[go: up one dir, main page]

JP3154134B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP3154134B2
JP3154134B2 JP02140992A JP2140992A JP3154134B2 JP 3154134 B2 JP3154134 B2 JP 3154134B2 JP 02140992 A JP02140992 A JP 02140992A JP 2140992 A JP2140992 A JP 2140992A JP 3154134 B2 JP3154134 B2 JP 3154134B2
Authority
JP
Japan
Prior art keywords
light
light receiving
condenser lens
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02140992A
Other languages
Japanese (ja)
Other versions
JPH05218373A (en
Inventor
功 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP02140992A priority Critical patent/JP3154134B2/en
Publication of JPH05218373A publication Critical patent/JPH05218373A/en
Application granted granted Critical
Publication of JP3154134B2 publication Critical patent/JP3154134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体撮像装置に関し、
特に、受光部上にマイクロ集光レンズを形成した固体撮
像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device,
In particular, the present invention relates to a solid-state imaging device in which a micro condenser lens is formed on a light receiving unit.

【0002】[0002]

【従来の技術】固体撮像装置、例えばCCD固体撮像装
置は、そのCCDにおける信号電荷及び雑音と像面照度
との関係をみた場合、低照度側において、信号電荷のゆ
らぎによる雑音(ショット雑音)と暗時雑音の影響が大
きくなるということが知られている。
2. Description of the Related Art In a solid-state image pickup device, for example, a CCD solid-state image pickup device, when the relationship between signal charge and noise in the CCD and illuminance on an image surface is viewed, noise (shot noise) due to fluctuation of signal charge on the low illuminance side. It is known that the influence of dark noise increases.

【0003】上記ショット雑音を減らすには、受光部の
開口率を大きくすれば良いが、最近の微細化傾向に伴
い、上記開口率の増大化には限界がある。そこで、現
在、受光部上にマイクロ集光レンズを形成した構造が提
案されている。このマイクロ集光レンズを形成した構造
の場合、光の利用率が上がり、受光部における感度の向
上を図ることができ、上記ショット雑音の低減化に有効
となる(尚、マイクロ集光レンズの形成方法について
は、例えば特開昭60−53073号公報及び特開平1
−10666号公報参照)。
The shot noise can be reduced by increasing the aperture ratio of the light receiving portion. However, with the recent trend toward miniaturization, there is a limit to the increase in the aperture ratio. Therefore, a structure in which a micro condenser lens is formed on a light receiving unit has been proposed. In the case of the structure in which the micro condenser lens is formed, the light utilization rate increases, the sensitivity in the light receiving section can be improved, and this is effective in reducing the shot noise (the formation of the micro condenser lens). The method is described in, for example, JP-A-60-53073 and
-10666 publication).

【0004】従来のCCD固体撮像装置は、図8に示す
ように、シリコン基板41上に、SiO2等からなるゲ
ート絶縁膜42を介して選択的に多結晶シリコン層から
なる転送電極43が形成され、これら転送電極43上に
層間膜44を介してAl遮光膜45が選択的に形成さ
れ、更にこのAl遮光膜45を含む全面に平坦化膜46
が積層され、そして、該平坦化膜46上にマイクロ集光
レンズ47が形成されて構成されている。
In a conventional CCD solid-state imaging device, as shown in FIG. 8, a transfer electrode 43 made of a polycrystalline silicon layer is selectively formed on a silicon substrate 41 via a gate insulating film 42 made of SiO2 or the like. An Al light-shielding film 45 is selectively formed on these transfer electrodes 43 via an interlayer film 44, and a flattening film 46 is formed on the entire surface including the Al light-shielding film 45.
Are stacked, and a micro condenser lens 47 is formed on the flattening film 46.

【0005】ここで、上記転送電極43の形成されてい
ない部分が受光部48であり、この受光部48上におい
て、上記Al遮光膜45が除去され、更に、この受光部
48に対応して上記マイクロ集光レンズ47が形成され
る。
Here, a portion where the transfer electrode 43 is not formed is a light receiving portion 48, and the Al light shielding film 45 is removed on the light receiving portion 48. A micro condenser lens 47 is formed.

【0006】ところで、上記マイクロ集光レンズ47
は、入射光として単純に平行光のみを考えた場合、受光
部48内に確実に集光される形状とすればよい。そこ
で、従来では、図9Aに示すように、カメラ用対物レン
ズ49の絞り径を最小にした場合(即ちF値を最大にし
た場合)における入射光(平行光)の受光部48上での
スポット径が受光部48の開口幅W(図8参照)以下と
なるように、マイクロ集光レンズの曲率半径r(図8参
照)を選定している。他の例では、マイクロ集光レンズ
47の屈折率を変える方法も提案されている。
Incidentally, the micro condenser lens 47
When only parallel light is considered as incident light, the shape may be such that light is surely condensed in the light receiving unit 48. Therefore, conventionally, as shown in FIG. 9A, when the aperture diameter of the camera objective lens 49 is minimized (that is, when the F-number is maximized), the spot of the incident light (parallel light) on the light receiving unit 48 is reduced. The radius of curvature r (see FIG. 8) of the micro condenser lens is selected so that the diameter is equal to or smaller than the opening width W (see FIG. 8) of the light receiving section 48. In another example, a method of changing the refractive index of the micro condenser lens 47 has been proposed.

【0007】このように、マイクロ集光レンズ47の曲
率半径rを選定することで、該マイクロ集光レンズ47
の集光率(マイクロ集光レンズ有り時の感度/マイクロ
集光レンズ無し時の感度)を最大にすることができ、C
CD固体撮像装置の感度を向上させることが可能とな
る。
As described above, by selecting the radius of curvature r of the micro condenser lens 47, the micro condenser lens 47 is selected.
Can be maximized (sensitivity with micro condenser lens / sensitivity without micro condenser lens).
It is possible to improve the sensitivity of the CD solid-state imaging device.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、受光部
48への入射光は、カメラ用対物レンズ49の絞り径
(F値)によって、その入射角度成分が変化する。例え
ば、カメラ用対物レンズ49の絞りを開放側にもってい
き、例えば図9Bに示すように、その絞り径を最大にし
た場合(即ちF値を最小にした場合)、平行光から斜め
光まで様々な角度を持つ光が入射する。従って、平行光
で最適な集光となるマイクロ集光レンズ47の形状で
は、上記F値が最小の場合において、合焦点がずれた斜
め光入射成分が増大することになる。
However, the incident angle component of the light incident on the light receiving section 48 changes depending on the aperture diameter (F value) of the camera objective lens 49. For example, when the aperture of the camera objective lens 49 is moved to the open side, for example, as shown in FIG. Light having an appropriate angle is incident. Therefore, in the case of the shape of the micro-condensing lens 47 that is optimally condensed by the parallel light, the oblique light incident component out of focus increases when the F value is minimum.

【0009】この場合、図8に示すように、入射光は、
Al遮光膜45の肩の部分において遮光されてしまい、
充分な集光効果を得ることができないという問題が生じ
る。即ち、カメラ用対物レンズ49のF値が小さくなる
にしたがって、マイクロ集光レンズ47の集光率が低下
する。このようなことから、全ての絞り位置において集
光効果を一定に保つことは、現実的に、非常に困難であ
る。
[0009] In this case, as shown in FIG.
The light is shielded at the shoulder of the Al light shielding film 45,
There is a problem that a sufficient light-collecting effect cannot be obtained. That is, as the F-number of the camera objective lens 49 decreases, the light collection rate of the micro light collection lens 47 decreases. For this reason, it is practically very difficult to keep the light-collecting effect constant at all aperture positions.

【0010】本発明は、このような課題に鑑み成された
もので、その目的とするところは、集光率を最大に取り
ながら、集光率のF値依存性を改善することができ、マ
イクロ集光レンズ本来の効果である感度の向上を充分に
発揮させることができる固体撮像装置を提供することに
ある。
The present invention has been made in view of such a problem, and an object of the present invention is to improve the F-number dependency of the light collection rate while maximizing the light collection rate. An object of the present invention is to provide a solid-state imaging device capable of sufficiently exhibiting the sensitivity improvement which is an original effect of a micro condenser lens.

【0011】[0011]

【課題を解決するための手段】本発明は、半導体基板1
に多数の受光部3が夫々分離されて形成され、各受光部
3上に夫々集光レンズ14が形成され、かつ該集光レン
ズ14の曲率半径rが、入射光の受光部3上でのスポッ
ト径が該受光部3の開口幅W以下となるように選定され
た固体撮像装置において、カメラ用対物レンズのF値を
最小にした場合での斜め光の集光レンズ14における屈
折光L1 の鉛直線m上とのなす角をθ1、上記F値を最
大にした場合での平行光の集光レンズ14における屈折
光L2 の鉛直線m上とのなす角をθ2 、上記屈折光L1
における半導体基板1表面での入射位置と、上記屈折光
2 における半導体基板1表面での入射位置との間隔を
d、上記平行光と上記斜め光の集光レンズ14上での同
一入射点と半導体基板1表面間の距離をhとしたとき、 d=(tanθ1 −tanθ2 )・h を満足し、かつ受光部3の開口幅をWとしたとき、 d≦W を満足するように構成する。
According to the present invention, there is provided a semiconductor substrate comprising:
A large number of light receiving portions 3 are formed separately from each other, a condenser lens 14 is formed on each light receiving portion 3, and the radius of curvature r of the condenser lens 14 is changed to a value corresponding to the incident light on the light receiving portion 3. In the solid-state imaging device selected so that the spot diameter is equal to or less than the opening width W of the light receiving unit 3, the refracted light L 1 of the oblique light condensing lens 14 when the F value of the camera objective lens is minimized. The angle between the vertical line m and the vertical line m is θ 1 , the angle between the parallel light converging lens 14 and the refracted light L 2 on the vertical line m when the F value is maximized is θ 2 , Light L 1
The incident position on the surface of the semiconductor substrate 1 in the same point of incidence of the distance between the incident position of the semiconductor substrate 1 in the refracted light L 2 d, on the condenser lens 14 of the parallel light and the oblique light When the distance between the surfaces of the semiconductor substrate 1 is h, d = (tan θ 1 -tan θ 2 ) · h is satisfied, and when the opening width of the light receiving section 3 is W, d ≦ W is satisfied. I do.

【0012】[0012]

【作用】上述の本発明の構成によれば、カメラ用対物レ
ンズのF値を最大にした場合における平行光の受光部3
上でのスポット径、並びに上記F値を最小にした場合に
おける斜め光の受光部3上でのスポット径が、受光部3
の開口幅W以下となるため、上記斜め光が遮光膜11で
遮光されるということがなくなり、平行光だけでなく斜
め光も受光部3に効率よく集光させることができ、F値
を小さくするにしたがって、集光レンズ14の集光率が
低下するという集光率のF値依存性を改善させることが
できる。その結果、集光レンズ14本来の効果である感
度の向上を充分に発揮させることができる。
According to the configuration of the present invention described above, the parallel light receiving portion 3 when the F-number of the camera objective lens is maximized.
The spot diameter on the light receiving section 3 and the spot diameter on the light receiving section 3 of the oblique light when the F value is minimized
, The oblique light is not blocked by the light-shielding film 11, so that not only parallel light but also oblique light can be efficiently condensed on the light receiving portion 3, and the F value is reduced. As a result, it is possible to improve the F-number dependency of the light-collecting rate, that is, the light-collecting rate of the light-collecting lens 14 decreases. As a result, the improvement in sensitivity, which is the original effect of the condenser lens 14, can be sufficiently exhibited.

【0013】[0013]

【実施例】以下、図1〜図7を参照しながら本発明の実
施例を説明する。図1は、本実施例に係るCCD固体撮
像装置の要部を示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a cross-sectional view illustrating a main part of the CCD solid-state imaging device according to the present embodiment.

【0014】このCCD固体撮像装置は、図示するよう
に、N型シリコン基板1上の第1のP型ウェル領域2内
にN型の受光部3と垂直レジスタ4並びにP型のチャネ
ル・ストッパ領域5が形成されている。また、受光部3
表面にP型の正電荷蓄積領域6が形成され、垂直レジス
タ4直下には第2のP型ウェル領域7が形成されてい
る。
As shown in FIG. 1, the CCD solid-state imaging device includes an N-type light receiving portion 3, a vertical register 4, and a P-type channel stopper region in a first P-type well region 2 on an N-type silicon substrate 1. 5 are formed. Also, the light receiving unit 3
A P-type positive charge accumulation region 6 is formed on the surface, and a second P-type well region 7 is formed immediately below the vertical register 4.

【0015】更に、第1のP型ウェル領域2上にゲート
絶縁膜8を介して多結晶シリコン層による転送電極9が
選択的に形成され、この転送電極9上に層間絶縁膜10
を介してAl遮光膜11が形成され、このAl遮光膜1
1を含む全面に平坦化膜12及び色フィルタ層13が順
次積層され、該色フィルタ層13上にマイクロ集光レン
ズ14が形成されてCCD固体撮像素子が構成されてい
る。
Further, a transfer electrode 9 of a polycrystalline silicon layer is selectively formed on the first P-type well region 2 via a gate insulating film 8, and an interlayer insulating film 10 is formed on the transfer electrode 9.
An Al light shielding film 11 is formed through the
A flattening film 12 and a color filter layer 13 are sequentially laminated on the entire surface including the substrate 1, and a micro condenser lens 14 is formed on the color filter layer 13 to constitute a CCD solid-state imaging device.

【0016】そして、上記受光部3が多数マトリクス状
に配列されてイメージエリアが形成される。尚、受光部
3と垂直レジスタ4間に形成されたP型の低濃度領域1
5は読出しゲートである。また、このCCD固体撮像素
子の受光部周辺のレイアウトを図2に示す。
Then, a large number of the light receiving sections 3 are arranged in a matrix to form an image area. The P-type low-concentration region 1 formed between the light receiving unit 3 and the vertical register 4
5 is a read gate. FIG. 2 shows a layout around a light receiving section of the CCD solid-state imaging device.

【0017】上記Al遮光膜11は、受光部3上におい
て選択的にエッチング除去されており、光は、このエッ
チング除去によって形成された受光部開口11aを通じ
て受光部3内に入射されるようになっている。
The Al light-shielding film 11 is selectively etched away on the light receiving portion 3, and light is incident on the light receiving portion 3 through the light receiving portion opening 11a formed by this etching removal. ing.

【0018】しかして、本例においては、マイクロ集光
レンズ14の曲率半径rを最適化すると共に、マイクロ
集光レンズ14と受光部3間の高さを低くして構成す
る。
In this embodiment, the radius of curvature r of the micro condenser lens 14 is optimized, and the height between the micro condenser lens 14 and the light receiving section 3 is reduced.

【0019】即ち、カメラ用対物レンズ(図示せず)の
F値を最大にした場合(絞り径を最小にした場合)での
平行光の受光部3上でのスポット径が受光部3の開口幅
W以下となるようにマイクロ集光レンズ14の曲率半径
rを選定する(これは、従来においても行われてい
る)。この場合、上記平行光が受光部3上でほぼジャス
ト・フォーカスするようにマイクロ集光レンズ14の曲
率半径rを設定することが好ましい。
That is, when the F value of the camera objective lens (not shown) is maximized (when the aperture diameter is minimized), the spot diameter of the parallel light on the light receiving portion 3 is determined by the aperture of the light receiving portion 3. The radius of curvature r of the micro condenser lens 14 is selected so as to be equal to or less than the width W (this is conventionally performed). In this case, it is preferable to set the radius of curvature r of the micro condenser lens 14 so that the parallel light is almost just focused on the light receiving unit 3.

【0020】そして、本例では、更に上記F値を最小に
した場合(絞り径を最大にした場合)での斜め光のマイ
クロ集光レンズ14における屈折光L1 (実線で示す)
の鉛直線m上とのなす角をθ1 、上記F値を最大にした
場合での平行光のマイクロ集光レンズ14における屈折
光L2 (破線で示す)の鉛直線m上とのなす角をθ2
上記屈折光L1 におけるシリコン基板1表面での入射位
置と、上記屈折光L2におけるシリコン基板1表面での
入射位置との間隔をd、上記平行光と上記斜め光のマイ
クロ集光レンズ14上での同一入射点とシリコン基板1
表面間の距離をhとしたとき、 d=(tanθ1 −tanθ2 )・h を満足し、かつ受光部13の開口幅をWとしたとき、 d≦W (より好ましくは、d≦W/2) を満足するように構成する。
In this embodiment, the refracted light L 1 (shown by a solid line) of the oblique light in the micro condenser lens 14 when the F value is further minimized (when the aperture diameter is maximized).
Angle of theta 1 between the vertical line m, the angle between the vertical line m of the refracted light L 2 (shown in phantom) in the micro-condenser lens 14 of the parallel light in the case of maximizing the F value To θ 2 ,
The incident position on the surface of the silicon substrate 1 in the refracted light L 1, the refracted light L d the distance between the incident position on the surface of the silicon substrate 1 in the 2, the micro-condenser lens 14 above the parallel light and the oblique light Incident point and silicon substrate 1
When the distance between the surfaces is h, d = (tan θ 1 -tan θ 2 ) · h is satisfied, and when the opening width of the light receiving unit 13 is W, d ≦ W (more preferably, d ≦ W / 2) It is configured to satisfy the following.

【0021】このように構成することにより、カメラ用
対物レンズのF値を最大にした場合における平行光の受
光部13上でのスポット径、並びに上記F値を最小にし
た場合における斜め光の受光部13上でのスポット径
が、受光部3の開口幅W以下となるため、上記斜め光が
Al遮光膜11で遮光されるということがなくなり、平
行光だけでなく斜め光も受光部3に効率よく集光させる
ことができる。
With this configuration, the spot diameter of the parallel light on the light receiving portion 13 when the F value of the camera objective lens is maximized, and the oblique light reception when the F value is minimized. Since the spot diameter on the portion 13 is equal to or less than the opening width W of the light receiving portion 3, the oblique light is not blocked by the Al light shielding film 11, and not only parallel light but also oblique light is transmitted to the light receiving portion 3. Light can be collected efficiently.

【0022】図3に、上記実施例に係るCCD固体撮像
装置(実施例;曲線で示す)と、マイクロ集光レンズ
14の曲率半径rのみを最適化したCCD固体撮像装置
(比較例1;曲線で示す)と、マイクロ集光レンズ1
4の曲率半径rの最適化を行わないCCD固体撮像装置
(比較例2;曲線で示す)における各集光率のF値依
存性を示す。
FIG. 3 shows a CCD solid-state image pickup device according to the above-described embodiment (example; indicated by a curve) and a CCD solid-state image pickup device in which only the radius of curvature r of the micro condenser lens 14 is optimized (Comparative Example 1, curve ) And the micro condenser lens 1
4 shows the F-number dependence of each light-collecting rate in a CCD solid-state imaging device (Comparative Example 2; indicated by a curve) in which the curvature radius r is not optimized.

【0023】この図から、全般的に、集光率は、F値が
小さくなるに従って低下するが、実施例の場合、他の比
較例1及び比較例2と比べてその低下が少なくなってい
る。即ち、実施例の場合、集光率のF値依存性が改善さ
れていることがわかる。
From this figure, it can be seen that the light collection efficiency generally decreases as the F-number decreases, but in the case of the embodiment, the decrease is smaller than in the other comparative examples 1 and 2. . That is, in the case of the example, it is understood that the F-number dependency of the light collection rate is improved.

【0024】従って、上記実施例の構成によれば、マイ
クロ集光レンズ14本来の効果である感度の向上を充分
に発揮させることができ、その結果、受光部3の実効的
開口率が向上し、画素面積の微細化を促進させることが
できる。
Therefore, according to the configuration of the above-described embodiment, the sensitivity improvement, which is the original effect of the micro condenser lens 14, can be sufficiently exhibited, and as a result, the effective aperture ratio of the light receiving section 3 can be improved. In addition, miniaturization of the pixel area can be promoted.

【0025】上記実施例では、マイクロ集光レンズ14
と受光部3間の距離を短くすることが重要となってくる
が、この構成を実現させるためには、種々の工夫が必要
となる。その工夫の一つとして以下で示す構成がある。
In the above embodiment, the micro condenser lens 14
It is important to shorten the distance between the light receiving unit 3 and the light receiving unit 3, but various measures are required to realize this configuration. As one of the ideas, there is a configuration shown below.

【0026】即ち、通常は、図4に示すように、マイク
ロ集光レンズ14と受光部3間に形成される複数の色フ
ィルタR,G,B間には夫々平坦化用の層間膜(防染膜
を兼ねる)21及び22が形成される。これは、色フィ
ルタR,G,Bの形成を容易にし、フィルタ特性の画面
内均一性をよくするためである。しかし、この場合、色
フィルタ層13の厚みが大きくなり、マイクロ集光レン
ズ14と受光部3間の距離がどうしても必要以上に長く
なるという問題がある。
That is, as shown in FIG. 4, a plurality of color filters R, G, B formed between the micro condenser lens 14 and the light receiving section 3 are usually provided with a flattening interlayer film (prevention film). 21 and 22, which also function as a dye film, are formed. This is for facilitating the formation of the color filters R, G, and B and improving the uniformity of the filter characteristics in the screen. However, in this case, there is a problem that the thickness of the color filter layer 13 is increased, and the distance between the micro condenser lens 14 and the light receiving unit 3 is unnecessarily long.

【0027】そこで、本例では、図5に示すように、各
色フィルタR,G,B間の層間膜21及び22を取り除
くことで、色フィルタ層の総膜厚tを薄くする。このよ
うにすれば、マイクロ集光レンズ14と受光部3間の距
離を短くすることが可能となる。尚、図4及び図5にお
いて、23は保護層を示し、24は転送電極9及びAl
遮光膜11を含む膜を示す。
Therefore, in this embodiment, as shown in FIG. 5, the total thickness t of the color filter layers is reduced by removing the interlayer films 21 and 22 between the color filters R, G and B. In this way, the distance between the micro condenser lens 14 and the light receiving section 3 can be reduced. 4 and 5, reference numeral 23 denotes a protective layer, and reference numeral 24 denotes a transfer electrode 9 and Al.
2 shows a film including a light shielding film 11.

【0028】次に、各色フィルタR,G,B間の層間膜
21及び22を取り除いて、色フィルタ層の総膜厚tを
薄くする製法の一例を図6及び図7に基いて説明する。
Next, an example of a method for reducing the total thickness t of the color filter layers by removing the interlayer films 21 and 22 between the color filters R, G and B will be described with reference to FIGS.

【0029】まず、図6Aに示すように、転送電極及び
Al遮光膜を含む膜24上全面に平坦化膜12を形成し
た後、該平坦化膜12上に、ゼラチン又はカゼインと、
重クロム酸アンモニア等との混合物よりなる感光性被染
色材層31を塗布する。
First, as shown in FIG. 6A, after a flattening film 12 is formed on the entire surface of the film 24 including the transfer electrode and the Al light-shielding film, gelatin or casein is formed on the flattening film 12.
A photosensitive dyeing material layer 31 made of a mixture with ammonia bichromate or the like is applied.

【0030】その後、上記被染色材層31に対し、第1
の色、例えば緑の色フィルタパターンに対応する選択的
露光を行い、これを現像してパターン化し、このパター
ン化された被染色材層31を緑の染色液に浸漬するとい
う既知の染色法を行って、図6Bに示すように、緑の色
フィルタGを形成する。
Thereafter, the first material layer 31 is
A known dyeing method of performing selective exposure corresponding to a color, for example, a green color filter pattern, developing and patterning the same, and immersing the patterned material layer 31 in a green dye solution. Then, a green color filter G is formed as shown in FIG. 6B.

【0031】その後、上記色フィルタGに対する定着処
理、即ちタンニン酸浸漬及び酒石酸浸漬を行い、その
後、少なくともその表面に硬化層を形成する処理を行
う。この処理は、例えばホルムアルデヒド水溶液、ある
いは消石灰等に浸漬して、少なくとも色フィルタG自体
の表面を充分に架橋反応させて硬化させる。その後、熱
乾燥し、タンニン酸への浸漬、酒石酸への浸漬、水洗乾
燥を行う。
Thereafter, the color filter G is subjected to a fixing process, that is, a tannic acid immersion and a tartaric acid immersion, and thereafter, a process of forming a hardened layer on at least the surface thereof is performed. In this treatment, for example, the color filter G itself is immersed in, for example, an aqueous formaldehyde solution or slaked lime to sufficiently cure and cure at least the surface of the color filter G itself. Then, it heat-drys and performs immersion in tannic acid, immersion in tartaric acid, and washing and drying.

【0032】次に、図6Cに示すように、緑の色フィル
タGを含む全面に上述したと同様の被染色材層31を塗
布する。その後、この被染色材層31に対し、第2の
色、例えば赤の色フィルタパターンに対応する選択的露
光を行い、これを現像してパターン化し、このパターン
化された被染色材層31を赤の染色液に浸漬するという
既知の染色法を行って、図7Aに示すように、赤の色フ
ィルタRを形成する。その後、この色フィルタRに対し
て上述したと同様な定着処理及び硬化処理を行う。
Next, as shown in FIG. 6C, the same material layer 31 as described above is applied to the entire surface including the green color filter G. Thereafter, the dyeing material layer 31 is subjected to selective exposure corresponding to a second color, for example, a red color filter pattern, developed and patterned, and the patterned dyeing material layer 31 is removed. A known dyeing method of immersing in a red dyeing solution is performed to form a red color filter R as shown in FIG. 7A. Thereafter, the same fixing process and curing process as described above are performed on the color filter R.

【0033】次に、図7Bに示すように、2種の色フィ
ルタR,Gを含む全面に上述したと同様の被染色材層3
1を塗布する。その後、この被染色材層31に対し、第
3の色、例えば青の色フィルタパターンに対応する選択
的露光を行い、これを現像してパターン化し、このパタ
ーン化された被染色材層31を青の染色液に浸漬すると
いう既知の染色法を行って、図7Cに示すように、青の
色フィルタBを形成する。その後、各色フィルタR,
G,Bを含む全面に保護層32が形成される。これら色
フィルタR,G,B及び保護層32で色フィルタ層13
が構成される。
Next, as shown in FIG. 7B, the same coloring material layer 3 as described above is formed on the entire surface including the two types of color filters R and G.
1 is applied. Thereafter, the dyeing material layer 31 is subjected to selective exposure corresponding to a third color, for example, a blue color filter pattern, developed and patterned, and the patterned dyeing material layer 31 is removed. A known dyeing method of immersion in a blue dyeing solution is performed to form a blue color filter B as shown in FIG. 7C. After that, each color filter R,
A protective layer 32 is formed on the entire surface including G and B. These color filters R, G, B and the protective layer 32 form a color filter layer 13.
Is configured.

【0034】このようにして、第1〜第3の色、即ち
緑、赤及び青の各色フィルタR,G,Bがほぼ一平面内
に配列・形成される。
In this manner, the first to third colors, that is, green, red and blue color filters R, G, and B are arranged and formed substantially in one plane.

【0035】上記の製法の場合、夫々下層の色フィルタ
R,G,Bに対し、硬化処理を行ってその少なくとも表
面を硬化するようにしたので、各色フィルタR,G,B
上に層間膜21及び22(図4参照)を形成しなくと
も、各色の染色工程において、下層の色フィルタ(R又
はG)が再び別の色に染色されるということがない。
In the above-mentioned manufacturing method, the lower color filters R, G, and B are each subjected to a curing treatment so that at least the surface thereof is cured.
Even if the interlayer films 21 and 22 (see FIG. 4) are not formed thereon, the lower color filter (R or G) is not stained with another color again in the dyeing process of each color.

【0036】しかも、各色フィルタR,G,Bが、ほぼ
一平面内に配列・形成されるため、図5に示すように、
色フィルタR,G,Bの形成層、即ち色フィルタ層13
の膜厚tを薄くすることができ、マイクロ集光レンズ1
4と受光部3間の距離を縮めることが可能となる。
Further, since the respective color filters R, G, B are arranged and formed substantially in one plane, as shown in FIG.
The formation layer of the color filters R, G, B, that is, the color filter layer 13
Of the micro condenser lens 1 can be reduced.
It is possible to reduce the distance between 4 and the light receiving unit 3.

【0037】[0037]

【発明の効果】本発明に係る固体撮像装置によれば、集
光率を最大に取りながら、集光率のF値依存性を改善す
ることができ、マイクロ集光レンズ本来の効果である感
度の向上を充分に発揮させることができる。
According to the solid-state imaging device of the present invention, it is possible to improve the dependence of the light-collecting rate on the F-number while maximizing the light-collecting rate, and to achieve the sensitivity which is the original effect of the micro light-collecting lens Can be sufficiently exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例に係るCCD固体撮像装置の要部を示
す断面図。
FIG. 1 is a cross-sectional view illustrating a main part of a CCD solid-state imaging device according to an embodiment.

【図2】本実施例に係るCCD固体撮像装置の要部のレ
イアウトを示す平面図。
FIG. 2 is a plan view showing a layout of a main part of the CCD solid-state imaging device according to the embodiment.

【図3】マイクロ集光レンズにおける集光率のF値依存
性を示す特性図。
FIG. 3 is a characteristic diagram showing the F-number dependence of the light collection rate in a micro light collection lens.

【図4】本実施例に係る色フィルタの形成状態を示す説
明図(通常例)。
FIG. 4 is an explanatory diagram (normal example) showing a state of forming a color filter according to the embodiment.

【図5】本実施例に係る色フィルタの形成状態を示す説
明図(本例)。
FIG. 5 is an explanatory diagram (present example) illustrating a state of forming a color filter according to the present example.

【図6】本実施例に係る色フィルタ層の形成方法を示す
工程図(その1)。
FIG. 6 is a process chart (1) showing a method of forming a color filter layer according to the present embodiment.

【図7】本実施例に係る色フィルタ層の形成方法を示す
工程図(その2)。
FIG. 7 is a process diagram (part 2) illustrating the method for forming the color filter layer according to the present embodiment.

【図8】従来例に係るCCD固体撮像装置の要部を示す
断面図。
FIG. 8 is a sectional view showing a main part of a CCD solid-state imaging device according to a conventional example.

【図9】カメラ用対物レンズのF値による光の入射形態
を示す説明図。
FIG. 9 is an explanatory diagram showing a light incident mode according to an F value of a camera objective lens.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 第1のP型ウェル領域 3 受光部 4 垂直レジスタ 5 チャネル・ストッパ領域 6 正電荷蓄積領域 7 第2のP型ウェル領域 8 ゲート絶縁膜 9 転送電極 10 層間膜 11 Al遮光膜 12 平坦化膜 13 色フィルタ層 14 マイクロ集光レンズ 15 読出しゲート REFERENCE SIGNS LIST 1 silicon substrate 2 first P-type well region 3 light-receiving section 4 vertical register 5 channel stopper region 6 positive charge accumulation region 7 second P-type well region 8 gate insulating film 9 transfer electrode 10 interlayer film 11 Al light-shielding film 12 Flattening film 13 Color filter layer 14 Micro condenser lens 15 Read gate

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 27/14 - 27/148 H04N 5/335 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01L 27/14-27/148 H04N 5/335

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板に多数の受光部が夫々分離さ
れて形成され、各受光部上に夫々集光レンズが形成さ
れ、かつ該集光レンズの曲率半径が、入射光の受光部上
でのスポット径が該受光部の開口幅以下となるように選
定された固体撮像装置において、 カメラ用対物レンズのF値を最小にした場合での斜め光
の上記集光レンズにおける屈折光L1 の鉛直線上とのな
す角をθ1 、 上記F値を最大にした場合での平行光の上記集光レンズ
における屈折光L2 の鉛直線上とのなす角をθ2 、 上記屈折光L1 における上記半導体基板表面での入射位
置と、上記屈折光L2における上記半導体基板表面での
入射位置との間隔をd、 上記平行光と上記斜め光の上記集光レンズ上での同一入
射点と上記半導体基板表面間の距離をhとしたとき、 d=(tanθ1 −tanθ2 )・h を満足し、かつ上記受光部の開口幅をWとしたとき、 d≦W を満足することを特徴とする固体撮像装置。
1. A semiconductor substrate having a plurality of light receiving portions formed separately from each other, a condenser lens formed on each light receiving portion, and a radius of curvature of each of the condenser lenses being different from that of the incident light on the light receiving portion. the spot diameter in the selected solid-state imaging device to be equal to or less than the opening width of the light receiving portion, the oblique light in the case where the F value of the objective lens for the camera to minimize the refracted light L 1 in the condenser lens 1 the angle between the vertical line theta, the angle of theta 2 between the vertical line of the refracted light L 2 in parallel light of the condenser lens in the case of maximizing the F value, the in the refracted light L 1 and the incident position on the semiconductor substrate surface, the same point of incidence of the distance between the incident position in the semiconductor substrate surface in the refracted light L 2 d, on the condensing lens of the parallel light and the oblique light and the semiconductor When the distance between the substrate surfaces is h, d = (tan 1 -tanθ 2) · h satisfied, and when the opening width of the light receiving portion and is W, the solid-state imaging device which satisfies the d ≦ W.
【請求項2】 上記各受光部と、対応する上記集光レン
ズ間に色フィルタを有する場合において、各色フィルタ
間に層間膜が形成されていないことを特徴とする請求項
1記載の固体撮像装置。
2. The solid-state imaging device according to claim 1, wherein when a color filter is provided between each of said light receiving sections and said corresponding condensing lens, no interlayer film is formed between said color filters. .
JP02140992A 1992-02-06 1992-02-06 Solid-state imaging device Expired - Lifetime JP3154134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02140992A JP3154134B2 (en) 1992-02-06 1992-02-06 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02140992A JP3154134B2 (en) 1992-02-06 1992-02-06 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH05218373A JPH05218373A (en) 1993-08-27
JP3154134B2 true JP3154134B2 (en) 2001-04-09

Family

ID=12054234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02140992A Expired - Lifetime JP3154134B2 (en) 1992-02-06 1992-02-06 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3154134B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7962803B2 (en) 2008-09-30 2011-06-14 International Business Machines Corporation Apparatus, system, and method for multi-address space tracing
KR101810939B1 (en) * 2016-08-25 2017-12-20 김소연 No sticky sticker and manufacturing method the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119319B2 (en) * 2004-04-08 2006-10-10 Canon Kabushiki Kaisha Solid-state image sensing element and its design support method, and image sensing device
CN112753036B (en) * 2019-08-30 2024-07-23 京东方科技集团股份有限公司 Texture image acquisition device, display device and collimation component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7962803B2 (en) 2008-09-30 2011-06-14 International Business Machines Corporation Apparatus, system, and method for multi-address space tracing
KR101810939B1 (en) * 2016-08-25 2017-12-20 김소연 No sticky sticker and manufacturing method the same

Also Published As

Publication number Publication date
JPH05218373A (en) 1993-08-27

Similar Documents

Publication Publication Date Title
US8139131B2 (en) Solid state imaging device and fabrication method thereof, and camera incorporating the solid state imaging device
KR100246059B1 (en) Solid state imaging device
KR960000223B1 (en) Solid state image device and method of manufacturing the same
US7488616B2 (en) CMOS image sensor and method for manufacturing the same
US8043883B2 (en) Method for manufacturing solid-state imaging device having improved sensitivity and reduced flare
KR970002120B1 (en) Solid state image pick-up apparatus having microlens
JP2006295125A (en) Solid-state imaging apparatus, its manufacturing method and camera
JPH07312418A (en) Solid-state imaging device and manufacturing method thereof
JP3711211B2 (en) Solid-state imaging device
US6136481A (en) Color filter manufacturing method capable of assuring a high alignment accuracy of color filter and alignment mark therefor
US7611922B2 (en) Image sensor and method for manufacturing the same
JPH04229802A (en) Solid image pick-up device and manufacture thereof
US20060138499A1 (en) Solid-state image sensor, method of manufacturing the same, and camera
JP3154134B2 (en) Solid-state imaging device
JPH0548057A (en) Solid-state image sensor
JP2678074B2 (en) Method for manufacturing solid-state imaging device
JPH11289073A (en) Solid image pickup device and manufacture thereof
JP2000183322A (en) Solid-state color image pickup element and manufacture thereof
JP2000156485A (en) Solid-state image sensing device and manufacture thereof
JPH06140610A (en) Solid-state image pick-up device and its manufacture
JP2951942B1 (en) Method for manufacturing solid-state imaging device
JPH05226624A (en) Solid-state image pick-up device and its manufacture
CN100477244C (en) Image sensor and manufacturing method thereof
US20070145238A1 (en) Method for Manufacturing Mask and CMOS Image Sensor
JPH10209410A (en) Manufacture of solid-state image pick up element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 12