JP3151893B2 - Ester asymmetric hydrolase gene - Google Patents
Ester asymmetric hydrolase geneInfo
- Publication number
- JP3151893B2 JP3151893B2 JP34127891A JP34127891A JP3151893B2 JP 3151893 B2 JP3151893 B2 JP 3151893B2 JP 34127891 A JP34127891 A JP 34127891A JP 34127891 A JP34127891 A JP 34127891A JP 3151893 B2 JP3151893 B2 JP 3151893B2
- Authority
- JP
- Japan
- Prior art keywords
- dna
- sequence
- microorganism
- ester
- esterase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 150000002148 esters Chemical class 0.000 title claims description 15
- 108090000604 Hydrolases Proteins 0.000 title claims description 7
- 244000005700 microbiome Species 0.000 claims description 21
- 241000588724 Escherichia coli Species 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 20
- 108090000623 proteins and genes Proteins 0.000 claims description 19
- 108090000790 Enzymes Proteins 0.000 claims description 13
- 102000004190 Enzymes Human genes 0.000 claims description 13
- XLOPRKKSAJMMEW-UHFFFAOYSA-N chrysanthemic acid Chemical compound CC(C)=CC1C(C(O)=O)C1(C)C XLOPRKKSAJMMEW-UHFFFAOYSA-N 0.000 claims description 12
- 238000006460 hydrolysis reaction Methods 0.000 claims description 12
- 239000013612 plasmid Substances 0.000 claims description 12
- 239000002773 nucleotide Substances 0.000 claims description 10
- 125000003729 nucleotide group Chemical group 0.000 claims description 10
- XLOPRKKSAJMMEW-SFYZADRCSA-N Chrysanthemic acid Natural products CC(C)=C[C@@H]1[C@@H](C(O)=O)C1(C)C XLOPRKKSAJMMEW-SFYZADRCSA-N 0.000 claims description 9
- 230000007062 hydrolysis Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 102000004157 Hydrolases Human genes 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 4
- 230000003301 hydrolyzing effect Effects 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 108090000371 Esterases Proteins 0.000 description 44
- 108020004414 DNA Proteins 0.000 description 36
- 239000012634 fragment Substances 0.000 description 22
- 108020004707 nucleic acids Proteins 0.000 description 21
- 102000039446 nucleic acids Human genes 0.000 description 21
- 150000007523 nucleic acids Chemical class 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 14
- 108091028043 Nucleic acid sequence Proteins 0.000 description 13
- 229940088598 enzyme Drugs 0.000 description 12
- 239000012528 membrane Substances 0.000 description 12
- 239000013613 expression plasmid Substances 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 150000001413 amino acids Chemical group 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 239000013611 chromosomal DNA Substances 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 241000186063 Arthrobacter Species 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 108020003215 DNA Probes Proteins 0.000 description 3
- 239000003298 DNA probe Substances 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 241000186074 Arthrobacter globiformis Species 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- ZVQOOHYFBIDMTQ-UHFFFAOYSA-N [methyl(oxido){1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-lambda(6)-sulfanylidene]cyanamide Chemical compound N#CN=S(C)(=O)C(C)C1=CC=C(C(F)(F)F)N=C1 ZVQOOHYFBIDMTQ-UHFFFAOYSA-N 0.000 description 2
- 239000003905 agrochemical Substances 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 230000003698 anagen phase Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 102000005936 beta-Galactosidase Human genes 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- -1 ester compound Chemical class 0.000 description 2
- VIMXTGUGWLAOFZ-UHFFFAOYSA-N ethyl 2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropane-1-carboxylate Chemical compound CCOC(=O)C1C(C=C(C)C)C1(C)C VIMXTGUGWLAOFZ-UHFFFAOYSA-N 0.000 description 2
- 125000004494 ethyl ester group Chemical group 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 230000000707 stereoselective effect Effects 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- VLEIUWBSEKKKFX-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O VLEIUWBSEKKKFX-UHFFFAOYSA-N 0.000 description 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 235000007516 Chrysanthemum Nutrition 0.000 description 1
- 240000005250 Chrysanthemum indicum Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241001646716 Escherichia coli K-12 Species 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 239000006142 Luria-Bertani Agar Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- ZKHQWZAMYRWXGA-KNYAHOBESA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] dihydroxyphosphoryl hydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)O[32P](O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KNYAHOBESA-N 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000211 autoradiogram Methods 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N dichloromethane Substances ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000007169 ligase reaction Methods 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000002728 pyrethroid Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011945 regioselective hydrolysis Methods 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 1
- 229960000344 thiamine hydrochloride Drugs 0.000 description 1
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 1
- 239000011747 thiamine hydrochloride Substances 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、エステル不斉加水分解
酵素、即ち、エステラーゼをコードする遺伝子、該遺伝
子を含有する発現プラスミドおよびそれを保持する形質
転換体にに関する。本発明により得られた遺伝子を微生
物菌体内で発現させることにより、工業的に生産した該
酵素を、ピレスロイド系殺虫剤の中間体である菊酸ある
いは菊酸誘導体のエステルを不斉加水分解し、光学活性
な菊酸あるいはその誘導体を生産するバイオプロセスへ
応用することができる。The present invention relates to a gene encoding an ester asymmetric hydrolase, ie, an esterase, an expression plasmid containing the gene, and a transformant carrying the same. By expressing the gene obtained according to the present invention in a microbial cell, the industrially produced enzyme is asymmetrically hydrolyzed with an ester of chrysanthemic acid or a chrysantic acid derivative which is an intermediate of a pyrethroid insecticide, It can be applied to a bioprocess for producing optically active chrysanthemic acid or a derivative thereof.
【0002】[0002]
【従来の技術】近年、有機合成に微生物あるいは酵素を
利用した反応を応用する試みがさかんに行われている。
特に、医薬品、農薬品およびその合成中間体のように、
構造が複雑で、しかも光学活性な化合物を取得する事が
必要な場合には、酵素の有する高い立体選択性などを利
用することができるため、非常に有効な方法である。2. Description of the Related Art In recent years, many attempts have been made to apply reactions utilizing microorganisms or enzymes to organic synthesis.
In particular, like pharmaceuticals, agricultural chemicals and their synthetic intermediates,
This is a very effective method when it is necessary to obtain an optically active compound having a complicated structure because the enzyme can utilize the high stereoselectivity of the enzyme.
【0003】特に、光学活性体の製造に関して、ラセミ
体のエステル化合物から立体選択的加水分解反応により
1種の異性体を取得する場合や、プロキラルな化合物か
ら位置選択的加水分解反応によりキラルな化合物を製造
する反応、あるいは、それらの逆反応を利用した立体選
択的なエステルの生産に、エステラーゼやリパーゼが用
いられている。[0003] In particular, regarding the production of an optically active compound, one isomer is obtained from a racemic ester compound by a stereoselective hydrolysis reaction, or a chiral compound is obtained from a prochiral compound by a regioselective hydrolysis reaction. Esterases and lipases have been used for the reaction for producing Escherichia coli, or for the stereoselective production of esters utilizing their reverse reaction.
【0004】例えば、豚肝臓由来のエステラーゼを、こ
の様な反応に利用した例として、Laumenら(Tetrahedro
n Lett.26,407-410, (1985)),およびWangら(J.Am,Che
m.Soc.106,3695(1984)) の報告がある。 一方、微生物
由来のエステラーゼを有機合成反応に利用した例として
は、Bacillus subtilis NRRL-B-558をセファロスポリン
誘導体の合成に用いた(Appl Microbiol.30,413-419(19
75))もの等が挙げられる。For example, an esterase derived from pig liver is used in such a reaction as described in Laumen et al. (Tetrahedro
n Lett .26, 407-410, (1985)), and Wang et al. (J. Am, Che
m. Soc. 106, 3695 (1984)). On the other hand, as an example of utilizing a microorganism-derived esterase for an organic synthesis reaction, Bacillus subtilis NRRL-B-558 was used for the synthesis of a cephalosporin derivative (Appl Microbiol. 30, 413-419 (19)
75)).
【0005】[0005]
【発明が解決しようとする課題】しかし、動物起源の酵
素は供給に限りがあり、しかも不安定で取り扱いが難し
く、経済的にも工業用として用いる事は困難である。微
生物由来のエステラーゼを利用する場合、多数の微生物
を自然界から分離し、目的とする反応に対して光学選択
性の高いものを選択して得た菌株について、菌株の培養
が難しく、また反応効率が十分高くなかったり、酵素の
生産性が高くない等の問題があった。However, the enzyme of animal origin has a limited supply, is unstable and difficult to handle, and is economically difficult to use for industrial use. When using an esterase derived from a microorganism, it is difficult to culture the bacterial strain of a strain obtained by separating a large number of microorganisms from nature and selecting one having high optical selectivity for the intended reaction, and the reaction efficiency is low. There were problems such as not being sufficiently high and the productivity of the enzyme being not high.
【0006】このような理由で、分離した菌株を培養し
て工業的プロセスに利用するか、あるいは、菌株の培養
により高性能な不斉加水分解酵素を安価に、且つ大量に
生産し、工業的分野に応用する事は容易ではなかった。[0006] For these reasons, the isolated strain is cultured and used for an industrial process, or the high-performance asymmetric hydrolase is produced inexpensively and in large quantities by culturing the strain, thereby producing Application to the field was not easy.
【0007】[0007]
【課題を解決するための手段】本発明者らは、有機合成
反応特に、エステル不斉加水分解反応への応用範囲の広
いエステラーゼを取得すべく鋭意努力した結果、種々の
基質に対して高い立体選択性を示すアルスロバクター・
グロビフオルミス(Artbrobacterglob
iformis)(IFO−12958)菌体内エステ
ラーゼを見出した。(特開平1−181788号)さら
に、研究を進めた結果、エステラーゼ高産生株アルスロ
バクタ−SC−6−98−28(FERM BP−36
58)を取得した。(特願平3−474号)さらに、該
酵素をコードする遺伝子を取得することに成功した。DISCLOSURE OF THE INVENTION The present inventors have made intensive efforts to obtain esterases having a wide range of application to organic synthesis reactions, particularly ester asymmetric hydrolysis reactions. Arthrobacter showing selectivity
Globiformis (Artblobglob)
iformis) (IFO-12958). (JP-A-1-181788) As a result of further research, a high esterase-producing strain Arthrobacter-SC-6-98-28 (FERM BP-36) was developed.
5 8) was obtained. (Japanese Patent Application No. 3-474) Furthermore, a gene encoding the enzyme was successfully obtained.
【0008】これにより、組み換えDNAの手法を用い
て微生物に該酵素を大量に生産させる事が可能になり、
微生物の触媒能力を従来と比較して飛躍的に増大するこ
とができ、組み換え体微生物、或いはエステラーゼを、
遊離の状態で、あるいは担体に固定化し、エステル不斉
加水分解のバイオリアクターとして利用することが可能
になった。[0008] This makes it possible to cause the microorganism to produce the enzyme in large quantities by using the recombinant DNA technique.
It is possible to dramatically increase the catalytic ability of microorganisms as compared to conventional ones, and to use recombinant microorganisms or esterases,
It can be used as a bioreactor for ester asymmetric hydrolysis in a free state or immobilized on a carrier.
【0009】以下、さらに本発明を詳細に説明する。本
発明の第1の目的は、エステラーゼをコードする遺伝子
を提供することにある。本発明のエステラーゼ遺伝子
は、エステル不斉加水分解能を有する微生物例えばアル
スロバクターSC−6−98−28(FERM BP−
3658)から取得することができる。エステラーゼを
コードする遺伝子は、適当な長さに切断した染色体DN
A断片を、例えば、ファージベクターであるλgtl
l、あるいはプラスミドベクターであるpUC19など
に挿入する事により染色体DNAライブラリーを作製
し、それをスクリーニングする方法により取得すること
ができる。DNAの選抜に関しては、エステラーゼに対
する抗体を用いた免疫学的手法の他に、蛋白質の部分ア
ミノ酸配列に対応した合成DNAをプローブとしたハイ
ブリダイゼーションによる手法、エステラーゼ活性によ
るスクリーニング法など、種々の方法を用いる事ができ
る。また、上述の方法でエステラーゼDNAの一部のみ
しか得られなかった場合は、再度これをプローブとして
完全なDNAを得る事ができる。このようにして取得す
るエステラーゼ遺伝子の好ましい塩基配列は、下記アミ
ノ酸配列に対応する塩基配列を含む遺伝子である。Hereinafter, the present invention will be described in more detail. A first object of the present invention is to provide a gene encoding an esterase. Esterase gene of the present invention, a microorganism for example A Le having an ester asymmetrically hydrolyzing <br/> scan Arthrobacter SC-6-98-28 (FERM BP-
36 5 8). The gene encoding the esterase is a chromosome DN cut to an appropriate length.
The A fragment is obtained by, for example, using a phage vector λgtl.
Alternatively, a chromosomal DNA library can be prepared by inserting it into pUC19 or the like, which is a plasmid vector, and can be obtained by a screening method. Regarding the selection of DNA, various methods such as an immunological method using an antibody against esterase, a hybridization method using a synthetic DNA corresponding to the partial amino acid sequence of the protein as a probe, and a screening method using esterase activity are used. Can be used. Further, when only a part of the esterase DNA is obtained by the above-mentioned method, a complete DNA can be obtained again using this as a probe. A preferable base sequence of the esterase gene thus obtained is a gene containing a base sequence corresponding to the following amino acid sequence.
【化3】 配列番号1[Image Omitted] SEQ ID NO: 1
【0010】さらに好ましいものは下記の塩基配列で表
される遺伝子である。[0010] More preferred are genes represented by the following nucleotide sequences.
【化4】 配列番号2[Image Omitted] SEQ ID NO: 2
【0011】本発明の第2の目的は、エステラーゼをコ
ードする塩基配列を含む発現プラスミドを提供すること
にある。発現ベクターとしては、宿主細胞中で複製可能
な遺伝情報を含み、自立的に増殖できるものであって、
宿主からの単離精製が容易であり、検出可能なマーカー
をもつものが好適である。種々のベクターが市販されて
おり、ベクターの切断に用いる制限酵素等も市販されて
いる。これらの使用方法は公知である。例えば、大腸菌
での発現には、lac,tac,trp などのプロモーターを含む
発現ベクター(これらは、発現ベクターとして、あるい
はプロモーターカートリッジとしてファルマシアPL社
より市販されている)を用いることができる。好ましい
発現プラスミドは、宿主細胞内で自己増殖可能な、すな
わち、自己増殖するに必要な塩基配列を含むDNAであ
り、特に好ましいのは、前記塩基配列により表された遺
伝子がクローニングされた発現プラスミドpAGE-201,pAG
E-202,及びpAGE-203である。A second object of the present invention is to provide an expression plasmid containing a base sequence encoding an esterase. An expression vector contains a replicable genetic information in a host cell, and is capable of autonomous propagation,
Those which can be easily isolated and purified from a host and have a detectable marker are preferable. Various vectors are commercially available, and restriction enzymes used for cutting the vector are also commercially available. Methods of using these are known. For example, for expression in E. coli, an expression vector containing a promoter such as lac, tac, or trp (these are commercially available from Pharmacia PL as an expression vector or as a promoter cartridge) can be used. A preferred expression plasmid is a DNA capable of self-propagation in a host cell, that is, a DNA containing a nucleotide sequence necessary for self-propagation, and particularly preferred is an expression plasmid pAGE into which the gene represented by the nucleotide sequence has been cloned. -201, pAG
E-202 and pAGE-203.
【0012】さらに、本発明の第3の目的はエステラー
ゼ菌体内で産生する微生物を提供することにある。発現
プラスミドにより、エステラーゼを産生する微生物とし
て、大腸菌、枯草菌、乳酸菌、カビ等が挙げられるが、
好ましくは、大腸菌を用いる。 特に好ましい微生物
は、エシェリキア・コリJM109(pAGE-201),JM109(pAGE-2
02),及びJM109(pAGE-203) 並びにエシェリキア・コリJM
105(pAGE-201),JM105(pAGE-202),及びJM105(pAGE-203)
である。発現プラスミドで微生物を形質転換する方法は
公知の方法を用いる。この微生物を培養することによ
り、エステラーゼを大量に製造することが可能になっ
た。It is a third object of the present invention to provide a microorganism produced in an esterase cell. Depending on the expression plasmid, examples of microorganisms that produce esterase include Escherichia coli, Bacillus subtilis, lactic acid bacteria, and mold.
Preferably, Escherichia coli is used. Particularly preferred microorganisms are Escherichia coli JM109 (pAGE-201), JM109 (pAGE-2
02), and JM109 (pAGE-203) and Escherichia coli JM
105 (pAGE-201), JM105 (pAGE-202), and JM105 (pAGE-203)
It is. A known method is used for transforming the microorganism with the expression plasmid. By culturing this microorganism, it has become possible to produce esterase in large quantities.
【0013】こうして製造したエステラーゼを産生する
組み換え体細胞は、エステル不斉加水分解を行うバイオ
リアクターとして、例えば医薬品、農薬品の中間体であ
る光学活性体など、有用な化合物の生産に利用すること
が可能である。また、組み換え体細胞を培養することに
よって該エステラーゼを大量生産し、それをエンザイム
リアクターとして利用することができる。The thus produced recombinant cells producing esterase can be used as a bioreactor for asymmetric hydrolysis of esters, for example, for producing useful compounds such as optically active compounds which are intermediates of pharmaceuticals and agricultural chemicals. Is possible. In addition, by culturing recombinant cells, the esterase can be mass-produced and used as an enzyme reactor.
【0014】[0014]
【実施例】以下に実施例を挙げ、本発明をより詳細にす
るが、本発明は以下の実施例のみに限定されるものでは
なく、本発明の技術分野における通常の変更を行うこと
ができる。 実施例 エステラーゼDNAクローンの単離 染色体DNAの調製 アルスロバクターSC−6−98−28(FERM B
P−3658)株を、5mlの前培養用培地(可溶性デ
ンプン3.0%、ポリペプトン0.7%、酵母エキス
0.5%、KH2PO40.5%、pH5.0)で、3
0℃,24時間振とう培養したのち、得られた培養液を
500mlの本培養用培地(可溶性デンプン6.0%,
ポリペプトン1.0%,酵母エキス0.2%,KH2P
O40.5%,pH5.0)に接種し、30℃で振とう
培養した。その際、OD660が0.25に達した時点
で、ペニシリンGを最終濃度が300ユニット/ml培
養液となるように添加し、OD600が1.0に達する
まで培養を継続した。The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the following examples, and ordinary changes in the technical field of the present invention can be made. . Examples Isolation of esterase DNA clones Preparation of chromosomal DNA Arthrobacter SC-6-98-28 (FERM B
The P-36 5 8) strain, the culture medium for the preculture 5 ml (soluble starch 3.0%, polypeptone 0.7%, 0.5% yeast extract, KH 2 PO 4 0.5%, pH5.0) in , 3
After shaking culture at 0 ° C. for 24 hours, the obtained culture solution was mixed with 500 ml of a main culture medium (soluble starch 6.0%,
Polypeptone 1.0%, Yeast extract 0.2%, KH 2 P
O 4 0.5%, were inoculated into pH 5.0), and cultured with shaking at 30 ° C.. At that time, when the OD 660 reached 0.25, was added to the penicillin G final concentration of 300 units / ml culture medium, the culture was continued until the OD 600 reached 1.0.
【0015】遠心により菌体を回収し、45mlの150
mMNaCl,15mMクエン酸ナトリウム10mM,EDTA
27%ショ糖に懸濁し、さらに、卵白リゾチームを最終
濃度が5mg/mlとなるように添加して、37℃で30分
間インキュベートした。次に、10mlの10%SDSを
添加し、さらにプロテアーゼKを最終濃度200μg/ml
となるように添加し、37℃で4時間インキュベートし
た。その後、等容の0.1Mトリス飽和フェノールで2
回、エーテルで2回抽出を行ったのち、水層に2倍容の
エタノールを添加し、核酸を沈澱させ、それをガラス棒
に糸状に巻きつけてDNAを回収した。The cells are recovered by centrifugation, and 45 ml of 150
mM NaCl, 15 mM sodium citrate 10 mM, EDTA
After suspending in 27% sucrose, egg white lysozyme was added to a final concentration of 5 mg / ml and incubated at 37 ° C for 30 minutes. Next, 10 ml of 10% SDS was added, and protease K was further added to a final concentration of 200 μg / ml.
And incubated at 37 ° C. for 4 hours. Then, add 2 volumes with an equal volume of 0.1 M tris-saturated phenol.
After extraction twice with ether, twice the volume of ethanol was added to the aqueous layer to precipitate nucleic acids, which were wound around a glass rod in a thread form to collect DNA.
【0016】得られた核酸を乾燥後、5mlのトリスEDTA
(10mMトリス塩酸pH8.0,1mM EDTA)に溶解し、最終
濃度100μg/mlでRNaseA処理を37℃で2時間行っ
た。その後、等容のフェノール・クロロホルム(1:1
(V/V) )で2回抽出を行い、水層に2倍容の冷エタ
ノールを添加し、DNAを沈澱させた。得られたDNA
は80%エタノールで洗浄後乾燥し、トリス・EDTA
緩衝液に溶解した。約5.8mgの染色体DNAを得た。After drying the obtained nucleic acid, 5 ml of Tris EDTA
(10 mM Tris-HCl, pH 8.0, 1 mM EDTA) and treated with RNaseA at 37 ° C. for 2 hours at a final concentration of 100 μg / ml. Then, an equal volume of phenol / chloroform (1: 1)
(V / V)), and the DNA was precipitated by adding twice the volume of cold ethanol to the aqueous layer. Obtained DNA
Is washed with 80% ethanol and then dried. Tris / EDTA
Dissolved in buffer. About 5.8 mg of chromosomal DNA was obtained.
【0017】 染色体DNAライブラリーの作製 1で得た染色体DNAをKpnIで消化した。一方、ベクタ
ーpUC19(宝酒造株式会社)をKpnIで消化後、アル
カリフオスファターゼ処理し、先に得た染色体DNA断
片と混合し、T4DNAリガーゼを用いて連結した。次
に、大腸菌K−12株の1つであるJM109のコンピ
テントセル(宝酒造株式会社)と、このリガーゼ反応液
を混合し、プラスミドDNAを菌体内に導入した。Preparation of Chromosomal DNA Library The chromosomal DNA obtained in 1 was digested with KpnI. On the other hand, the vector pUC19 (Takara Shuzo Co., Ltd.) was digested with KpnI, treated with alkaline phosphatase, mixed with the chromosomal DNA fragment obtained above, and ligated using T 4 DNA ligase. Next, a competent cell of JM109, one of the E. coli K-12 strains (Takara Shuzo Co., Ltd.), and this ligase reaction solution were mixed, and plasmid DNA was introduced into the cells.
【0018】pUC19を含むJM109株を、アンピ
シリンとIPTG,X-Galを含むLB寒天培地上に増殖させる
とJM109菌体内で発現したβ−ガラクトシダーゼの
活性によりX-Gal が切断されるため、コロニーは青色を
呈する。しかし、pUC19のマルチクローニング部位
に外来DNA断片が挿入された場合、β−ガラクトシダ
ーゼの活性は発現せず、コロニーは無色になる。以上の
方法で、pUC19に遺伝子が挿入されたコロニーを選
択し、DNA配列を決定した。When the JM109 strain containing pUC19 is grown on an LB agar medium containing ampicillin, IPTG, and X-Gal, the X-Gal is cleaved by the activity of β-galactosidase expressed in the JM109 cells, so that the colony grows. It has a blue color. However, when a foreign DNA fragment is inserted into the multicloning site of pUC19, β-galactosidase activity is not expressed, and the colony becomes colorless. By the above method, a colony in which the gene was inserted into pUC19 was selected, and the DNA sequence was determined.
【0019】プレート上のコロニーから、まず白色コロ
ニーを選択し、次に精製したエステラーゼのN末端アミ
ノ酸配列に対応する混合DNAプローブを合成し、以下
の方法に従いコロニーハイブリダイゼーションを行っ
た。すなわち、プレート上に広げた白色コロニーをナイ
ロンメンブランに移し取るか或いは、竹串でナイロンメ
ンブラン上に植えて、このメンブランをLBアンピシリ
ンプレート上に置き数時間培養した。メンブラン上にコ
ロニーが生育したら、0.5N NaOHにメンブランを浸
す操作を2回行い、メンブラン上のコロニーを溶菌さ
せ、さらに1Mトリス塩酸(pH7.5)でメンプラン
を2回洗浄して中和した。こうしてコロニーから抽出し
たDNAをメンブラン上に固定するため、真空下80℃
で2時間メンブランを乾燥した。First, white colonies were selected from the colonies on the plate, then a mixed DNA probe corresponding to the purified N-terminal amino acid sequence of esterase was synthesized, and colony hybridization was carried out according to the following method. That is, the white colonies spread on the plate were transferred to a nylon membrane or planted on a nylon membrane with a bamboo skewer, and the membrane was placed on an LB ampicillin plate and cultured for several hours. When the colonies grew on the membrane, the operation of immersing the membrane in 0.5 N NaOH was performed twice, the colonies on the membrane were lysed, and the membrane was washed twice with 1 M Tris-HCl (pH 7.5) and neutralized twice. did. The DNA extracted from the colonies was fixed on a membrane at 80 ° C under vacuum.
To dry the membrane for 2 hours.
【0020】次に、このメンブランを6×SSC,1
%SDS,10×デンハルト(0.2%フィコール,
0.2%ポリビニルピロリドン,0.2%ウシ血清アル
ブミン)55℃1時間インキュベートした後、6×S
SC,1%SDS,10×デンハルト,100μg/mlサ
ケ精巣DNA,55℃,4時間,の順で反応を行なっ
た。一方、混合DNAは〔γ32P〕ATPを用いて5′
末端を標識し、カラムにより精製した。ハイブリダイゼ
ーションは、プラスティックバックにメンブランとの
溶液を加え、標識したDNAをメンブラン1枚当たり約
5×105 cpm添加して、55℃で終夜行った。Next, this membrane was placed in 6 × SSC, 1
% SDS, 10x Denhardt (0.2% Ficoll,
0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin) After incubating at 55 ° C. for 1 hour, 6 × S
The reaction was performed in the order of SC, 1% SDS, 10 × Denhardt, 100 μg / ml salmon testis DNA, 55 ° C., 4 hours. On the other hand, the mixed DNA was 5 ′ using [γ 32 P] ATP.
The ends were labeled and purified by column. Hybridization was performed by adding a solution of the membrane to a plastic bag, adding labeled DNA at about 5 × 10 5 cpm per membrane, and overnight at 55 ° C.
【0021】ハイブリダイゼーションを行ったフィルタ
ーは、6×SSC,55℃,15分,6×SSC,
55℃,30分,6×SSC,1%SDS,55℃,
30分の順に反応したのち、風乾し、X線フィルム(フ
ジRX)と増感紙をあて、オートラジオグラムをとっ
た。この結果、ポジティブシグナルを与えるpK-12 株を
得た。The filter subjected to hybridization was 6 × SSC, 55 ° C., 15 minutes, 6 × SSC,
55 ° C., 30 minutes, 6 × SSC, 1% SDS, 55 ° C.,
After reacting in the order of 30 minutes, the mixture was air-dried, applied with an X-ray film (Fuji RX) and an intensifying screen, and an autoradiogram was taken. As a result, a pK-12 strain giving a positive signal was obtained.
【0022】pK-12株は、エステラーゼの全長をコード
するには十分な長さを有していなかった。そこで、ダイ
デオキシ法によりpK-12 の塩基配列を決定した後、その
配列の一部をDNAプローブとして再度、コロニーハイ
ブリダイゼーションによるスクリーニングを行った。そ
の際、染色体DNAはEcoRI で消化し、同様にEcoRIで
消化したベクターpUC19に連結して作製したランブ
ラリーを使用した。その結果、ポジティブシグナルを与
えるクローン、pEH−16株を取得した。The pK-12 strain was not long enough to encode the full length of the esterase. Therefore, after determining the nucleotide sequence of pK-12 by the dideoxy method, screening by colony hybridization was performed again using a part of the sequence as a DNA probe. At this time, a chromosome DNA was digested with EcoRI, and a library prepared by ligating to a vector pUC19 similarly digested with EcoRI was used. As a result, a clone giving a positive signal, pEH-16 strain, was obtained.
【0023】さらに、pK−12株の挿入断片をEcoRI
で切り出し、それをpEH−16株のEcoRI 部位に挿入
することにより、エステラーゼの全翻訳領域を含むプラ
スミドpAGE-1を構築した。その構築の方法を第5図に示
す。Furthermore, the inserted fragment of the pK-12 strain was
And inserted into the EcoRI site of the pEH-16 strain to construct a plasmid pAGE-1 containing the entire translation region of esterase. The construction method is shown in FIG.
【0024】エステラーゼ遺伝子の制限酵素地図および
塩基配列の決定 前述の方法で取得したエステラーゼDNAクローンにつ
いて、挿入断片の制限酵素地図を作製した。 A restriction map of the esterase gene and
Determination of base sequence For the esterase DNA clone obtained by the above-described method, a restriction enzyme map of the inserted fragment was prepared.
【0025】プラスミドpK12およびpEH16を導
入した大腸菌JM109株を各々培養し、バーンボイム
−ドリ(Birnboim-Doly)の方法により、プラスミドDN
Aを調製した。プラスミドDNAは、種々の制限酵素で
切断し、切断したDNA断片を1%アガロースゲル及び
5%ポリアクリルアミドゲル電気泳動で分析した。出現
した種々のDNA断片の鎖長を比較することにより制限
酵素地図を得た。Escherichia coli JM109 strains into which plasmids pK12 and pEH16 have been introduced are each cultured, and the plasmid DN is prepared by the method of Birnboim-Doly.
A was prepared. Plasmid DNA was digested with various restriction enzymes, and the digested DNA fragments were analyzed by 1% agarose gel and 5% polyacrylamide gel electrophoresis. A restriction map was obtained by comparing the chain lengths of the various DNA fragments that appeared.
【0026】エステラーゼDNA塩基配列およびアミノ
酸配列の決定 pAGE-1の挿入断片の全 2,175塩基対の塩基配列を、pU
Cプラスミドの正逆両方向のプライマーDNA(宝酒造
株式会社)、逐次合成したプライマーDNA、および7
−deaza シークエンシングキット(宝酒造株式会社)を
用いてダイデオキシ法により決定した。Determination of Esterase DNA Base Sequence and Amino Acid Sequence The base sequence of a total of 2,175 base pairs of the inserted fragment of pAGE-1 was
Primer DNA in both forward and reverse directions of C plasmid (Takara Shuzo Co., Ltd.), sequentially synthesized primer DNA, and 7
-Deaza Determined by the dideoxy method using a sequencing kit (Takara Shuzo Co., Ltd.).
【0027】決定したpAGE-1の挿入DNA断片の全 2,1
74塩基対の塩基配列を図1〜図4に示す。塩基配列中か
ら、オープンリーディングフレームを検索した結果、図
1〜図4に示すように、塩基番号211番目のGTGか
ら、1335番目までが唯一のオープンリーディングフレー
ムである事が判明した。蛋白質の読み枠としては、塩基
を1つずつずらした他の2つの読み枠も考えられるが、
これらでは塩基配列の途中に終止コドンが何回も現れ、
SDS-PAGEにより推定した分子量43,000のエステラードを
コードできるとは考えられなかった。The total 2,1 of the determined DNA fragments inserted into pAGE-1
The base sequence of 74 base pairs is shown in FIGS. As a result of searching for an open reading frame from the nucleotide sequence, as shown in FIGS. 1 to 4, it was found that from GTG at the base number 211 to 1335 was the only open reading frame. As the reading frame of protein, the other two reading frames in which the bases are shifted one by one can also be considered.
In these, a stop codon appears many times in the middle of the base sequence,
It was not thought that it could encode an estera with a molecular weight of 43,000 estimated by SDS-PAGE.
【0028】また、精製したエステラーゼのアミノ末端
のアミノ酸配列と、このオープンリーディングフレーム
の開始コドン以下のアミノ酸残基が一致した事から、こ
のオープンリーディングフレームがエステラーゼをコー
ドするものである事が明らかになった。その結果、エス
テラーゼは375アミノ酸残基から成る分子量39,836の
蛋白質であることが判明した。Further, since the amino acid sequence at the amino terminus of the purified esterase was identical to the amino acid residue below the start codon of this open reading frame, it was clear that this open reading frame encodes an esterase. became. As a result, the esterase was found to be a protein consisting of 375 amino acid residues and having a molecular weight of 39,836.
【0029】エステラーゼ高発現プラスミドの構築 発現ベクターpKK223-3(Boyerら、Prot.Natl.Acad.Sci.U
SA,80,21〜25(1983)ファルマシア社)をBamHI により部
分分解し、次にT4DNA ポリメラーゼにより平滑化し、ラ
イゲーションを行う事によりBamHI 部位を1カ所欠失さ
せたpKK223-4を作製した Construction of Esterase High Expression Plasmid Expression vector pKK223-3 (Boyer et al., Prot. Natl. Acad. Sci. U.
SA, 80, 21 to 25 and (1983) Pharmacia) was partially digested with BamHI, then blunted by T 4 DNA polymerase, to produce a pKK223-4 which was deleted one place missing a BamHI site by performing a ligation
【0030】一方、エステラーゼ遺伝子の開始コドンか
ら5′側のDNA配列を変換するため、下記の配列のD
NAフラグメントをアプライド社DNA合成機モデル3
80Aを用いて合成した。合成したpH-21,ES-01,ES-11,
ES-21,およびES-13 断片の5′末端をリン酸化し、それ
ぞれ未処理の断片とライゲーション,アニーリングを行
って、下記の3種類の2本鎖DNA断片を作製した。On the other hand, in order to convert the DNA sequence 5 ′ from the start codon of the esterase gene,
NA fragment was applied to Applied DNA Synthesizer Model 3
Synthesized using 80A. Synthesized pH-21, ES-01, ES-11,
The 5'-ends of the ES-21 and ES-13 fragments were phosphorylated and ligated and annealed to the untreated fragments, respectively, to prepare the following three types of double-stranded DNA fragments.
【0031】PH-22PH-22
【化5】 配列番号3[Image Omitted] SEQ ID NO: 3
【0032】PH-21PH-21
【化6】 配列番号4[Image Omitted] SEQ ID NO: 4
【0033】ES-01ES-01
【化7】 配列番号5[Image Omitted] SEQ ID NO: 5
【0034】ES-02ES-02
【化8】 配列番号6[Image Omitted] SEQ ID NO: 6
【0035】ES-13ES-13
【化9】 配列番号7Embedded image SEQ ID NO: 7
【0036】ES-11ES-11
【化10】 配列番号8[Image Omitted] SEQ ID NO: 8
【0037】ES-12ES-12
【化11】 配列番号9[Image Omitted] SEQ ID NO: 9
【0038】ES-21ES-21
【化12】 配列番号10[Image Omitted] SEQ ID NO: 10
【0039】ES-22ES-22
【化13】 配列番号11 合成したpH-21,ES-01,ES-11,ES-21,およびES-13 断片の
5′末端をリン酸化し、それぞれ未処理の断片とライゲ
ーション,アニーリングを行って、下記の3種類の2本
鎖DNA断片を作製した。Embedded image SEQ ID NO: 11 The 5 ′ end of each of the synthesized pH-21, ES-01, ES-11, ES-21, and ES-13 fragments is phosphorylated, and ligated and annealed to the untreated fragments, respectively. Thus, the following three types of double-stranded DNA fragments were prepared.
【化14】 作製した2本鎖DNA断片は、その両端をリン酸化し
た。一方、pAGE-1をNsp(7524) V,およびHindIII で消
化する事によりエステラーゼの翻訳領域を切り出し、合
成したDNA断片および、BamHI で消化し、アルカリホ
スフアターゼ処理を行ったベクターpKK223-4とライゲー
ションを行った。この様にして、tocプロモーターの
下流に改変された5′側DNA配列を有する3種類の大
腸菌用発現プラスミドpAGE-201,pAGE-202,およびpAGE-2
03を得た。Embedded image Both ends of the prepared double-stranded DNA fragment were phosphorylated. On the other hand, the translation region of the esterase was cut out by digesting pAGE-1 with Nsp (7524) V and HindIII, and the synthesized DNA fragment and the vector pKK223-4 digested with BamHI and treated with alkaline phosphatase were used. Ligation was performed. In this manner, three types of Escherichia coli expression plasmids pAGE-201, pAGE-202, and pAGE-2 having a modified 5 'DNA sequence downstream of the toc promoter.
Got 03.
【0040】組み換え体大腸菌による菊酸エステル不斉
加水分解酵素の生産 3種類の発現プラスミドをそれぞれ大腸菌JM109に
導入し、M9培地(K2HPO410.5g,KH2PO44.5g,(NH4)2SO
41.0g,クエン酸ナトリウム0.5g,MgSO47H2O 0.2g,
グルコース2.0g,チアミン塩酸塩,2mg/L)を用
いて37℃で培養し、対数増殖期にIPTG(イソプロピル
チオーβ−D−ガラクトシド)を終濃度1mMになる様添
加して、エステラーゼの発現を誘導した。 Chrysanthemum ester asymmetric by recombinant Escherichia coli
Production of hydrolase Each of the three expression plasmids was introduced into E. coli JM109, and M9 medium (10.5 g of K 2 HPO 4 , 4.5 g of KH 2 PO 4 , (NH 4 ) 2 SO 4
4 1.0 g, sodium citrate 0.5 g, MgSO 4 7H 2 O 0.2 g,
The cells were cultured at 37 ° C. using 2.0 g of glucose, thiamine hydrochloride, 2 mg / L), and IPTG (isopropylthio-β-D-galactoside) was added during the logarithmic growth phase to a final concentration of 1 mM, and esterase was added. Expression was induced.
【0041】培養終了後、遠心により菌体を回収し、そ
の一部をSDS-PAGEに供したところ、分子量40,000の位置
に、エステラーゼが主バンドとして認められ、大腸菌内
で該酵素がいずれも高発現している事が判明した。After completion of the culture, the cells were collected by centrifugation, and a part of the cells was subjected to SDS-PAGE. As a result, esterase was recognized as a main band at the position of molecular weight 40,000, and all of the enzymes were high in E. coli. It turned out that it was expressed.
【0042】組み換え体大腸菌による菊酸エチルエステ
ルの不斉加水分解 これらの菌体を用いてラセミ体、菊酸(2,2−ジメチ
ル−3−イソブテニルシクロプロパン−1−カルボン
酸)のエチルエステル(シス体:トランス体=10:9
0,(+)/(−)=50/50)(以下、本明細書中
でKCEと略す)の加水分解反応を行った。即ち、培養
液100ml相当の菌体を、50mlの200mMグリシン・
水酸化ナトリウム緩衝液(pH10.0)中に懸濁し、1.0
gの上記菊酸エチルエステルを添加し、1,000 rpm で攪
拌下、37℃で反応を行った。6時間後この反応液に、
35%塩酸5.0mlを加えて反応を停止させた後、メチ
ルイソブチルケトン(以下MIBKと略す)で、生成した菊
酸(以下KCAと略す)と、未反応のKCEを酸析、抽
出した。抽出液をガスクロマトグラフィー(カラム:Sh
inchrom F55(5%)+H3PO4 (1%),2.6m,1
90℃)で分析し、面積百分率より加水分解率を計算し
た。 Ethyl chrysanthe by recombinant Escherichia coli
Asymmetric hydrolysis of these compounds Using these cells, a racemic compound, ethyl ester of chrysanthemic acid (2,2-dimethyl-3-isobutenylcyclopropane-1-carboxylic acid) (cis-form: trans-form = 10: 9
(0, (+) / (-) = 50/50) (hereinafter abbreviated as KCE in the present specification). That is, cells equivalent to 100 ml of the culture solution were transferred to 50 ml of 200 mM glycine.
Suspend in sodium hydroxide buffer (pH 10.0)
g of the above chrysanthemic acid ethyl ester was added and reacted at 37 ° C. with stirring at 1,000 rpm. After 6 hours,
After adding 5.0 ml of 35% hydrochloric acid to terminate the reaction, the produced chrysanthemic acid (hereinafter abbreviated as KCA) and unreacted KCE were extracted with methyl isobutyl ketone (hereinafter abbreviated as MIBK) and extracted. The extract is subjected to gas chromatography (column: Sh
inchrom F55 (5%) + H 3 PO 4 (1%), 2.6m, 1
(90 ° C.) and the hydrolysis rate was calculated from the area percentage.
【0043】次に、上記抽出液に0.01N NaoH20mlを添加
してKCAのみをナトリウム塩として水層に抽出した
後、再び35%塩酸とMIBKにより、KCAを酸析抽出し
た。該抽出液を濃縮,脱水後,その一部をジシクロヘキ
シルカルボジイミドと3.5−ジクロロアニリンを加え
て室温で3時間放置後、高速液体クロマトグラフィー
(カラム:SUMIPAX OA−2100×2本,移動相:n−ヘキ
サン:1,2−ジクロロメタン(17:3V/V),流速
1.5ml/min,検出:254mm)で異性体分析を行った。そ
の結果を表1に表す。Next, 20 ml of 0.01N NaoH was added to the above-mentioned extract to extract only KCA as a sodium salt into an aqueous layer, and KCA was again extracted by acid precipitation with 35% hydrochloric acid and MIBK. The extract was concentrated and dehydrated, a part of which was added with dicyclohexylcarbodiimide and 3.5-dichloroaniline, left at room temperature for 3 hours, and then subjected to high performance liquid chromatography (column: SUMIPAX OA-2100 × 2, mobile phase: Isomer analysis was performed with n-hexane: 1,2-dichloromethane (17: 3 V / V), flow rate 1.5 ml / min, detection: 254 mm). The results are shown in Table 1.
【0044】[0044]
【表1】 1)加水分解率:原料中の(+)−トランス体KCEモ
ル数に対する得られた(+)−トランス体KCAのモル
分率を表わす。[Table 1] 1) Hydrolysis rate: It represents the molar fraction of (+)-trans-KCA obtained relative to the number of moles of (+)-trans-KCE in the raw material.
【0045】組換え体大腸菌による菊酸エチルエステル
の不斉加水分解 3種類の発現プラスミドをそれぞれ大腸菌JM105に
導入し、M9培地を用いて37℃で培養し、対数増殖期
にIPTGを終濃度1mMになるように添加して、エステラ
−ゼの発現を誘導した。これらの菌体を用いてラセミ
体、菊酸(2,2−ジメチル−3−イソブテニルシクロ
プロパン−1−カルボン酸)のエチルエステル(シス
体:トランス体=10:90,(+)/(−)=50/
50)の加水分解反応を行った。即ち、培養液100ml
相当の菌体を、50mlの200mMグリシン・水酸化ナト
リウム緩衝液(pH10.0)中に懸濁し、1.0gの上記菊
酸エチルエステルを添加し、1,000 rpm で攪拌下、37
℃で反応を行った。6時間後この反応液に、35%塩酸
5.0mlを加えて反応を停止させた後、メチルイソブチ
ルケトン(以下MIBKと略す)で、生成した菊酸(以下K
CAと略す)と、未反応のKCEを酸析、抽出した。抽
出液をガスクロマトグラフィー(カラム:Shinchrom F
55(5%)+H3PO4 (1%),2.6m,190℃)で
分析し、面積百分率より加水分解率を計算した。その結
果を表2に示す。 Chrysanthemic acid ethyl ester by recombinant Escherichia coli
Of introducing asymmetric hydrolysis three expression plasmids to each E. coli JM105, cultured at 37 ° C. using a M9 medium, IPTG was added to the logarithmic growth phase to a final concentration of 1 mM, Estella - Ze Expression was induced. Using these cells, racemic, ethyl ester of chrysanthemic acid (2,2-dimethyl-3-isobutenylcyclopropane-1-carboxylic acid) (cis-form: trans-form = 10: 90, (+) / (-) = 50 /
The hydrolysis reaction of 50) was performed. That is, 100 ml of culture solution
The corresponding bacterial cells were suspended in 50 ml of 200 mM glycine / sodium hydroxide buffer (pH 10.0), and 1.0 g of the above-mentioned ethyl chrysanthenate was added thereto.
The reaction was performed at ℃. Six hours later, 5.0 ml of 35% hydrochloric acid was added to the reaction solution to terminate the reaction, and then the produced chrysanthemic acid (hereinafter referred to as K) was treated with methyl isobutyl ketone (hereinafter abbreviated as MIBK).
CA), and unreacted KCE was acid precipitated and extracted. The extract was subjected to gas chromatography (column: Shinchrom F.
55 (5%) + H 3 PO 4 (1%), 2.6 m, 190 ° C.), and the hydrolysis rate was calculated from the area percentage. Table 2 shows the results.
【表2】 [Table 2]
【0046】従来Arthrobacter globiformis(IFO-1295
8)を用いた場合、エステラーゼの該菌体内での発現量
が非常に低いため、精製酵素20μg(2.5L培養液
相当)を用い、90KCE濃度2w/v %,40℃で24
時間反応を行った時、加水分解率は6.4%であった
(特開平1−181788参照) 本発明により、大腸菌に該遺伝子をクローニングし、プ
ロモーター及び開始コドン付近を大腸菌に適した配列に
変換する事により、菌体内に於ける該酵素の発現量を飛
躍的に増大させ、その結果ラセミ体KCEから(+)−
トランス体KCAを特異的かつ高収率で得る事が可能に
なった。Conventionally, Arthrobacter globiformis (IFO-1295
When 8) was used, the expression level of esterase in the cells was extremely low, so that 20 μg of the purified enzyme (corresponding to a 2.5 L culture solution) was used and a 90 KCE concentration of 2 w / v% at 24 ° C. was used.
When the reaction was carried out for a time, the hydrolysis rate was 6.4% (see JP-A-1-181788). According to the present invention, the gene was cloned into Escherichia coli, and the vicinity of the promoter and initiation codon was changed to a sequence suitable for Escherichia coli. By the conversion, the expression level of the enzyme in the cells is dramatically increased, and as a result, (+)-
It has become possible to obtain trans KCA specifically and in high yield.
配列番号:1 配列の長さ:375 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 配列番号:2 配列の長さ:1125 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源 生物名:アルスロバクター・グロビフォルミス(Art
hrobacterglobiformis) 株名:SC−6−98−28(FERM BP−365
8) 配列の特徴 特徴を表す記号:CDS 存在位置:1..1125 特徴を決定した方法:E 配列 配列番号:3 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 配列番号:4 配列の長さ:27 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 配列番号:5 配列の長さ:44 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 配列番号:6 配列の長さ:35 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 配列番号:7 配列の長さ:27 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 配列番号:8 配列の長さ:44 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 配列番号:9 配列の長さ:35 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 配列番号:10 配列の長さ:42 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 配列番号:11 配列の長さ:33 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 SEQ ID NO: 1 Sequence length: 375 Sequence type: Amino acid Topology: Linear Sequence type: Protein Sequence SEQ ID NO: 2 Length of sequence: 1125 SEQ types: the number of nucleic acid strands: double-stranded Topology: linear sequence type: Genomic DNA Origin Organism: A Le Surobakuta globiformis (Art
hrobacterglobiformis) Ltd. name: SC-6-98-28 (FERM BP- 36 5
8) Characteristic of sequence Symbol indicating characteristic: CDS Location: 1. . 1125 Method Determined Features: E Sequence SEQ ID NO: 3 Sequence length: 20 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence SEQ ID NO: 4 Sequence length: 27 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence SEQ ID NO: 5 Sequence length: 44 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence SEQ ID NO: 6 Sequence length: 35 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence SEQ ID NO: 7 Sequence length: 27 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence SEQ ID NO: 8 Sequence length: 44 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence SEQ ID NO: 9 Sequence length: 35 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence SEQ ID NO: 10 Sequence length: 42 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence SEQ ID NO: 11 Sequence length: 33 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence
【図1】クローンpAGE-1の挿入DNA断片の1番目から
570番目の塩基配列と、それから推定される該エステ
ラーゼのアミノ酸配列を示す。FIG. 1 shows the nucleotide sequence from the 1st to the 570th in the inserted DNA fragment of clone pAGE-1, and the amino acid sequence of the esterase deduced therefrom.
【図2】クローンpAGE-1の挿入DNA断片の571番目
から1002番目の塩基配列と、それから推定される該
エステラーゼのアミノ酸配列を示す。スクリーニングに
用いたN末端DNAプローブは、塩基番号211 〜230 番
目に相当する。FIG. 2 shows the nucleotide sequence from position 571 to position 1002 of the inserted DNA fragment of clone pAGE-1, and the amino acid sequence of the esterase deduced therefrom. The N-terminal DNA probe used for the screening corresponds to base numbers 211 to 230.
【図3】クローンpAGE-1の挿入DNA断片の1003番
目から1695番目の塩基配列と、それから推定される
該エステラーゼのアミノ酸配列を示す。エステラーゼの
翻訳領域は、塩基番号210 〜1335番目に相当する。FIG. 3 shows the nucleotide sequence at positions 1003 to 1695 of the inserted DNA fragment of clone pAGE-1, and the amino acid sequence of the esterase deduced therefrom. The translated region of the esterase corresponds to nucleotides 210 to 1335.
【図4】クローンpAGE-1の挿入DNA断片の1696番
目から2175番目の塩基配列を示す。FIG. 4 shows the nucleotide sequence at positions 1696 to 2175 of the inserted DNA fragment of clone pAGE-1.
【図5】コロニーハイブリダイゼーションで得られたポ
ジティブクローンPK−12,pEH16,及び、これらを元
に構築したエステラーゼ翻訳領域の全長を含むクローン
pAGE-1の制限酵素地図を示す。図中イは、A.globifor
mis 由来のDNAを、ロはエステラーゼの翻訳領域を示
す。FIG. 5 shows positive clones PK-12 and pEH16 obtained by colony hybridization, and clones containing the full length of the esterase translation region constructed based on these clones.
3 shows a restriction map of pAGE-1. In FIG. globifor
The DNA derived from mis indicates the esterase translated region.
【図6】エステラーゼ高発現プラスミドpAGE-201〜3の
構築ストラテジーを示す。図中ハは合成DNAを、太線
矢印はtacプロモーターを表す。FIG. 6 shows a construction strategy of an esterase high expression plasmid pAGE-201-3. In the figure, c represents the synthetic DNA, and the thick arrow represents the tac promoter.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C12N 15/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C12N 15/00
Claims (12)
加水分解能を有し下記アミノ酸配列で表される酵素をコ
ードすることを特徴とするエステル不斉加水分解酵素遺
伝子 【化1】 配列番号11. An ester asymmetric hydrolase gene having the asymmetric hydrolytic ability of an ester of chrysanthemic acid or a chrysantic acid derivative and encoding an enzyme represented by the following amino acid sequence: Number 1
る特許請求の範囲第1項記載のエステル不斉加水分解酵
素遺伝子 【化2】 配列番号22. The ester asymmetric hydrolase gene according to claim 1, wherein the gene is specified by the following nucleotide sequence:
遺伝子を含有することを特徴とするプラスミド3. A plasmid comprising the gene according to claim 1 or 2.
その下流に特許請求の範囲第1項または第2項記載の遺
伝子を有することを特徴とするプラスミド4. A method comprising a promoter that functions in Escherichia coli,
A plasmid having the gene according to claim 1 or 2 downstream thereof.
することを特徴とする微生物5. A microorganism which is characterized by retaining the claims 3 or 4 Symbol mounting plasmids
る請求項5記載の微生物6. The microorganism according to claim 5, which is Escherichia coli.
ることを特徴とする特許請求の範囲第6項記載の微生物7. The microorganism according to claim 6 , wherein the Escherichia coli is JM109 strain.
ることを特徴とする特許請求の範囲第6項記載の微生物8. The microorganism according to claim 6 , wherein the Escherichia coli is strain JM105.
を培養することを特徴とするエステル不斉加水分解酵素
の製造方法9. A process for producing an ester asymmetric hydrolase, which comprises culturing the microorganism according to claim 5, 6, 7, or 8.
に、請求項1または2記載の遺伝子を組み込むことを特
徴とするプラスミドの製造方法10. A method for producing a plasmid, comprising incorporating the gene according to claim 1 into a plasmid capable of self-propagation in a host cell.
生物を形質転換することを特徴とする組み換え体微生物
の製造方法11. A method for producing a recombinant microorganism, which comprises transforming a microorganism with the plasmid according to claim 3 or 4.
物の培養物または菌体と、菊酸または菊酸誘導体のエス
テルとを接触させ、該エステルを不斉加水分解すること
を特徴とする光学活性な菊酸または菊酸誘導体の製造方
法12. A method comprising contacting a culture or cells of the microorganism of claim 5, 6, 7 or 8 with an ester of chrysanthemic acid or a derivative of chrysantic acid, and subjecting the ester to asymmetric hydrolysis. For producing optically active chrysanthemic acid or chrysanthemic acid derivative
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34127891A JP3151893B2 (en) | 1991-01-10 | 1991-12-24 | Ester asymmetric hydrolase gene |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP153791 | 1991-01-10 | ||
JP3-1537 | 1991-01-10 | ||
JP34127891A JP3151893B2 (en) | 1991-01-10 | 1991-12-24 | Ester asymmetric hydrolase gene |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000332639A Division JP2001178494A (en) | 1991-01-10 | 2000-10-31 | Method for producing optically active chrysanthemic acid or chrysanthemic acid derivative |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0556787A JPH0556787A (en) | 1993-03-09 |
JP3151893B2 true JP3151893B2 (en) | 2001-04-03 |
Family
ID=26334768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34127891A Expired - Fee Related JP3151893B2 (en) | 1991-01-10 | 1991-12-24 | Ester asymmetric hydrolase gene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3151893B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4501541B2 (en) * | 2004-06-14 | 2010-07-14 | 住友化学株式会社 | Process for producing optically active cyclopropanecarboxylic acid |
JP4857606B2 (en) * | 2005-05-27 | 2012-01-18 | 住友化学株式会社 | Process for producing optically active cyclopropanecarboxylic acid |
CN119506246A (en) | 2018-12-06 | 2025-02-25 | 天野酶制品株式会社 | Modified chrysanthemic acid esterase |
WO2023195483A1 (en) * | 2022-04-05 | 2023-10-12 | 天野エンザイム株式会社 | Modified esterase |
-
1991
- 1991-12-24 JP JP34127891A patent/JP3151893B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0556787A (en) | 1993-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04228079A (en) | Cephalosporin acetylhydrolase gene and protein coded with the gene | |
EP0497103B1 (en) | Gene encoding asymmetrically active esterase | |
JPH08173169A (en) | Regulatory factor for manifesting nitrilase gene and the gene | |
JP3151893B2 (en) | Ester asymmetric hydrolase gene | |
JPH0937788A (en) | New nitrilase gane | |
EP1174499B1 (en) | Novel amidase gene | |
CN110951711B (en) | A kind of esterase with degrading chiral ester activity and its encoding gene and application | |
US7033808B2 (en) | Carbonyl reductase, gene thereof and method of using the same | |
JP2001178494A (en) | Method for producing optically active chrysanthemic acid or chrysanthemic acid derivative | |
US7335502B2 (en) | Chlorohydrin and hydroxycarboxylic ester asymmetric hydrolase gene | |
US5308765A (en) | Esterase genes, esterase, recombinant plasmids and transformants containing the recombinant plasmid and methods of producing optically acitve carboxylic acids and their enantiomeric esters using said transformants | |
RU2126450C1 (en) | Method of producing s-(+)-2,2-dimethylcyclopropane carboxamide, dna fragment encoding r-(-)-2,2-dimethylcyclopropane- -carboxamide hydrolase of comamonas, recombinant plasmid dna (variants), strain of bacterium escherichia coli (variants) | |
JP2763213B2 (en) | Process for producing optically active carboxylic acid and its enantiomer ester | |
JP4505917B2 (en) | Novel microorganism and method for producing L-amino acid using the same | |
JP4116798B2 (en) | Novel amidase and gene encoding the same | |
JP4345425B2 (en) | Chlorohydrin and hydroxycarboxylate asymmetric hydrolase genes | |
JPH07222587A (en) | New cephalosporin c acylase and its production | |
JP4485734B2 (en) | 5-substituted hydantoin racemase, DNA encoding the same, recombinant DNA, transformed cell, and method for producing optically active amino acid | |
JPS63269986A (en) | Gene regulating unit and cloning developing system | |
JPH08256771A (en) | New protein having amidase activity and gene coding the same | |
JP3866357B2 (en) | Thermostable, solvent-resistant esterase | |
JPH10262674A (en) | Gene coding for alkaline phosphatase | |
JPH0898686A (en) | Variant type cephalosporin c acylase and its production | |
JP2003210177A (en) | 5-substituted hydantoin racemase, dna encoding the same, recombinant dna, transformed cell and method for producing optically active amino acid | |
JP2004105152A (en) | Gene of amidase hydrolyzing (r)-form amide bond selectively and use of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D05 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |