assumed. This copolymer is obtained by random copolymerization of the above-mentioned 3% by weight to 8% by weight of ethylene with 92% by weight to 97% by weight of propylene.
It is extremely important in terms of uniform heat shrinkage characteristics and spinnability of the copolymer. Another form of copolymerization is block copolymerization. In this copolymerization, the heat shrinkage characteristics of the copolymer become non-uniform because the structural units of ethylene are present in block units in the structure of polypropylene. It is not preferable because a problem that the spinnability is extremely lowered occurs.
【0006】また,この共重合体は,Q値(重量平均分
子量/数平均分子量)が8以下のものであるのが好まし
い。このQ値とは,ゲルパーミエイシヨンクロマトグラ
フ法により求められる重合体の重量平均分子量と数平均
分子量の比であり,溶融計量された重合体を紡糸する前
に採取し,冷却した重合体を試料として測定した値であ
る。ポリプロピレン重合体は溶融紡糸時に受ける熱及び
剪断の影響で劣化しやすく,溶融紡糸後のQ値は,紡糸
前のそれに比べ低下することが知られている。Q値は分
子量分布の幅を示すものであり,長繊維の製造適性と加
工適性に大きく影響するものである。すなわち,Q値が
大きく分子量分布の幅が広いと,得られた長繊維を用い
て不織布化するに際しての加工温度領域が広くなり,品
質の安定した不織布を得ることができるばかりでなく,
得られた不織布に熱成形加工を施すに際しても同様の効
果を得ることができる。しかしながら,Q値が大きくな
って分子量分布の幅が広くなりすぎると,溶融紡糸時の
糸条冷却が悪くなって曵糸性が低下する。したがって,
本発明では,このQ値を8以下とし,好ましくは7.5
以下,特に好ましくは7.0以下とする。The copolymer preferably has a Q value (weight average molecular weight / number average molecular weight) of 8 or less. The Q value is the ratio of the weight average molecular weight to the number average molecular weight of the polymer determined by gel permeation chromatography, and the melt-weighed polymer is collected before spinning, and the cooled polymer is collected. This is a value measured as a sample. It is known that a polypropylene polymer is easily deteriorated by the influence of heat and shear applied during melt spinning, and the Q value after melt spinning is lower than that before spinning. The Q value indicates the width of the molecular weight distribution and has a great influence on the suitability for production and processing of long fibers. In other words, if the Q value is large and the molecular weight distribution is wide, the processing temperature range for forming a nonwoven fabric using the obtained long fibers is widened, and not only can a nonwoven fabric of stable quality be obtained,
The same effect can be obtained when performing thermoforming on the obtained nonwoven fabric. However, when the Q value increases and the width of the molecular weight distribution becomes too wide, the yarn cooling during melt spinning deteriorates, and the spinnability decreases. Therefore,
In the present invention, the Q value is set to 8 or less, preferably 7.5.
The value is particularly preferably 7.0 or less.
【0007】本発明の不織布を構成する長繊維は,その
メルトフローレート値が15g/10分以上80g/1
0分以下のものである。長繊維のメルトフローレート値
は,ASTM D 1238(L)に記載の方法により
測定されるものであり,このメルトフローレート値が1
5g/10分未満であると長繊維の熱収縮応力が高くな
って熱収縮率や嵩高性を大きくすることはできるが,重
合体の曵糸性のみならず次工程の熱延伸性が低下した
り,溶融紡糸時の紡糸温度が高く設定されるためポリプ
ロピレン系重合体が分解して多量のガスが発生し,紡糸
室の環境を悪化させたりするので好ましくない。一方,
このメルトフローレート値が80g/10分を超えると
長繊維の熱収縮力が低下するため熱収縮性の優れた不織
布を得ることができず,また,ポリプロピレン系重合体
の重合度が低すぎるため分解して多量のガスが発生し,
紡糸室の環境を悪化させたりするので好ましくない。し
たがって,本発明では,このメルトフローレート値を1
5g/10分以上80g/10分以下とし,好ましくは
18g/10分以上70g/10分以下,特に好ましく
は20g/10分以上60g/10分以下とする。The long fibers constituting the nonwoven fabric of the present invention have a melt flow rate of 15 g / 10 min or more and 80 g / 1.
Less than 0 minutes. The melt flow rate value of the long fiber is measured by the method described in ASTM D1238 (L).
If it is less than 5 g / 10 minutes, the heat shrinkage stress of the long fiber becomes high and the heat shrinkage and bulkiness can be increased, but not only the spinnability of the polymer but also the heat drawability in the next step are reduced. In addition, since the spinning temperature during melt spinning is set high, the polypropylene polymer is decomposed and a large amount of gas is generated, which undesirably deteriorates the environment of the spinning chamber. on the other hand,
If the melt flow rate exceeds 80 g / 10 minutes, the heat shrinkage of long fibers is reduced, so that a nonwoven fabric having excellent heat shrinkage cannot be obtained, and the degree of polymerization of the polypropylene polymer is too low. Decomposes and generates a lot of gas,
It is not preferable because the environment of the spinning chamber is deteriorated. Therefore, in the present invention, this melt flow rate value is set to 1
5 g / 10 min to 80 g / 10 min, preferably 18 g / 10 min to 70 g / 10 min, particularly preferably 20 g / 10 min to 60 g / 10 min.
【0008】本発明の不織布を構成する長繊維は,その
単繊維繊度が10デニール以下のものである。この単繊
維繊度が10デニールを超えると不織布としたとき柔軟
性が低下したり,異常な粗硬感を発するため低目付けと
することが困難となったり,あるいは溶融紡糸に際して
ポリプロピレン系溶融重合体の冷却が不十分となりフイ
ラメント間に融着が生じて曵糸性が低下したりするため
好ましくない。The long fibers constituting the nonwoven fabric of the present invention have a single fiber fineness of 10 denier or less. If the single fiber fineness exceeds 10 denier, the softness of the nonwoven fabric is reduced, an unusual coarse hardness is generated, and it is difficult to reduce the weight per unit area. It is not preferable because the cooling is insufficient and fusion occurs between the filaments to lower the spinnability.
【0009】本発明の不織布を構成する長繊維は,その
強度が2g/デニール以上のものである。この強度が2
g/デニール未満であると不織布としたとき実用上十分
な強度が得られないため好ましくない。例えば,この長
繊維を用いて不織布を作成し,得られた不織布を熱成形
して容器保護用フイルタとしたときなど,そのフイルタ
に実用上十分な強度を具備させることが困難となったり
するのである。The long fibers constituting the nonwoven fabric of the present invention have a strength of 2 g / denier or more. This strength is 2
If it is less than g / denier, it is not preferable because practically sufficient strength cannot be obtained when the nonwoven fabric is used. For example, when a non-woven fabric is made using this long fiber and the obtained non-woven fabric is thermoformed into a container protection filter, it becomes difficult to provide the filter with sufficient strength for practical use. is there.
【0010】本発明の不織布は,前記長繊維を構成要素
として少なくとも50重量%含有するものである。そし
て,この不織布は,他の構成要素として本発明の構成要
件を満足しないポリプロピレン系共重合体からなる長繊
維やその他の通常の繊維形成性熱可塑性合成長繊維を含
有するが,その含有率は50重量%未満でなければなら
ない。すなわち,この不織布においては,前記長繊維を
少なくとも50重量%含有することが必要で,この含有
率が50重量%未満であると本発明がその目的とする熱
収縮性の優れた不織布を得ることができないためであ
る。The nonwoven fabric of the present invention contains at least 50% by weight of the long fibers as a constituent element. The nonwoven fabric contains, as other constituent elements, long fibers made of a polypropylene-based copolymer which does not satisfy the constituent requirements of the present invention and other ordinary fiber-forming thermoplastic synthetic long fibers. Should be less than 50% by weight. That is, in this nonwoven fabric, it is necessary to contain at least 50% by weight of the long fiber, and if the content is less than 50% by weight, the present invention can provide a nonwoven fabric with excellent heat shrinkability aimed at. Because you can't.
【0011】本発明の不織布は,該不織布中の少なくと
も前記ポリプロピレン系長繊維同士が部分的に熱接着さ
れてなるものである。ここでいう部分的熱接着とは,前
記ポリプロピレン系長繊維同士が規則的な接着部を形成
しているということである。この部分的な熱接着は,不
織布中の最小繰り返し単位面積当りの熱接着部面積を百
分率表示すなわち接着面積率が3%以上50%以下のも
のであり,この接着面積率が3%未満あると不織布とし
ての形態が保持されず,一方,接着面積率が50%を超
えると接着部が多過ぎ不織布中で未固定の長繊維の自由
度が小さくなって不織布の熱収縮性が低下するため,い
ずれも好ましくない。したがって,本発明では,この接
着面積率を3%以上50%以下とし,好ましくは4%以
上30%以下とする。なお,この部分的熱接着部は,例
えば熱エンボスローラや超音波溶着機を用いて形成され
るものである。また,熱エンボスローラを用いる場合,
部分的熱接着部の形態は,エンボス機における彫刻ロー
ラの突起部先端面の形状により決定され,丸形,楕円
形,菱形,三角形,T形,−形,井形あるいは格子形等
の任意の形状とすることができる。[0011] The nonwoven fabric of the present invention is one in which at least the polypropylene long fibers in the nonwoven fabric are partially thermally bonded to each other. The term "partial heat bonding" as used herein means that the polypropylene long fibers form a regular bonded portion. In this partial thermal bonding, the thermal bonding area per minimum repeating unit area in the nonwoven fabric is expressed as a percentage, that is, the bonding area ratio is 3% or more and 50% or less, and if this bonding area ratio is less than 3%. On the other hand, if the bonded area ratio exceeds 50%, the degree of freedom of unfixed long fibers in the nonwoven fabric is reduced, and the heat shrinkability of the nonwoven fabric is reduced. Neither is preferred. Therefore, in the present invention, the bonding area ratio is set to 3% or more and 50% or less, preferably 4% or more and 30% or less. The partial heat bonding portion is formed using, for example, a hot embossing roller or an ultrasonic welding machine. When using a hot emboss roller,
The shape of the partially heat-bonded portion is determined by the shape of the tip end surface of the engraving roller in the embossing machine, and can be any shape such as a round shape, an elliptical shape, a diamond shape, a triangular shape, a triangular shape, a T shape, a negative shape, a well shape, or a lattice shape. It can be.
【0012】本発明の不織布は,温度100℃における
乾熱面積収縮率が15%以上のものである。この乾熱面
積収縮率とは,エアーオーブン型熱処理機を用い処理温
度100℃×処理時間15分間の条件で熱処理を施した
不織布の熱処理前の不織布に対する面積比を百分率表示
したものであり,乾熱面積収縮率が高いほど熱成形時の
形態保持性が向上する。この乾熱面積収縮率が15%未
満であると熱収縮性が優れ,かつ熱成形時の形態保持性
が優れた不織布を得ることができず好ましくない。した
がって,本発明では,この乾熱面積収縮率を15%と
し,好ましくは20%以上とする。The nonwoven fabric of the present invention has a dry heat area shrinkage at a temperature of 100 ° C. of 15% or more. The dry heat area shrinkage is a percentage of the area ratio of the non-woven fabric which has been heat-treated using an air oven type heat treatment machine at a processing temperature of 100 ° C. × a processing time of 15 minutes to the non-woven fabric before the heat treatment. The higher the thermal area shrinkage, the better the shape retention during thermoforming. If the dry heat area shrinkage is less than 15%, a nonwoven fabric having excellent heat shrinkability and excellent shape retention during thermoforming cannot be obtained, which is not preferable. Therefore, in the present invention, the dry heat area shrinkage is set to 15%, preferably 20% or more.
【0013】本発明の不織布は,その目付けとして例え
ば容器保護用フイルタ等の熱成形用素材では10g/m
2 以上150g/m2 以下程度とするのが好適である
が,用途に応じて適宜定めることができ,特に限定され
るものではない。The nonwoven fabric of the present invention has a basis weight of 10 g / m2 for a thermoforming material such as a container protection filter.
It is preferable that the amount be 2 or more and about 150 g / m 2 or less, but it can be appropriately determined according to the application and is not particularly limited.
【0014】本発明の不織布は,いわゆる混繊スパンボ
ンド法により効率良く製造することができる。まず,前
記ポリプロピレン系共重合体Aを溶融後に紡糸口金パツ
ク内のA単独の紡糸孔から紡出し,一方,本発明の構成
要件を満足しないポリプロピレン系共重合体Bあるいは
その他の通常の繊維形成性熱可塑性合成重合体Bを溶融
後に前記と同一の紡糸口金パツク内のB単独の紡糸孔か
ら紡出し,紡出フイラメントA及びBを冷却装置により
冷却した後,エアーサツカ等の引き取り手段により引き
取り,コロナ放電等の開繊手段により開繊し,移動する
コンベア上に堆積してウエブを形成する。あるいは,前
記と同様にして溶融紡出・冷却した後,引き取りローラ
により引き取り,引き取りローラとその下流側に配設さ
れた延伸ローラとの間で延伸し,コロナ放電等の開繊手
段により開繊し,移動するコンベア上に堆積してウエブ
を形成する。溶融紡糸に際しては,前記共重合体Aと重
合体Bとの総重量に対する前記共重合体Aの重量の比を
少なくとも50%とする。なお,この重量比を100%
すなわち前記重合体Aのみからなる不織布を得たいよう
な場合には,重合体Bの工程への供給を休止すればよ
い。The nonwoven fabric of the present invention can be efficiently produced by the so-called mixed fiber spunbonding method. First, after the polypropylene-based copolymer A is melted, it is spun from the spinning hole of A alone in the spinneret pack. On the other hand, the polypropylene-based copolymer B which does not satisfy the constitutional requirements of the present invention or other ordinary fiber-forming materials is used. After the thermoplastic synthetic polymer B is melted, it is spun from the spinning hole of B alone in the same spinneret pack as above, and the spun filaments A and B are cooled by a cooling device. The web is opened by a fiber opening means such as electric discharge and deposited on a moving conveyor to form a web. Alternatively, after melt spinning and cooling in the same manner as described above, the fiber is drawn by a drawing roller, drawn between the drawing roller and a drawing roller disposed downstream of the drawing roller, and spread by a fiber opening means such as corona discharge. And is deposited on a moving conveyor to form a web. At the time of melt spinning, the ratio of the weight of the copolymer A to the total weight of the copolymer A and the polymer B is at least 50%. In addition, this weight ratio is 100%
That is, when it is desired to obtain a nonwoven fabric composed of only the polymer A, the supply of the polymer B to the process may be stopped.
【0015】本発明の不織布の製造に用いるポリプロピ
レン系共重合体としては,繊維形成性を有し,通常,繊
維グレードとして市販されているものであれば使用する
ことができ,例えば結晶性ポリプロピレン系樹脂あるい
はエチレンとプロピレンをチーグラー−ナツタ触媒によ
り前記各成分比となるようにして実質的にランダム共重
合させた共重合ポリプロピレン系樹脂が挙げられる。な
お,ここでいう繊維グレードとは,曵糸性よく溶融紡糸
できるようなものである。なお,前記重合体には,通
常,繊維に用いられる艶消し剤,耐光剤,耐熱剤あるい
は顔料等を,本発明の効果が損なわれない範囲であれ
ば,添加することができる。As the polypropylene-based copolymer used in the production of the nonwoven fabric of the present invention, those having a fiber-forming property and usually commercially available as a fiber grade can be used. Resin or a copolymerized polypropylene resin obtained by substantially random copolymerizing ethylene and propylene with the Ziegler-Natta catalyst so as to have the above-mentioned respective component ratios may be mentioned. In addition, the fiber grade referred to here is one that can be melt-spun with good spinnability. It should be noted that a matting agent, a light-fast agent, a heat-resistant agent, a pigment or the like usually used for fibers can be added to the polymer as long as the effects of the present invention are not impaired.
【0016】また,溶融紡糸は,通常の複合紡糸装置を
用いて行うことができる。溶融紡糸に際しては,前記共
重合体Aとしてメルトフローレート値が10g/10分
以上80g/10分以下のものを用い,得られた前記共
重合体からなる長繊維のメルトフローレート値が15g
/10分以上80g/10分以下となるようにして溶融
紡糸する必要がある。これにより,長繊維の熱収縮力が
向上して熱収縮性の優れた不織布を得ることができ,し
かも溶融紡糸時の曵糸性のみならず次工程の熱延伸性が
向上する。さらに,延伸に際しては,引き取られた未延
伸フイラメントを40℃以上かつ繊維相互が融着しない
温度で熱延伸する。この延伸温度が40℃未満であると
延伸張力が高くなりすぎて延伸性が低下し,また延伸装
置が設備的に高くなるため好ましくない。一方,この延
伸温度は高くとも長繊維相互が融着し始める温度未満と
する。延伸温度が高くなりすぎて繊維相互が融着し始め
ると,延伸工程で糸切れが発生して操業性が低下した
り,製品の均一性が低下することによって品位が低下し
たりするので好ましくない。したがって,この延伸温度
は40℃以上かつ繊維相互が融着しない温度とし,好ま
しくは60〜100℃とする。Further, the melt spinning can be performed by using an ordinary composite spinning apparatus. At the time of melt spinning, a copolymer having a melt flow rate of 10 g / 10 min or more and 80 g / 10 min or less is used as the copolymer A, and the melt flow rate of the obtained continuous fiber of the copolymer is 15 g.
It is necessary to carry out the melt spinning so as to be / 10 min or more and 80 g / 10 min or less. As a result, the heat shrinking force of the long fibers is improved, and a nonwoven fabric having excellent heat shrinkage can be obtained. In addition, not only the spinnability during melt spinning but also the heat stretchability in the next step is improved. Further, at the time of drawing, the drawn undrawn filament is hot drawn at a temperature of 40 ° C. or higher and at a temperature at which the fibers are not fused to each other. If the stretching temperature is lower than 40 ° C., the stretching tension becomes too high and the stretchability is lowered, and the stretching apparatus is undesirably expensive. On the other hand, the stretching temperature is at most lower than the temperature at which the long fibers start to fuse together. If the drawing temperature is too high and the fibers start to fuse with each other, yarn breakage will occur in the drawing process and the operability will decrease, or the quality of the product will decrease due to the lower uniformity of the product, which is not preferable. . Therefore, the drawing temperature is set to 40 ° C. or higher and a temperature at which the fibers are not fused to each other, preferably 60 to 100 ° C.
【0017】次に,得られたウエブに接着面積率が3%
以上50%以下で熱接着処理を施すことにより,ウエブ
中の少なくとも前記長繊維同士を部分的に熱接着させ
る。部分的な熱接着処理を施すに際しては,例えば熱エ
ンボスローラを用いることができ,この場合,処理温度
を前記ポリプロピレン系共重合体の融点未満の温度と
し,またローラの線圧を50kg/cm以下とする。こ
の処理温度が共重合体の融点以上であると処理時にウエ
ブがロールに接着したりして,操業性が低下するので好
ましくない。したがって,この処理温度は共重合体の融
点未満,好ましくは融点より10℃以上低い温度とす
る。また,超音波溶着機を用いることもできる。この超
音波溶着機とは,例えば周波数が20kHz程度の超音
波による振動で繊維間を融着させる装置であって,この
装置によれば繊維間の融着部の他は殆ど熱の影響を受け
ないため長繊維の熱収縮性を維持したまま不織布として
の形態が保持され,熱収縮性の優れた不織布を得ること
ができる。Next, the obtained web has a bonding area ratio of 3%.
By performing the thermal bonding treatment at a rate of 50% or less, at least the long fibers in the web are partially thermally bonded to each other. When performing the partial thermal bonding, for example, a hot embossing roller can be used. In this case, the processing temperature is set to a temperature lower than the melting point of the polypropylene copolymer, and the linear pressure of the roller is set to 50 kg / cm or less. And If the treatment temperature is equal to or higher than the melting point of the copolymer, the web may adhere to the roll during the treatment, and the operability is undesirably reduced. Therefore, the treatment temperature is set to a temperature lower than the melting point of the copolymer, preferably lower than the melting point by 10 ° C. or more. Also, an ultrasonic welding machine can be used. This ultrasonic welding machine is an apparatus for fusing fibers between fibers by, for example, vibration of an ultrasonic wave having a frequency of about 20 kHz. Therefore, the form of the nonwoven fabric is maintained while maintaining the heat shrinkability of the long fiber, and a nonwoven fabric having excellent heat shrinkage can be obtained.
【0018】本発明では,前述したように,延伸長繊維
からなるウエブを不織布原料として用いることができ,
この場合,前記ポリプロピレン系共重合体からなる長繊
維は延伸配向され,かつ結晶領域が共に成長すると共に
非晶領域が増大した構造を有するため,このウエブに前
記のような熱接着処理を施して不織布としたとき,少な
くとも20%まで熱収縮性が一層向上した不織布を得る
ことができる。なお,このような延伸長繊維からなるウ
エブに熱接着処理を施すに際し,前記超音波溶着機を用
いると,熱収縮性が更に向上した不織布を得ることがで
きて好ましい。In the present invention, as described above, a web composed of drawn filaments can be used as a nonwoven fabric raw material.
In this case, since the long fiber made of the polypropylene copolymer is oriented and stretched, and has a structure in which the crystal region grows together and the amorphous region increases, the web is subjected to the thermal bonding treatment as described above. When a nonwoven fabric is used, a nonwoven fabric with further improved heat shrinkability up to at least 20% can be obtained. It is preferable to use the above-mentioned ultrasonic welding machine when performing a heat bonding treatment on a web made of such drawn long fibers, since a nonwoven fabric with further improved heat shrinkability can be obtained.
【0019】[0019]
【実施例】次に,実施例に基づいて本発明を具体的に説
明する。なお,実施例における各種特性の測定及び評価
は,次の方法により実施した。 重合体の融点:パーキンエルマ社製示差走査型熱量計D
SC−2型を用い,昇温速度20℃/分で測定した融解
吸収熱曲線の極値を与える温度を融点とした。 メルトフローレート値(g/10分):ASTM D
1238(L) に記載の方法により測定した。 繊維の引張強度(g/デニール)及び引張伸度(%):
東洋ボールドウイン社製テンシロンUTM−4−1−1
00を用い,試料長2cmの試料を引張速度2cm/分
で測定した。 繊維の乾熱収縮率(%):単繊維計15本を試料とし,
各単繊維ごとに初荷重2mg/デニール時の長さL
1 (cm)を測定し,次いでエアーオーブン型熱処理機
中で100℃×15分間熱処理した後の長さL2 (c
m)を測定し,次式(a)により収縮率を算出し,その
平均値を乾熱収縮率とした。 乾熱収縮率(%)=(L1 −L2 )×100/L1 ・・・・・・・(a) 不織布のKGSM引張強力(kg/5cm):東洋ボー
ルドウイン社製テンシロンUTM−4−1−100を用
い,JIS L−1096Aに記載のストリツプ法にし
たがい,試料長10cm,試料幅5cmの試料片を引張
速度10cm/分で測定し,得られた引張強力の平均値
を不織布の目付け100g/m2 当りに換算し,KGS
M引張強力(kg/5cm)とした。 不織布の引張伸度(%):東洋ボールドウイン社製テン
シロンUTM−4−1−100を用い,JIS L−1
096Aに記載のストリツプ法にしたがい,試料長10
cm,試料幅5cmの試料片を引張速度10cm/分で
測定した。 不織布の乾熱面積収縮率(%):試料長20cm,試料
幅20cmの試料片計4個を準備し,各試料片ごとに面
積S1 を測定し,次いでエアーオーブン型熱処理機中で
100℃×15分間熱処理した後の面積S2 を測定し,
次式(b)により収縮率を算出し,その平均値を乾熱面
積収縮率とした。 乾熱面積収縮率(%)=(S1 −S2 )×100/S1 ・・・・・(b) 曵糸性:溶融紡糸時の曵糸性を紡出フイラメント切れの
発生率により次の3段階で評価した。○:フイラメント
切れが全く発生せず,操業性が良好である。△:フイラ
メント切れが24時間・紡糸錘数16当たり1回発生。
×:フイラメント切れが24時間・紡糸錘数16当たり
2回以上発生し,操業上問題である。 発煙性:溶融紡糸時の紡糸口金部での発煙度合いを視覚
判定により次の4段階で評価した。○:発煙が殆ど観察
されない。△:発煙が観察されるが,操業上問題となら
ない。×:発煙が極めて多く,発煙物が紡糸口金付近に
堆積し,操業上問題である。 延伸性:延伸性を糸切れ及び単フイラメント切れの発生
率により次の3段階で評価した。○:糸切れや単フイラ
メント切れが全く発生せず,操業性が良好である。△:
糸切れや単フイラメント切れが24時間当たり1回発
生。×:糸切れや単フイラメント切れが24時間当たり
2回以上発生し,操業上問題である。Next, the present invention will be specifically described based on examples. The measurement and evaluation of various characteristics in the examples were performed by the following methods. Melting point of polymer: Differential scanning calorimeter D manufactured by PerkinElmer
The melting point was defined as the temperature at which an extreme value of the melting heat absorption curve measured at a heating rate of 20 ° C./min using SC-2 type. Melt flow rate value (g / 10 minutes): ASTM D
It was measured by the method described in 1238 (L). Tensile strength (g / denier) and elongation (%) of fiber:
Toyo Baldwin's Tensilon UTM-4-1-1
Using 00, a sample having a sample length of 2 cm was measured at a tensile speed of 2 cm / min. Dry heat shrinkage of fiber (%): A total of 15 fibers are used as a sample.
Initial load 2mg / denier length L for each single fiber
1 (cm), and then heat treated in an air oven type heat treatment machine at 100 ° C. for 15 minutes to obtain a length L 2 (c)
m) was measured, the shrinkage was calculated by the following equation (a), and the average value was defined as the dry heat shrinkage. Dry heat shrinkage (%) = (L 1 −L 2 ) × 100 / L 1 (a) KGSM tensile strength of nonwoven fabric (kg / 5 cm): Tensilon UTM-4 manufactured by Toyo Baldwin Co., Ltd. According to the stripping method described in JIS L-1096A, a test piece having a sample length of 10 cm and a sample width of 5 cm was measured at a tensile speed of 10 cm / min, and the average value of the obtained tensile strength was measured for the nonwoven fabric. in terms of the per basis weight of 100g / m 2, KGS
M tensile strength (kg / 5 cm). Tensile elongation (%) of nonwoven fabric: JIS L-1 using Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.
According to the stripping method described in No. 096A, the sample length was 10
cm and a sample width of 5 cm were measured at a tensile speed of 10 cm / min. Dry heat area shrinkage rate (%) of nonwoven fabric: A total of four sample pieces each having a sample length of 20 cm and a sample width of 20 cm are prepared, and the area S 1 is measured for each sample piece, and then 100 ° C. in an air oven type heat treatment machine. × Measure the area S 2 after heat treatment for 15 minutes,
The shrinkage was calculated by the following equation (b), and the average value was defined as the dry heat area shrinkage. Dry heat area shrinkage rate (%) = (S 1 −S 2 ) × 100 / S 1 ... (B) Was evaluated in three steps. :: There is no filament breakage, and the operability is good. Δ: Filament breakage occurred once per 24 hours and 16 spindles.
×: Filament breakage occurred twice or more per 16 hours of spinning spindles for 24 hours, which is a problem in operation. Smoke emission: The degree of smoke emission at the spinneret during melt spinning was evaluated by visual judgment in the following four stages. :: Smoke is hardly observed. Δ: Smoking was observed, but no problem occurred in operation. ×: Smoke is extremely large, and smoke is deposited near the spinneret, which is a problem in operation. Stretchability: Stretchability was evaluated in the following three stages based on the incidence of yarn breakage and single filament breakage. :: Good operability with no breakage of yarn or single filament. △:
One thread break or single filament break occurs every 24 hours. ×: Thread breakage or single filament breakage occurs twice or more per 24 hours, which is a problem in operation.
【0020】実施例1 表1に示したQ値とメルトフローレート値,融点を有
し,プロピレンとエチレンがランダム共重合されたポリ
プロピレン系共重合体(重合体No.ニ)を通常のエク
ストルーダ型溶融押出機で溶融した後,紡糸孔径が0.
5mm,孔数が162の紡糸口金を用い,単孔吐出量を
1.37g/分として表2に示した紡糸温度条件で溶融
紡出し,紡出長繊維を吸引速度が4100m/分のエア
ーサツカを用いて引き取り,単繊維繊度が3.0デニー
ルの高配向未延伸長繊維を得た。引き続き,前記未延伸
長繊維を巻き取ることなく連続してコロナ放電により開
繊し,移動するコンベア上に堆積させてウエブを形成し
た。次いで,接着面積率が16%の彫刻ロールを具備す
る超音波溶着機を用い,超音波周波数を20kHz,加
工速度を5m/分としてウエブに接着処理を施し,この
ポリプロピレン系長繊維同士が部分的に熱接着された目
付けが40g/m2 の不織布を得た。得られた長繊維と
不織布の特性,溶融紡糸時の製糸性の結果を表2に示
す。この長繊維は,メルトフローレート値が34g/1
0分で,表2から明らかなように実用上十分な水準の強
伸度を有し,しかも熱収縮性の高いものであった。ま
た,この不織布は,表2から明らかなように実用的な不
織布強力を有し,熱収縮性が優れ,熱成形用不織布とし
て好適なものであった。Example 1 A polypropylene copolymer (Polymer No. 2) having a Q value, a melt flow rate value and a melting point shown in Table 1 and obtained by random copolymerization of propylene and ethylene was prepared by using a usual extruder type. After being melted by a melt extruder, the spinning hole diameter becomes 0.
Using a spinneret having a diameter of 5 mm and a number of holes of 162, melt spinning was performed under the spinning temperature conditions shown in Table 2 with a single hole discharge rate of 1.37 g / min. The fiber was taken out to obtain a highly oriented unstretched long fiber having a single fiber fineness of 3.0 denier. Subsequently, the undrawn filaments were continuously opened by corona discharge without being wound up, and were deposited on a moving conveyor to form a web. Then, using an ultrasonic welding machine equipped with an engraving roll having an adhesion area ratio of 16%, the web was subjected to an adhesive treatment at an ultrasonic frequency of 20 kHz and a processing speed of 5 m / min. To obtain a nonwoven fabric having a basis weight of 40 g / m 2 , which was thermally bonded to a nonwoven fabric. Table 2 shows the properties of the obtained long fibers and nonwoven fabric, and the results of the spinnability during melt spinning. This filament has a melt flow rate value of 34 g / 1.
At 0 minutes, as is clear from Table 2, it had a practically sufficient level of elongation and high heat shrinkage. Further, as apparent from Table 2, this nonwoven fabric had a practical nonwoven fabric strength, was excellent in heat shrinkability, and was suitable as a nonwoven fabric for thermoforming.
【0021】実施例2 実施例1と同様にしてポリプロピレン系共重合体(重合
体No.ニ)を溶融した後,紡糸孔径が0.4mm,孔
数が162の紡糸口金を用い,単孔吐出量を1.0g/
分として表2に示した紡糸温度条件で溶融紡出し,紡出
長繊維を引き取り速度が600m/分の引き取りロール
を用いて引き取り,連続して引き取りロールとこのロー
ルの下流側に配設された延伸ロールとの間で延伸倍率を
3.0として延伸し(すなわち延伸速度1800m/
分),単繊維繊度が5.0デニールの延伸長繊維を得
た。引き続き,前記未延伸長繊維を巻き取ることなく連
続して延伸ロールの下流側に配設されたエアーサツカを
介した後,コロナ放電により開繊し,移動するコンベア
上に堆積させてウエブを形成した。次いで,実施例1と
同様にして接着処理を施し,このポリプロピレン系長繊
維同士が部分的に熱接着された目付けが40g/m2 の
不織布を得た。得られた長繊維と不織布の特性,溶融紡
糸時の製糸性の結果を表2に示す。この長繊維は,メル
トフローレート値が34g/10分で,表2から明らか
なように実用上十分な水準の強伸度を有し,しかも熱収
縮性の高いものであった。また,この不織布は,表2か
ら明らかなように実用的な不織布強力を有し,熱収縮性
が極めて優れ,熱成形用不織布として好適なものであっ
た。Example 2 A polypropylene copolymer (Polymer No. 2) was melted in the same manner as in Example 1, and then a single-hole discharge was performed using a spinneret having a spinning hole diameter of 0.4 mm and a hole number of 162. 1.0 g /
It was melt spun under the spinning temperature conditions shown in Table 2 and the spun filament was taken up using a take-up roll having a take-up speed of 600 m / min, and was continuously disposed on the take-up roll and downstream of this roll. The film is stretched with a stretching ratio of 3.0 between the film and a stretching roll (ie, a stretching speed of 1800 m /
Min) and a drawn long fiber having a single fiber fineness of 5.0 denier was obtained. Subsequently, the unstretched filament was continuously passed through an air filter disposed downstream of the stretching roll without being wound, and then opened by corona discharge and deposited on a moving conveyor to form a web. . Next, an adhesive treatment was performed in the same manner as in Example 1 to obtain a nonwoven fabric having a basis weight of 40 g / m 2 in which the polypropylene-based long fibers were partially thermally bonded to each other. Table 2 shows the properties of the obtained long fibers and nonwoven fabric, and the results of the spinnability during melt spinning. This long fiber had a melt flow rate value of 34 g / 10 minutes, had a sufficiently high level of elongation for practical use as is clear from Table 2, and had a high heat shrinkage. Further, as apparent from Table 2, this nonwoven fabric has practical nonwoven fabric strength, extremely excellent heat shrinkability, and was suitable as a nonwoven fabric for thermoforming.
【0022】実施例3〜6及び比較例1〜4 表1に示したQ値とメルトフローレート値,融点を有
し,プロピレンとエチレンがランダム共重合されたポリ
プロピレン系共重合体(実施例3〜6の重合体No.
ロ,ハ,ホ及びト,比較例1〜3の重合体No.イ,ヘ
及びチ),表1に示したQ値とメルトフローレート値,
融点を有するポリプロピレン重合体(比較例4の重合体
No.リ)を通常のエクストルーダ型溶融押出機で溶融
した後,紡糸孔径が0.5mm,孔数が162の紡糸口
金を用い,単孔吐出量を1.37g/分として表2に示
した紡糸温度条件で溶融紡出し,紡出長繊維を引き取り
速度が600m/分の引き取りロールを用いて引き取
り,連続して引き取りロールとこのロールの下流側に配
設された延伸ロールとの間で延伸倍率を3.0として延
伸し(すなわち延伸速度1800m/分),単繊維繊度
が5.0デニールの延伸長繊維を得た。引き続き,実施
例1と同様にしてウエブを形成し,次いで,実施例1と
同様にして接着処理を施し,このポリプロピレン系長繊
維同士が部分的に熱接着された目付けが40g/m2 の
不織布を得た。得られた長繊維と不織布の特性,溶融紡
糸時の製糸性の結果を表2に示す。実施例の長繊維は,
メルトフローレート値が各々34g/10分で,表2か
ら明らかなように実用上十分な水準の強伸度を有し,し
かも熱収縮性の高いものであった。また,実施例の不織
布は,表2から明らかなように実用的な不織布強力を有
し,熱収縮性が極めて優れ,熱成形用不織布として好適
なものであった。これに対し,比較例1の不織布は,長
繊維のメルトフローレート値が87g/10分と高く,
すなわち共重合体の重合度が低過ぎるために強度が低
く,したがってこの長繊維の特性が反映し不織布強力が
低いものであった。しかも,溶融重合体の流動性が高く
なり過ぎるため曵糸性と延伸性が低下した。一方,比較
例2の不織布は,長繊維のメルトフローレート値が12
g/10分と低く,すなわち共重合体の重合度が高く溶
融重合体の流動性が低くなり過ぎるため曵糸性と延伸性
が極めて悪化し,溶融紡糸時に単繊維の切断を生じ,し
たがって実用上十分な品位を具備しないものであった。
比較例3の不織布は,エチレンのランダム共重合量が少
いため熱収縮性が低いものであった。比較例4の不織布
は,重合体としてエチレンがランダム共重合されていな
い通常のポリプロピレン重合体を用いているため熱収縮
性が極めて低いものであった。Examples 3 to 6 and Comparative Examples 1 to 4 A polypropylene copolymer having a Q value, a melt flow rate value and a melting point shown in Table 1 and obtained by random copolymerization of propylene and ethylene (Example 3) Polymer No. 6 to No. 6
B, C, E, and G, polymer Nos. A, f and h), Q values and melt flow rate values shown in Table 1,
A polypropylene polymer having a melting point (Polymer No. of Comparative Example 4) was melted by an ordinary extruder-type melt extruder, and then a single-hole discharge was performed using a spinneret having a spinning hole diameter of 0.5 mm and a number of holes of 162. The melted fiber was melt-spun at a spinning temperature condition shown in Table 2 at a rate of 1.37 g / min, and the spun filament was taken up using a take-up roll having a take-up speed of 600 m / min. Stretching was performed at a draw ratio of 3.0 with a draw roll disposed on the side (i.e., a drawing speed of 1800 m / min) to obtain a drawn long fiber having a single fiber fineness of 5.0 denier. Subsequently, a web was formed in the same manner as in Example 1, and then subjected to an adhesive treatment in the same manner as in Example 1. The nonwoven fabric having a basis weight of 40 g / m 2 in which the polypropylene-based long fibers were partially thermally bonded to each other. I got Table 2 shows the properties of the obtained long fibers and nonwoven fabric, and the results of the spinnability during melt spinning. The long fiber of the embodiment is
The melt flow rate values were 34 g / 10 min, respectively, and as is clear from Table 2, they had a sufficiently high level of elongation for practical use and high heat shrinkage. Further, as apparent from Table 2, the nonwoven fabrics of the examples had practical nonwoven fabric strength, extremely excellent heat shrinkability, and were suitable as nonwoven fabrics for thermoforming. On the other hand, the nonwoven fabric of Comparative Example 1 had a high melt flow rate of long fibers of 87 g / 10 minutes,
That is, since the degree of polymerization of the copolymer was too low, the strength was low, and thus the nonwoven fabric strength was low, reflecting the characteristics of the long fibers. Moreover, since the flowability of the molten polymer was too high, the spinnability and the stretchability were lowered. On the other hand, the nonwoven fabric of Comparative Example 2 had a melt flow rate
g / 10 minutes, that is, the degree of polymerization of the copolymer is too high and the fluidity of the molten polymer is too low, so that the spinnability and drawability are extremely deteriorated, and single fibers are cut during melt spinning. It did not have sufficient quality.
The nonwoven fabric of Comparative Example 3 had low heat shrinkability due to a small amount of ethylene random copolymerized. The nonwoven fabric of Comparative Example 4 had a very low heat shrinkage because it used a normal polypropylene polymer in which ethylene was not randomly copolymerized.
【0023】実施例7 実施例2と同様にしてポリプロピレン系共重合体(重合
体No.ニ)を溶融・紡出し,紡出長繊維を引き取り,
連続して延伸し,単繊維繊度が5.0デニールの延伸長
繊維を得た。引き続き,前記延伸長繊維を巻き取ること
なくエアーサツカを介した後,コロナ放電により開繊
し,移動するコンベア上に堆積させてウエブを形成し
た。次いで,接着面積率が17%の彫刻ロールと表面平
滑な金属ロールとを具備する熱エンボスロール機を用
い,両ロールの表面温度を110℃,両ロール間の線圧
を50kg/cm,加工速度を5m/分としてウエブに
接着処理を施し,このポリプロピレン系長繊維同士が部
分的に熱接着された目付けが45g/m2 の不織布を得
た。得られた長繊維と不織布の特性,溶融紡糸時の製糸
性の結果を表2に示す。この長繊維は,メルトフローレ
ート値が34g/10分で,表2から明らかなように実
用上十分な水準の強伸度を有し,しかも熱収縮性の高い
ものであった。また,この不織布は,表2から明らかな
ように実用的な不織布強力を有し,熱収縮性が優れ,熱
成形用不織布として好適なものであった。Example 7 A polypropylene copolymer (Polymer No. 2) was melted and spun out in the same manner as in Example 2, and the spun filaments were taken out.
Continuous drawing was performed to obtain a drawn long fiber having a single fiber fineness of 5.0 denier. Subsequently, the drawn filaments were passed through an air filter without being wound up, opened by corona discharge, and deposited on a moving conveyor to form a web. Next, using a hot embossing roll machine equipped with an engraving roll having a bonding area ratio of 17% and a metal roll having a smooth surface, the surface temperature of both rolls was 110 ° C., the linear pressure between both rolls was 50 kg / cm, and the processing speed was high. Was set to 5 m / min, and the web was subjected to an adhesive treatment to obtain a nonwoven fabric having a basis weight of 45 g / m 2 in which the polypropylene-based filaments were partially thermally bonded to each other. Table 2 shows the properties of the obtained long fibers and nonwoven fabric, and the results of the spinnability during melt spinning. This long fiber had a melt flow rate value of 34 g / 10 minutes, had a sufficiently high level of elongation for practical use as is clear from Table 2, and had a high heat shrinkage. Further, as apparent from Table 2, this nonwoven fabric had a practical nonwoven fabric strength, was excellent in heat shrinkability, and was suitable as a nonwoven fabric for thermoforming.
【0024】実施例8 表1に示したQ値とメルトフローレート値,融点を有
し,プロピレンとエチレンがランダム共重合されたポリ
プロピレン系共重合体A(重合体No.ハ)と表1に示
したQ値とメルトフローレート値,融点を有するポリプ
ロピレン重合体B(重合体No.リ)とを通常のエクス
トルーダ型溶融押出機で各々個別に溶融した後,重合体
Aのみが紡出される紡糸孔径0.5mmで孔数108の
紡糸孔と重合体Bのみが紡出される紡糸孔径0.5mm
で孔数54の紡糸孔とを有する混繊紡糸口金を用い,両
重合体の単孔吐出量を1.37g/分(すなわち,前記
共重合体Aと重合体Bとの総重量に対する前記共重合体
Aの重量の比が66.7%)として表2に示した紡糸温
度条件で溶融紡出し,紡出長繊維を吸引速度が4050
m/分のエアーサツカを用いて引き取り,単繊維繊度が
3.0デニールの高配向未延伸長繊維を得た。引き続
き,実施例1と同様にしてウエブを形成し,次いで,実
施例1と同様にして接着処理を施し,このポリプロピレ
ン系長繊維同士が部分的に熱接着された目付けが38g
/m2 の不織布を得た。得られた共重合体Aのみからな
る長繊維と重合体Bのみからなる長繊維の各特性,不織
布の特性,溶融紡糸時の製糸性の結果を表2に示す。こ
の不織布は,表2から明らかなように実用的な不織布強
力を有し,熱収縮性が優れ,熱成形用不織布として好適
なものであった。Example 8 A polypropylene-based copolymer A (Polymer No. C) having a Q value, a melt flow rate value and a melting point shown in Table 1 and having propylene and ethylene copolymerized at random is shown in Table 1. Polypropylene polymer B (Polymer No. Li) having the indicated Q value, melt flow rate value, and melting point is individually melted by an ordinary extruder-type melt extruder, and then only polymer A is spun. A spinning hole having a hole diameter of 0.5 mm and a number of holes of 108 and a spinning hole diameter of 0.5 mm from which only the polymer B is spun.
Using a mixed fiber spinneret having a spinning hole having 54 holes, the single-hole discharge rate of both polymers was 1.37 g / min (that is, the copolymer weight based on the total weight of the copolymer A and the polymer B). The weight ratio of the polymer A was 66.7%) and the spinning temperature was as shown in Table 2.
The fibers were taken out using an air sucker of m / min to obtain highly oriented undrawn long fibers having a single fiber fineness of 3.0 denier. Subsequently, a web was formed in the same manner as in Example 1 and then subjected to an adhesive treatment in the same manner as in Example 1. The basis weight of the polypropylene filaments partially thermally bonded to each other was 38 g.
/ M 2 was obtained. Table 2 shows the properties of the obtained long fiber consisting of only the copolymer A and the long fiber consisting of only the polymer B, the properties of the nonwoven fabric, and the results of the spinnability during melt spinning. As apparent from Table 2, this nonwoven fabric had practical nonwoven fabric strength, excellent heat shrinkability, and was suitable as a nonwoven fabric for thermoforming.
【0025】比較例5 実施例8と同様にしてポリプロピレン系共重合体A(重
合体No.ハ)とポリプロピレン重合体B(重合体N
o.チ)とを溶融した後,重合体Aのみが紡出される紡
糸孔径0.5mmで孔数80の紡糸孔と重合体Bのみが
紡出される紡糸孔径0.5mmで孔数82の紡糸孔とを
有する混繊紡糸口金を用い(すなわち,前記共重合体A
と重合体Bとの総重量に対する前記共重合体Aの重量の
比が49.4%),以降,実施例8と同様にして紡出長
繊維を引き取り,単繊維繊度が3.0デニールの高配向
未延伸長繊維を得た。引き続き,実施例8と同様にして
ウエブを形成した後,接着処理を施し,このポリプロピ
レン系長繊維同士が部分的に熱接着された目付けが38
g/m2 の不織布を得た。得られた共重合体Aのみから
なる長繊維と重合体Bのみからなる長繊維の各特性,不
織布の特性,溶融紡糸時の製糸性の結果を表2に示す。
この不織布は,前記共重合体Aと重合体Bとの総重量に
対する前記共重合体Aの重量の比が低いため表2から明
らかなように熱収縮性が劣り,熱成形用不織布として不
適当なものであった。Comparative Example 5 In the same manner as in Example 8, a polypropylene-based copolymer A (Polymer No. C) and a polypropylene-based polymer B (Polymer N)
o. (H) after melting, a spinning hole having a spinning hole diameter of 0.5 mm and a hole number of 80 for spinning only the polymer A and a spinning hole having a spinning hole diameter of 0.5 mm and a hole number of 82 for spinning only the polymer B are formed. (That is, the copolymer A)
The ratio of the weight of the copolymer A to the total weight of the polymer A and the polymer B is 49.4%). Thereafter, the spun filaments are taken out in the same manner as in Example 8, and the single fiber fineness is 3.0 denier. A highly oriented undrawn continuous fiber was obtained. Subsequently, after forming a web in the same manner as in Example 8, an adhesive treatment was performed, and a basis weight in which the polypropylene filaments were partially thermally bonded to each other was 38.
g / m 2 of nonwoven fabric was obtained. Table 2 shows the properties of the obtained long fiber consisting of only the copolymer A and the long fiber consisting of only the polymer B, the properties of the nonwoven fabric, and the results of the spinnability during melt spinning.
This nonwoven fabric is inferior in heat shrinkability as apparent from Table 2 due to the low ratio of the weight of the copolymer A to the total weight of the copolymer A and the polymer B, and is unsuitable as a nonwoven fabric for thermoforming. It was something.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【表2】 [Table 2]
【0028】[0028]
【発明の効果】本発明の不織布は,前記特定のポリプロ
ピレン系長繊維から構成されるものであり,熱収縮性,
熱成形時の形態保持性及び軽量性が優れ,特に容器保護
用フイルタ等の熱成形用素材あるいは軽量化素材として
好適に使用することができるものである。The nonwoven fabric of the present invention is composed of the above-mentioned specific polypropylene long fiber,
It is excellent in shape retention and light weight during thermoforming, and can be suitably used particularly as a thermoforming material such as a container protection filter or a lightweight material.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 D01F 1/00 - 6/96 D01F 9/00 - 9/04 ──────────────────────────────────────────────────続 き Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) D04H 1/00-18/00 D01F 1/00-6/96 D01F 9/00-9/04
Claims (2)
レンと3重量%以上8重量%以下のエチレンとがランダ
ム共重合されたポリプロピレン系共重合体のみから構成
され、メルトフローレート値が15g/10分以上80
g/10分以下、単繊維繊度が10デニール以下、強度
が2g/デニール以上の長繊維を構成要素として少なく
とも50重量%含有するスパンボンド法により製造され
た不織布であって、該不織布中の少なくとも前記長繊維
同士は接着面積率が3%以上50%以下で部分的に熱接
着され、かつ温度100℃における乾熱面積収縮率が1
5%以上であることを特徴とするポリプロピレン系長繊
維不織布。[Claim 1] A and 92 wt% or more 97 wt% or less of propylene and 3 wt% or more and 8 wt% of ethylene consists only random copolymer polypropylene-based copolymer has a melt flow rate value is 15 g / 10 minutes or more 80
g / 10 min or less, a single fiber fineness of 10 denier or less, the strength is produced by a spunbond method contains at least 50 wt% as a constituent 2 g / denier or more long fiber
At least the long fibers in the nonwoven fabric are partially thermally bonded to each other at an adhesion area ratio of 3% or more and 50% or less, and have a dry heat area shrinkage ratio at a temperature of 100 ° C. of 1
A polypropylene-based long-fiber nonwoven fabric characterized by being at least 5%.
平均分子量/数平均分子量)が8以下であることを特徴
とする請求項1記載のポリプロピレン系長繊維不織布。Wherein wherein the Q value of the polypropylene copolymer (weight average molecular weight / number average molecular weight) is 8 or less
2. The polypropylene-based long-fiber nonwoven fabric according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5971293A JP3165758B2 (en) | 1993-02-23 | 1993-02-23 | Polypropylene long fiber non-woven fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5971293A JP3165758B2 (en) | 1993-02-23 | 1993-02-23 | Polypropylene long fiber non-woven fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06248554A JPH06248554A (en) | 1994-09-06 |
JP3165758B2 true JP3165758B2 (en) | 2001-05-14 |
Family
ID=13121099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5971293A Expired - Lifetime JP3165758B2 (en) | 1993-02-23 | 1993-02-23 | Polypropylene long fiber non-woven fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3165758B2 (en) |
-
1993
- 1993-02-23 JP JP5971293A patent/JP3165758B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06248554A (en) | 1994-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2065500B1 (en) | Heat-resistant non-woven fabric | |
JP3016361B2 (en) | Unidirectional elastic nonwoven fabric and method for producing the same | |
JP3261728B2 (en) | Thermal adhesive fiber sheet | |
JP2001502388A (en) | Thermal adhesive composite fiber and nonwoven fabric using the same | |
JP2925441B2 (en) | Core-sheath type composite short fiber and method for producing the same | |
JP3774114B2 (en) | Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same | |
JP6652855B2 (en) | Continuous fiber nonwoven fabric and method for producing the same | |
JPH06184905A (en) | Production of polypropylene-based nonwoven fabric | |
JP3165758B2 (en) | Polypropylene long fiber non-woven fabric | |
JP2872542B2 (en) | Thermally bonded nonwoven fabric and method for producing the same | |
JP2872543B2 (en) | Thermally bonded nonwoven fabric and method for producing the same | |
JP4582886B2 (en) | Weatherproof long fiber nonwoven fabric | |
JPH07197367A (en) | Filament-laminated spun-bonded nonwoven fabric | |
JPH11140766A (en) | Polyolefin conjugated continuous filament nonwoven fabric | |
JP3107626B2 (en) | Heat-bonded long-fiber nonwoven fabric | |
JP2866131B2 (en) | Method for producing ultrafine long-fiber nonwoven fabric | |
JP3849852B2 (en) | Nonwoven fabric and filter | |
JPH0192413A (en) | Bulky composite fiber | |
JPH0138902B2 (en) | ||
JP7378419B2 (en) | Nonwoven fabric and its manufacturing method | |
JPH0261156A (en) | Nonwoven fabric comprising hot adhesive filaments | |
JP7032780B2 (en) | Continuous fiber non-woven fabric and its manufacturing method | |
JPH11302925A (en) | Polylactic acid-based filament and its production | |
JP3849851B2 (en) | High strength polyethylene fiber nonwoven fabric and battery separator | |
JPH1143856A (en) | Non-woven fabric of conjugate, continuous fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20080302 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090302 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20100302 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20120302 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20120302 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |