[go: up one dir, main page]

JP3163679B2 - Surface acoustic wave substrate - Google Patents

Surface acoustic wave substrate

Info

Publication number
JP3163679B2
JP3163679B2 JP24964491A JP24964491A JP3163679B2 JP 3163679 B2 JP3163679 B2 JP 3163679B2 JP 24964491 A JP24964491 A JP 24964491A JP 24964491 A JP24964491 A JP 24964491A JP 3163679 B2 JP3163679 B2 JP 3163679B2
Authority
JP
Japan
Prior art keywords
film
temperature coefficient
acoustic wave
surface acoustic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24964491A
Other languages
Japanese (ja)
Other versions
JPH0590889A (en
Inventor
恭彦 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP24964491A priority Critical patent/JP3163679B2/en
Publication of JPH0590889A publication Critical patent/JPH0590889A/en
Application granted granted Critical
Publication of JP3163679B2 publication Critical patent/JP3163679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、弾性表面波基板に関
するもので、特に、零温度係数を得るための改良に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave substrate, and more particularly to an improvement for obtaining a zero temperature coefficient.

【0002】[0002]

【従来の技術】一般に、電子部品材料には、温度変化に
よる特性の変化、すなわち温度係数が小さいことが要求
される。弾性表面波基板においても例外ではない。弾性
表面波基板では、温度係数は、通常、遅延時間の温度変
化によって評価されている。
2. Description of the Related Art In general, electronic component materials are required to have a characteristic change due to a temperature change, that is, a small temperature coefficient. The surface acoustic wave substrate is no exception. In the case of a surface acoustic wave substrate, the temperature coefficient is usually evaluated by the temperature change of the delay time.

【0003】本発明者は、先に、石英ガラスからなる基
材上に圧電膜を形成した層構造基板、より具体的にはZ
nO/パイレックスガラスおよびTa2 5 /石英ガラ
ス基板において、異符号の温度係数の組合せと温度係数
の膜厚依存性とから、層構造基板全体の温度係数を零に
近づける技術を提案している(特開昭53−11034
8号公報および特開昭61−195013号公報)。
The present inventor has previously proposed a layered substrate in which a piezoelectric film is formed on a substrate made of quartz glass, more specifically, a Z substrate.
In the case of nO / pyrex glass and Ta 2 O 5 / quartz glass substrates, a technique has been proposed in which the temperature coefficient of the entire layer structure substrate approaches zero due to the combination of different temperature coefficients and the dependence of the temperature coefficient on the thickness. (JP-A-53-11034
No. 8 and JP-A-61-195013).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来技術では、1次温度係数にのみ注目しており、2
次温度係数については全く配慮されていない。弾性表面
波の遅延時間温度変化率と周波数温度変化率は、 Δf/f=−Δτ/τ =a(T−T0 )+b(T−T0 2 で表わされる。ここで、Δfは周波数変化量、fは周波
数、Δτは遅延時間変化量、τは遅延時間、Tは温度、
0 は基準温度、aは1次温度係数、bは2次温度係数
である。
However, in the above-mentioned prior art, attention is paid only to the primary temperature coefficient,
No consideration is given to the secondary temperature coefficient. The delay time temperature change rate and the frequency temperature change rate of the surface acoustic wave are represented by Δf / f = −Δτ / τ = a (T−T 0 ) + b (T−T 0 ) 2 . Here, Δf is a frequency change amount, f is a frequency, Δτ is a delay time change amount, τ is a delay time, T is a temperature,
T 0 is a reference temperature, a is a primary temperature coefficient, and b is a secondary temperature coefficient.

【0005】それゆえに、この発明の目的は、1次温度
係数および2次温度係数の双方ともに制御可能な弾性表
面波基板を提供しようとすることである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a surface acoustic wave substrate capable of controlling both a first-order temperature coefficient and a second-order temperature coefficient.

【0006】[0006]

【課題を解決するための手段】この発明にかかる弾性表
面波基板は、石英ガラスからなる基材と、この基材上に
形成される2層構造の圧電膜とを備え、圧電膜を構成す
る一方の層がZnOからなり、他方の層がTa2 5
らなることを特徴としている。
A surface acoustic wave substrate according to the present invention comprises a substrate made of quartz glass, and a two-layer piezoelectric film formed on the substrate, forming a piezoelectric film. It is characterized in that one layer is made of ZnO and the other layer is made of Ta 2 O 5 .

【0007】[0007]

【作用】この発明では、前述したいわゆる「温度補償
形」基板であるZnO/パイレックスガラス基板とTa
2 5 /石英ガラス基板とが、互いに異符号の2次温度
係数を有することに注目し、これらを組合せながら、Z
nO層とTa2 5 層との各々の厚みを調節することに
よって、1次温度係数および2次温度係数の双方を制御
できる。
According to the present invention, a ZnO / Pyrex glass substrate which is a so-called "temperature compensation type" substrate and a Ta
Note that the 2 O 5 / quartz glass substrate has second-order temperature coefficients of opposite signs.
By adjusting the thickness of each of the nO layer and the Ta 2 O 5 layer, both the primary temperature coefficient and the secondary temperature coefficient can be controlled.

【0008】[0008]

【発明の効果】このように、この発明によれば、弾性表
面波の周波数温度変化における1次温度係数だけでな
く、2次温度係数も制御することができる。それゆえ
に、このような1次温度係数および2次温度係数の双方
を制御することにより、1次および2次の双方について
零温度係数とされた弾性表面波基板を提供することがで
きる。
As described above, according to the present invention, it is possible to control not only the first-order temperature coefficient but also the second-order temperature coefficient in the frequency temperature change of the surface acoustic wave. Therefore, by controlling both the first-order temperature coefficient and the second-order temperature coefficient, it is possible to provide a surface acoustic wave substrate having a zero temperature coefficient for both the first and second order.

【0009】したがって、この発明による弾性表面波基
板を用いれば、たとえば通信機用弾性表面波共振子また
は弾性表面波フィルタなどの弾性表面波装置の信頼性を
高めることができる。
Therefore, the use of the surface acoustic wave substrate according to the present invention can improve the reliability of a surface acoustic wave device such as a surface acoustic wave resonator for a communication device or a surface acoustic wave filter.

【0010】[0010]

【実施例】図1には、この発明の一実施例による弾性表
面波基板1の一部が断面図で示されている。弾性表面波
基板1は、石英ガラス(SiO2 )からなる基材2と、
基材2上に形成される2層構造の圧電膜3とを備える。
圧電膜3を構成する一方の層は、ZnO膜4によって与
えられ、他方の層は、Ta2 5 膜5によって与えられ
る。この実施例では、基材2上に、ZnO膜4、Ta2
5 膜5の順に形成されたが、この順序は逆であっても
よい。
FIG. 1 is a sectional view showing a part of a surface acoustic wave substrate 1 according to an embodiment of the present invention. The surface acoustic wave substrate 1 includes a substrate 2 made of quartz glass (SiO 2 ),
A piezoelectric film 3 having a two-layer structure formed on a base material 2.
One layer constituting the piezoelectric film 3 is provided by a ZnO film 4, and the other layer is provided by a Ta 2 O 5 film 5. In this embodiment, a ZnO film 4 and a Ta 2
Although the O 5 film 5 is formed in this order, the order may be reversed.

【0011】図1に示した弾性表面波基板1の遅延時間
温度係数(TCD)は、基材2、ZnO膜4およびTa
2 5 膜5の各々の物理定数と温度係数とから計算でき
る。図2には、ZnO膜4の膜厚h1をパラメータと
し、Ta2 5 膜5の膜厚h2を変化させた場合の1次
温度係数が示されている。なお、図2においては、それ
ぞれの膜厚h1およびh2は、hk1およびhk2(k
=2π/λ)と基準化された膜厚で表わされている。
The temperature coefficient of delay time (TCD) of the surface acoustic wave substrate 1 shown in FIG.
It can be calculated from each physical constant and temperature coefficient of the 2 O 5 film 5. Figure 2 is the thickness h1 of the ZnO film 4 as a parameter, the primary temperature coefficient is shown in the case of changing the thickness h2 of the Ta 2 O 5 film 5. In FIG. 2, the respective film thicknesses h1 and h2 are hk1 and hk2 (k
= 2π / λ) and the normalized film thickness.

【0012】図2から、1次温度係数に関して、零温度
係数を与える膜厚の組合せが多数存在することがわか
る。
FIG. 2 shows that there are many combinations of film thicknesses that give a zero temperature coefficient with respect to the primary temperature coefficient.

【0013】図3は、図2に示した結果から導き出され
る、1次温度係数aに関して零温度係数を与える膜厚の
組合せを示している。
FIG. 3 shows combinations of film thicknesses that give a zero temperature coefficient with respect to the primary temperature coefficient a, which are derived from the results shown in FIG.

【0014】図3に示した曲線上に位置する膜厚の組合
せに従って、さらに2次温度係数bに関しても零温度係
数を与え得る膜厚の組合せを探究すべく、以下の実験を
行なった。
The following experiment was conducted in order to find a combination of film thicknesses capable of providing a zero temperature coefficient with respect to the secondary temperature coefficient b in accordance with the combination of film thicknesses located on the curve shown in FIG.

【0015】ZnO膜4およびTa2 5 膜5は、それ
ぞれ、ターゲットにZnOおよびTaを用い、反応性ス
パッタリング法で作製した。ZnO膜4は、c軸配向し
たものを、Ta2 5 膜5は、作製上の制約から、アモ
ルファス膜を採用した。しかし、温度特性に関しては、
アモルファス膜は、x軸配向の膜と差異はないように推
測される。周波数温度変化の測定は、標準試料(128
°YX・LiNbO3 )の発振器を構成し、温度の校正
を行ない、干渉による零点法で行なった。
The ZnO film 4 and the Ta 2 O 5 film 5 were prepared by reactive sputtering using ZnO and Ta as targets. The ZnO film 4 was c-axis oriented, and the Ta 2 O 5 film 5 was an amorphous film due to manufacturing restrictions. However, regarding the temperature characteristics,
It is assumed that the amorphous film is not different from the x-axis oriented film. The measurement of the frequency temperature change is performed using a standard sample (128
(YX.LiNbO 3 ) was constructed, the temperature was calibrated, and the zero point method based on interference was performed.

【0016】図3において、「○」印は、上述の実験に
より得られたいくつかの試料の膜厚の組合せに相当する
点を示している。「○」印で示された各試料について、
2次温度係数bを求めると、図3に示す数値のとおりと
なった。すなわち、hk1=0,hk2=1.78にお
いて、b>0、また、hk1=1.85,hk2=0に
おいて、b<0となることに注目すると、図3の1次温
度係数aが零になる曲線上において、2次温度係数bが
正から負へ変化し、b=0を与える膜厚の組合せが必ず
存在することがわかる。加えて、hk1=0.88,h
k2=0.66において、2次温度係数bがほぼ零の値
を示している。このことから、hk1=0.88,hk
2=0.66の膜厚の組合せ付近で、2次温度係数bが
零になることが推測できる。
In FIG. 3, marks “○” indicate points corresponding to combinations of the film thicknesses of some samples obtained by the above-described experiments. For each sample marked with a “○”,
When the secondary temperature coefficient b was obtained, the values were as shown in FIG. That is, when it is noted that b> 0 at hk1 = 0 and hk2 = 1.78 and b <0 at hk1 = 1.85 and hk2 = 0, the primary temperature coefficient a in FIG. It can be seen that on the curve, the secondary temperature coefficient b changes from positive to negative, and there is always a combination of film thicknesses that gives b = 0. In addition, hk1 = 0.88, h
At k2 = 0.66, the secondary temperature coefficient b shows a value of almost zero. From this, hk1 = 0.88, hk
It can be estimated that the secondary temperature coefficient b becomes zero near the combination of the film thicknesses of 2 = 0.66.

【0017】次に、基準化膜厚hk1=0.88のZn
O膜4の上にTa25 膜5を種々の厚みで形成した試
料を作製し、その1次温度係数(TCD)を求めたとこ
ろ、図4に示すような結果が得られた。図4において、
「○」印で示した実験値にばらつきが生じているのは、
Ta2 5 を5回に分けて形成し、それぞれの膜厚で周
波数を変えて測定を行なったため、および、温度を変化
させたことによる膜の変化が生じたためであると考えら
れる。図4に示した結果は、前述した図2に示した計算
結果と符合している。図4から、hk1=0.88,h
k2=0.66において、1次温度係数が零となること
がわかる。
Next, Zn having a standardized film thickness hk1 = 0.88
Samples having various thicknesses of the Ta 2 O 5 film 5 formed on the O film 4 were prepared, and their primary temperature coefficients (TCD) were obtained. The results shown in FIG. 4 were obtained. In FIG.
Variations in the experimental values indicated by the “」 ”marks
This is presumably because Ta 2 O 5 was formed five times and the frequency was changed for each film thickness, and the film was changed by changing the temperature. The result shown in FIG. 4 matches the calculation result shown in FIG. 2 described above. From FIG. 4, hk1 = 0.88, h
It can be seen that the primary temperature coefficient becomes zero at k2 = 0.66.

【0018】上述したhk1=0.88,hk2=0.
66の試料の温度変化による周波数の変化率が図5に示
されている。この試料は、図3に示すように、bがほぼ
零であり、その周波数変化率は、測定誤差(±3pp
m)を考慮しても3次関数に近似できる。
The above hk1 = 0.88, hk2 = 0.
FIG. 5 shows the rate of change of the frequency due to the temperature change of the 66 samples. In this sample, as shown in FIG. 3, b is almost zero, and the frequency change rate is the measurement error (± 3 pp).
m) can be approximated to a cubic function.

【0019】このように、図1に示した2層構造の圧電
膜3を有する弾性表面波基板1によれば、1次温度係数
と2次温度係数との双方が制御可能であり、結果として
3次特性を示す高安定な弾性表面波基板を実現できる。
As described above, according to the surface acoustic wave substrate 1 having the two-layer piezoelectric film 3 shown in FIG. 1, both the primary temperature coefficient and the secondary temperature coefficient can be controlled. A highly stable surface acoustic wave substrate exhibiting tertiary characteristics can be realized.

【0020】なお、上述した実験例では、ZnO膜4お
よびTa2 5 膜5の形成を、反応性スパッタリング法
で行なったが、その他、CVD法などの薄膜形成方法に
よって行なってもよい。
In the experimental example described above, the ZnO film 4 and the Ta 2 O 5 film 5 are formed by a reactive sputtering method, but may be formed by a thin film forming method such as a CVD method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例による弾性表面波基板1の
一部を拡大して示す断面図である。
FIG. 1 is an enlarged sectional view showing a part of a surface acoustic wave substrate 1 according to an embodiment of the present invention.

【図2】図1に示した弾性表面波基板1において、Zn
O膜4の基準化膜厚hk1をパラメータとし、Ta2
5 膜5の基準化膜厚hk2を変化させた場合の1次温度
係数(TCD)の計算結果を示す図である。
FIG. 2 shows a surface acoustic wave substrate 1 shown in FIG.
Using the normalized thickness hk1 of the O film 4 as a parameter, Ta 2 O
5 is a diagram showing a calculation result of a primary temperature coefficient (TCD) when the standardized film thickness hk2 of the five films 5 is changed. FIG.

【図3】図2に示した結果から導き出される、1次温度
係数aに関して零温度係数を与える膜厚の組合せを示す
図であり、併せて、実験により得られたいくつかの試料
の2次温度係数bの数値も示している。
FIG. 3 is a diagram showing combinations of film thicknesses giving a zero temperature coefficient with respect to a primary temperature coefficient a, which are derived from the results shown in FIG. 2; The numerical value of the temperature coefficient b is also shown.

【図4】基準化膜厚hk1=0.88のZnO膜4の上
にTa2 5 膜5を種々の厚みで形成した試料の1次温
度係数(TCD)を示す図である。
FIG. 4 is a diagram showing first order temperature coefficients (TCD) of samples in which Ta 2 O 5 films 5 are formed at various thicknesses on a ZnO film 4 having a standardized film thickness hk1 = 0.88.

【図5】hk1=0.88,hk2=0.66の試料の
温度変化による周波数の変化率を示す図である。
FIG. 5 is a diagram showing a rate of change in frequency due to a temperature change of a sample when hk1 = 0.88 and hk2 = 0.66.

【符号の説明】[Explanation of symbols]

1 弾性表面波基板 2 基材 3 圧電膜 4 ZnO膜 5 Ta2 5 1 SAW substrate 2 substrate 3 piezoelectric film 4 ZnO film 5 Ta 2 O 5 film

フロントページの続き (56)参考文献 特開 昭54−66792(JP,A) Y.NAKAGAWA;“CONTR OL OF SECOND ORDER TEMPERATURE CEFFI CIENT OF SAW PROPA GATING IN TWO THIN FILM LAYERS”1993 IE EE ULTRASONICS SYM POSIUM,VOL1 P.287−290 中川恭彦 他;“層構造弾性表面波基 板の2次温度係数制御”電子情報通信学 会技術研究報告,Vol.91(US91− 51),No.274 p.29−36 (58)調査した分野(Int.Cl.7,DB名) H03H 9/25 Continuation of front page (56) References JP-A-54-66792 (JP, A) NAGAGAWA; "CONTROL OF SECOND ORDER TEMPERATURE CEFFI CIENT OF SAW PROPA GATING IN TWO THIN FILM LAYERS" 1993 IE ULTRASONICS Symposium. 287-290 Yasuhiko Nakagawa et al .; "Secondary Temperature Coefficient Control of Layered Surface Acoustic Wave Substrate" IEICE Technical Report, Vol. 91 (US91-51), no. 274 p. 29-36 (58) Field surveyed (Int. Cl. 7 , DB name) H03H 9/25

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 石英ガラスからなる基材と、 前記基材上に形成される2層構造の圧電膜とを備え、 前記圧電膜を構成する一方の層がZnOからなり、他方
の層がTa2 5 からなる、 弾性表面波基板。
1. A piezoelectric device comprising: a substrate made of quartz glass; and a piezoelectric film having a two-layer structure formed on the substrate. One of the layers constituting the piezoelectric film is made of ZnO, and the other layer is made of Ta. A surface acoustic wave substrate made of 2 O 5 .
JP24964491A 1991-09-27 1991-09-27 Surface acoustic wave substrate Expired - Fee Related JP3163679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24964491A JP3163679B2 (en) 1991-09-27 1991-09-27 Surface acoustic wave substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24964491A JP3163679B2 (en) 1991-09-27 1991-09-27 Surface acoustic wave substrate

Publications (2)

Publication Number Publication Date
JPH0590889A JPH0590889A (en) 1993-04-09
JP3163679B2 true JP3163679B2 (en) 2001-05-08

Family

ID=17196091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24964491A Expired - Fee Related JP3163679B2 (en) 1991-09-27 1991-09-27 Surface acoustic wave substrate

Country Status (1)

Country Link
JP (1) JP3163679B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3717034B2 (en) * 1998-11-10 2005-11-16 株式会社村田製作所 Surface acoustic wave device
JP4385607B2 (en) * 2003-01-29 2009-12-16 セイコーエプソン株式会社 Surface acoustic wave device, frequency filter, oscillator, electronic circuit and electronic equipment
CN109988997B (en) * 2019-03-21 2020-12-08 淮阴工学院 Thermal film and its preparation method and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Y.NAKAGAWA;"CONTROL OF SECOND ORDER TEMPERATURE CEFFICIENT OF SAW PROPAGATING IN TWO THIN FILM LAYERS"1993 IEEE ULTRASONICS SYMPOSIUM,VOL1 P.287−290
中川恭彦 他;"層構造弾性表面波基板の2次温度係数制御"電子情報通信学会技術研究報告,Vol.91(US91−51),No.274 p.29−36

Also Published As

Publication number Publication date
JPH0590889A (en) 1993-04-09

Similar Documents

Publication Publication Date Title
US4037176A (en) Multi-layered substrate for a surface-acoustic-wave device
US4456850A (en) Piezoelectric composite thin film resonator
US4516049A (en) Multi-layer acoustic surface wave device having minimal delay time temperature coefficient
US7863801B2 (en) Acoustic wave device
US5432392A (en) Surface wave device
US4354130A (en) Surface acoustic wave device using a multi-layer substrate including α2 O3, SiO and ZnO
US5719538A (en) Surface acoustic wave device having negative temperature coefficient of decay
CA2197829C (en) Surface acoustic wave device
JPS594310A (en) Surface acoustic wave device
JP2783550B2 (en) Surface acoustic wave oscillator
Shikata et al. High frequency bandpass filter using polycrystalline diamond
Tomar et al. Temperature stability of ZnO thin film SAW device on fused quartz
JP3163679B2 (en) Surface acoustic wave substrate
JP2000196410A (en) High-stability and high-coupling surface acoustic wave substrate, surface acoustic wave filter using the same and surface acoustic wave function element
Nakahata et al. Fabrication of 2.5 GHz SAW retiming filter with SiO/sub 2//ZnO/diamond structure
US4236095A (en) Surface acoustic wave device comprising piezoelectric substrate having zinc oxide layer on α-alumina layer
US5521454A (en) Surface wave filter element
JP3341596B2 (en) Surface wave device
JPH0236608A (en) Frequency adjustment method for surface acoustic wave elements
JPH05254991A (en) Thin film laminated crystal and method for manufacturing the same
JP3780791B2 (en) Surface acoustic wave device
JPS61269509A (en) Surface acoustic wave element
JPH04341005A (en) Surface acoustic wave element using diamond film
Tomar et al. Improvements in the temperature stability of an IDT/ZnO/fused-quartz thin film SAW device with ZnO over-layer
JP3365505B2 (en) Surface acoustic wave device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees