JP3148211B2 - Nickel-based superalloy, article made of nickel-based superalloy, method of heat treatment of cast article made of nickel-based alloy, method of manufacturing cast article made of columnar particle nickel-based superalloy, and turbine blade of gas turbine engine made of columnar particle nickel-based superalloy Manufacturing method of cast member - Google Patents
Nickel-based superalloy, article made of nickel-based superalloy, method of heat treatment of cast article made of nickel-based alloy, method of manufacturing cast article made of columnar particle nickel-based superalloy, and turbine blade of gas turbine engine made of columnar particle nickel-based superalloy Manufacturing method of cast memberInfo
- Publication number
- JP3148211B2 JP3148211B2 JP25718889A JP25718889A JP3148211B2 JP 3148211 B2 JP3148211 B2 JP 3148211B2 JP 25718889 A JP25718889 A JP 25718889A JP 25718889 A JP25718889 A JP 25718889A JP 3148211 B2 JP3148211 B2 JP 3148211B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- nickel
- article
- cast
- based superalloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 66
- 239000000956 alloy Substances 0.000 title claims description 66
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims description 39
- 238000010438 heat treatment Methods 0.000 title claims description 31
- 239000002245 particle Substances 0.000 title claims description 22
- 229910052759 nickel Inorganic materials 0.000 title claims description 18
- 229910000601 superalloy Inorganic materials 0.000 title claims description 17
- 238000000034 method Methods 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 230000032683 aging Effects 0.000 claims description 22
- 230000003647 oxidation Effects 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 18
- 238000005266 casting Methods 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910052702 rhenium Inorganic materials 0.000 claims description 5
- 238000007711 solidification Methods 0.000 claims description 5
- 230000008023 solidification Effects 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 230000005496 eutectics Effects 0.000 claims description 4
- 238000005495 investment casting Methods 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 210000001787 dendrite Anatomy 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims 4
- 239000010936 titanium Substances 0.000 claims 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 239000010941 cobalt Substances 0.000 claims 1
- 229910017052 cobalt Inorganic materials 0.000 claims 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims 1
- 239000011733 molybdenum Substances 0.000 claims 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 1
- 239000010937 tungsten Substances 0.000 claims 1
- 230000035882 stress Effects 0.000 description 13
- 208000013201 Stress fracture Diseases 0.000 description 10
- 239000008186 active pharmaceutical agent Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/057—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Powder Metallurgy (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Description
【発明の詳細な説明】 本発明は、指向性凝固された柱状粒子のニッケル基合
金からなる鋳造物品に係り、さらに特定的にいうと、酸
化抵抗性によって表わされるような高温表面安定性の優
れた物品、特に薄型の中空物品、ならびにそのような物
品の製造用の合金および熱処理に係る。Description: The present invention relates to a cast article comprising a nickel-based alloy of directional solidified columnar particles, and more particularly to an excellent high temperature surface stability as represented by oxidation resistance. Articles, especially thin hollow articles, and alloys and heat treatments for the manufacture of such articles.
発明の背景 高温作動物品、たとえばガスタービンエンジン用のタ
ービンブレードに関する公表された周知の鋳造技術のか
なりの部分は、最終物品のミクロ組織における粒界の一
部または全部を除くことによっていくかつの特性を改善
することに向けられている。そのような構造は、通常、
凝固する結晶または粒子を伸長させるように融解金属を
方向付けて凝固(指向性凝固)させる周知の精密鋳造法
によって製造されている。凝固の間、たとえば他の粒子
の成長を止めたりまたは種結晶を使用したりして、物品
中で粒子をひとつだけ成長させると、粒界をほとんども
たない単結晶の物品が得られる。しかし、鋳造金型の領
域で多数の粒子が凝固し、鋳造金型内で融解金属から熱
が奪われて概して単一の方向に成長すると、凝固した鋳
造品中には多数の伸長した、すなわち柱状の粒子が存在
する。本明細書中ではそのような構造を鋳造物品に関し
て「DS多粒子」と呼ぶことがある。伸長の方向は長手方
向と呼ばれ、この長手方向とほぼ垂直な方向は横方向と
呼ぶ。BACKGROUND OF THE INVENTION A significant portion of the known and well-known casting techniques for hot working articles, for example, turbine blades for gas turbine engines, are characterized by the elimination of some or all of the grain boundaries in the microstructure of the final article. Is aimed at improving. Such structures are usually
It is manufactured by a well-known precision casting method in which a molten metal is oriented so as to elongate crystals or particles to be solidified and solidified (directional solidification). During solidification, growing only one particle in the article, for example, by stopping the growth of other particles or using a seed crystal, results in a single crystal article having few grain boundaries. However, as many particles solidify in the area of the casting mold and heat is removed from the molten metal in the casting mold and grows in a generally single direction, a large number of elongations in the solidified casting, i.e. Columnar particles are present. Such structures may be referred to herein as "DS multiparticulates" with respect to cast articles. The direction of elongation is called the longitudinal direction, and the direction substantially perpendicular to this longitudinal direction is called the lateral direction.
そのような物品中の粒界はほとんどすべてが長手方向
の粒界であるので、鋳造物品中で良好な横方向の機械的
特性および良好な合金表面の安定性と共に応力破壊寿命
や延性などのような長手方向の機械的特性が極めて良好
であることが重要である。物品中でこの特性のバランス
が保たれれば、その物品合金は、複雑な形状に鋳造し指
向性凝固することが可能であるはずであり、通常複雑な
内部間隙と亀裂のない比較的薄い壁をもつ。いわゆる
「薄壁」中空鋳造において、改善された特性をもつよう
に設計された合金を用いて周知の「ロストワックス」タ
イプの精密鋳造法を使用する鋳造業者たちは、困難な品
質の問題に直面している。すなわち、合金の特性は良好
で望ましい範囲内に入っているが、薄壁の鋳造品、たと
えば厚みが約0.035インチ未満の壁をもつ鋳造用は、多
重柱状粒子指向性凝固の間に亀裂を生ずるのが普通であ
る。Since almost all grain boundaries in such articles are longitudinal grain boundaries, such as stress rupture life and ductility, as well as good transverse mechanical properties and good alloy surface stability in cast articles. It is important that the mechanical properties in the longitudinal direction are very good. If this property is balanced in the article, the article alloy should be capable of being cast into complex shapes and directional solidification, usually with complex internal voids and relatively thin walls without cracks. With. In so-called "thin-wall" hollow castings, founders using well-known "lost wax" type precision casting methods with alloys designed to have improved properties face difficult quality problems are doing. That is, while the properties of the alloy are within good and desirable ranges, thin-walled castings, such as those having walls less than about 0.035 inches thick, will crack during multi-columnar grain-directed solidification. Is common.
発明の概要 簡単にいうと、本発明は一面において、ひとつの形態
では熱処理と長手方向および横方向の応力破壊特性の間
の改良された組合せとバランスによって高められた合金
仕様の結果得られ、指向性凝固された物品に対する傑出
した高温表面安定性を特徴とする改良された柱状粒子の
ニッケル基合金製鋳造物品を提供する。この場合には、
この物品は、少なくとも1個の内部間隙を有しており、
大きな亀裂がほとんどなく約0.035インチ未満の厚みを
有する一体型鋳造壁を含んでいる。SUMMARY OF THE INVENTION Briefly, in one aspect, the present invention provides, in one form, the result of an alloy specification enhanced by an improved combination and balance between heat treatment and longitudinal and transverse stress fracture properties. An improved columnar particle nickel-based alloy cast article characterized by outstanding high temperature surface stability to a solidified article is provided. In this case,
The article has at least one internal gap,
Includes an integral cast wall with less than about 0.035 inch thickness with few large cracks.
本発明に伴う合金では、C、Hf、CoおよびTaの必須の
添加と、元素V、ZrおよびTiの意識的な制限とを特別に
組合せて採用した結果、Cr、Mo、W、Al、ReおよびBも
含み、しかも任意の量でCbおよびYを含んでいてもよい
Ni合金において、傑出した高温酸化抵抗性、良好な鋳造
性、ならびに粒界および疲労亀裂発生に対する抵抗性が
得られる。In the alloy according to the present invention, the essential addition of C, Hf, Co and Ta and the intentional limitation of the elements V, Zr and Ti are employed in a special combination, resulting in Cr, Mo, W, Al, Re. And B, and may contain Cb and Y in arbitrary amounts.
Outstanding high temperature oxidation resistance, good castability, and resistance to grain boundaries and fatigue crack initiation are obtained in Ni alloys.
ひとつの形態では、本発明の合金は、本質的に0.1−
0.15C、0.3−2Hf、11−14Co、5−9Ta、0.05未満のZr、
ほぼ0のVおよびTi(最大でも各々約1まで)の組合せ
を含み(数学は重量%)、それによりこの合金からは、
良好な鋳造性ならびに粒界および疲労亀裂発生に対する
抵抗性、さらには傑出した酸化抵抗性により、DS多粒子
物品を作成することが可能である。本発明の合金の残余
は、5−10Cr、0.5−3Mo、4−7W、5−7Al、1.5−4R
e、0.005−0.03B、1.5までのCb、0.5までのYならびに
残部がNiおよび付随する(不可避)不純物である。In one form, the alloys of the present invention have essentially 0.1-
0.15C, 0.3-2Hf, 11-14Co, 5-9Ta, Zr less than 0.05,
It contains a combination of V and Ti (up to about 1 each) of almost 0 (weight is mathematical) so that from this alloy:
With good castability and resistance to grain boundary and fatigue crack initiation, as well as outstanding oxidation resistance, it is possible to make DS multiparticulate articles. The balance of the alloy of the present invention is 5-10Cr, 0.5-3Mo, 4-7W, 5-7Al, 1.5-4R.
e, 0.005-0.03B, Cb up to 1.5, Y up to 0.5 and the balance Ni and accompanying (unavoidable) impurities.
別の一面では、前記のような合金を扱う本発明は、物
品の製造方法において使用する熱処理である。そのよう
な熱処理は、溶体化工程、予備的な第一時効工程、およ
び第二時効工程を含む少なくとも3つの段階的な加熱工
程の組合せからなり、これによって物品の応力破壊特性
が改善される。In another aspect, the invention dealing with such an alloy is a heat treatment used in a method of making an article. Such heat treatment comprises a combination of at least three stepwise heating steps, including a solution treatment step, a preliminary first aging step, and a second aging step, which improves the stress fracture properties of the article.
好ましい具体例の説明 本発明に係るニッケル基合金は、特に、比較的高いC
含量と、比較的大量のHfおよびCoとTaの添加との組合せ
をその特徴としている。このことと、元素V、Zrおよび
Tiの意識的な制御・制限とによって、全体としての合金
に、DS構造体用として傑出した酸化抵抗性および良好な
DS鋳造性ならびに粒界および疲労亀裂発生に対する抵抗
性をもたせることができ、ほとんどの亀裂のない伸長し
た粒子をもつ0.035インチ未満の薄い壁をDS鋳造するこ
とができるまでになったのである。このニッケル基合金
中でそのユニークな機械的特性と表面安定性に寄与する
他の元素は、Cr、Mo、W、Al、Re、Bおよび任意成分と
して限られた量のCbおよびYである。得られる物品は通
常とは異なるユニークな組合せの機械的特性と表面安定
性をもっており、ガスタービンエンジンのタービンの部
分の苛酷な環境中で使われるタイプのブレード部材(す
なわち、羽根や翼)などのような中空の空気冷却される
高温作動部品の製造に得に有用である。高い応力がかか
り、しかし高温酸化と熱腐蝕にさらされることになる回
転するタービンブレードでは、安全で効率的なエンジン
の作動にとって内部冷却の繰返しに関連する亀裂のない
状態が必須である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Nickel-based alloys according to the present invention have, in particular, relatively high C
It is characterized by a combination of content and addition of relatively large amounts of Hf and Co and Ta. This and the elements V, Zr and
Due to the conscious control and limitation of Ti, the alloy as a whole has outstanding oxidation resistance and good
DS castability and resistance to grain boundaries and fatigue crack initiation can be achieved, allowing DS walls to be cast with less than 0.035 inch thin walls with most crack-free elongated particles. Other elements that contribute to its unique mechanical properties and surface stability in this nickel-based alloy are Cr, Mo, W, Al, Re, B and optionally limited amounts of Cb and Y. The resulting article has an unusual and unique combination of mechanical properties and surface stability, such as blade members (ie, blades or wings) of the type used in the harsh environment of the turbine section of a gas turbine engine. It is particularly useful for manufacturing such hollow air-cooled high temperature working parts. For rotating turbine blades that are subject to high stress, but to high temperature oxidation and thermal corrosion, crack-free conditions associated with repeated internal cooling are essential for safe and efficient engine operation.
高温指向性凝固された柱状粒子のニッケル基超合金の
鋳造性と亀裂抵抗性の測定・尺度は、1979年10月2日に
発行されたウクシック(Wukusick)らの米国特許第4,16
9,742号の第2欄第41行目から始まり第3欄に続く記載
により報告されている鋳造性試験と評価等級である。こ
の特許の開示内容は援用により本明細書中に含まれるも
のとする。この等級を下記表Iに掲げる。The measurement and scale of the castability and crack resistance of nickel-based superalloys of columnar particles solidified at high temperature are described in Ukusick et al., U.S. Pat.
No. 9,742, column 2, line 41, starting from column 3, following the castability test and rating reported. The disclosure of this patent is incorporated herein by reference. The ratings are listed in Table I below.
ガスタービンエンジンのタービン部品に使用するよう
に設計され、鬨には使用されているニッケル基超合金の
いくつかを本発明に係るひとつの形態の特定の合金と共
に下記表IIに示す。ルネ(Rene′)N5と表示した合金は
単結晶の合金物品の製造に使用するために考案されたも
のであり、1985年10月15日に出願され現在係属中のウク
シック(Wukusick)らの米国特許出願第790,439号に記
載されている。ルネ(Rene′)N150と表示した合金はDS
柱状粒子物品として使用するために考案されたものであ
り、上で援用したウクシック(Wukusick)らの米国特許
第4,169,742号に記載されている。上記の同時係属中の
米国特許出願は本発明の譲受人に譲渡されており、その
開示内容も援用により本明細書中に含まれるものとす
る。表IIにはそのような合金の鋳造性等級も示してあ
る。 Some of the nickel-base superalloys designed and used for gas turbine engine turbine components, along with certain alloys in one form according to the present invention, are shown in Table II below. The alloy designated Rene'N5 was devised for use in the manufacture of single crystal alloy articles, and was filed on October 15, 1985, now pending by Wukusick et al. It is described in Patent Application No. 790,439. Alloys marked Rene 'N150 are DS
It was devised for use as a columnar particle article and is described in Wukusick et al., US Pat. No. 4,169,742, which is incorporated by reference above. The above-mentioned co-pending U.S. patent application is assigned to the assignee of the present invention, and its disclosure is incorporated herein by reference. Table II also shows the castability grades of such alloys.
表II中でルネ(Rene′)N5と表示した合金の鋳造性を
改良するためにその合金中のHf、CoおよびBの量を変え
て評価した。そのような評価の結果を表IIIに示す。In order to improve the castability of the alloy designated as Rene'N5 in Table II, the alloys were evaluated by varying the amounts of Hf, Co and B in the alloy. The results of such an evaluation are shown in Table III.
まず第一に、表IIIのデータは、約0.3〜1.6重量%の
範囲のHfと組合せて7.5重量%より多くて(たとえば約1
0重量%)約12重量%までの量のCoを含ませることの効
果と臨界性を示している。しかし、そのように改良され
た鋳造性をもっていても、約0.05重量%のC含有では、
ルネ(Rene′)N5合金の合金組成を変更すると、上記の
表IIのルネ(Rene′)N5合金の基本化学により多くのCo
を添加するため硬化性元素を希釈される結果長手方向の
応力破壊強さが低下した。ルネ(Rene′)N5合金組成に
公称3%のCoを追加し(Coが合計で10.5%となる)、Hf
を公称1%とすると、長手方向の応力破壊寿命はルネ
(Rene′)N5合金の約65%であり、Hf0.5%でCoを公称
4.5%追加すると(全体でCoが12%となる)、長手方向
の応力破壊寿命はルネ(Rene′)N5合金の30%であっ
た。これは、本発明で使用した元素間のひとつの臨界的
なバランスを示している。すなわち、合金組成には、C
が約0.1〜0.15重量%の範囲で含まれ、それと共に11〜1
4重量%のCoおよび0.3〜2重量%のHfが含まれている。 First of all, the data in Table III shows that greater than 7.5% by weight (eg, about 1%) in combination with Hf in the range of about 0.3-1.6% by weight.
0% by weight) shows the effect and criticality of including up to about 12% by weight of Co. However, even with such improved castability, with a C content of about 0.05% by weight,
By changing the alloy composition of Rene'N5 alloy, more Co is added to the basic chemistry of Rene'N5 alloy in Table II above.
As a result of diluting the curable element to add, the stress rupture strength in the longitudinal direction was reduced. Add nominal 3% Co to Rene'N5 alloy composition (Co total 10.5%), Hf
Is nominally 1%, the longitudinal stress rupture life is about 65% of Rene'N5 alloy, and Co is nominally 0.5% Hf.
With an additional 4.5% (12% total Co), the longitudinal stress rupture life was 30% that of Rene'N5 alloy. This illustrates one critical balance between the elements used in the present invention. That is, the alloy composition contains C
In the range of about 0.1 to 0.15% by weight, and 11 to 1
It contains 4% by weight of Co and 0.3-2% by weight of Hf.
鋳造性と、粒界および疲労亀裂との間のバランスに関
して、Coがあまりに少ないと鋳造性と粒界強化が失わ
れ、一方Coが約14重量%を越えるといくつかの合金強化
性元素の効果が薄められる可能性があることが認識され
ている。元素Hfは約0.3重量%を下回るほど低過ぎるとD
S鋳造および使用の際の粒界亀裂発生に対する傾向を増
大させ、2重量%を上回る程高くなり過ぎるとHfは鋳造
反応性およ熱処理中の初期融解に関する問題を発生する
可能性がある。TaとAlがあまりに多くなり過ぎると、強
くなり過ぎるために鋳造性に影響が出、粒界亀裂が発生
する可能性がある。また、位相幾何学的に最密充填(TC
P)相を形成することができる。したがって、本発明の
実施の際には、Ta含有を約6〜7重量%の範囲に維持す
るのが好ましく、Alの含量は5.5〜6.5重量%とするのが
好ましい。業界で公知のように、Taの代わりに少量のCb
を使用できる。Regarding the balance between castability and grain boundaries and fatigue cracking, too little Co results in loss of castability and grain boundary strengthening, while Co above about 14% by weight has the effect of some alloy strengthening elements. It is recognized that may be diluted. If the element Hf is too low below about 0.3% by weight, D
Hf may increase the tendency to intergranular cracking during S-casting and use, and if too high above 2% by weight, Hf can cause problems with casting reactivity and initial melting during heat treatment. If Ta and Al are too large, they become too strong and affect castability, which may cause grain boundary cracks. In addition, topologically closest packing (TC
P) phase can be formed. Therefore, in the practice of the present invention, the Ta content is preferably maintained in the range of about 6-7% by weight, and the Al content is preferably 5.5-6.5% by weight. As is known in the art, a small amount of Cb
Can be used.
表IIのいくつかの合金の評価の際に、バナジウムは表
面安定性、すなわち熱腐蝕および酸化抵抗性を損う可能
性があり、Zrは亀裂の発生性を増大させる可能性があ
り、Tiは酸化抵抗性を著しく低下させる可能性があるこ
とが認識された。したがって、これらの元素はVは約1
重量%未満、Zrを0.05重量%未満、Tiを1.5重量%未
満、好ましくはVを0.1未満、Zrを0.03未満、Tiを0.02
未満に制御して限定した。イットリウムは酸化抵抗性を
改善する上で有効であるが粒界を弱くする可能性があ
り、したがって本発明の合金では約0.1%未満の量に限
定する。Crは主として酸化および熱腐蝕抵抗性を寄与す
るので含ませ、Mo、WおよびReは主としてマトリックス
強化のために添加し、Bは粒界強度を強めるために含ま
せる。In evaluating some of the alloys in Table II, vanadium may impair surface stability, i.e., thermal and oxidation resistance, Zr may increase cracking potential, and Ti may increase It was recognized that oxidation resistance could be significantly reduced. Therefore, these elements have V of about 1
Wt%, Zr less than 0.05 wt%, Ti less than 1.5 wt%, preferably V less than 0.1, Zr less than 0.03, Ti less than 0.02
Controlled to less than. Yttrium is effective in improving oxidation resistance but can weaken grain boundaries, thus limiting the alloy of the invention to less than about 0.1%. Cr is mainly included because it contributes to oxidation and hot corrosion resistance, Mo, W and Re are mainly added for strengthening the matrix, and B is included for increasing the grain boundary strength.
ルネ(Rene′)150などのような合金の鋳造性は非常
に良好で薄壁の鋳造品に対して許容できる範囲内であっ
たが、これらの表面安定性は苛酷な環境下でのある種の
高温用途には受け入れられないものであった。ルネ(Re
ne′)150合金と本発明の合金の高温での表面安定性を
比較したところ、ルネ(Rene′)150は2075゜Fでマッハ
(Mach)1の空気に100時間さらすと試片の一面に付き
金属が50〜65ミル損失するのに対して、表IIに示した形
態の本発明の合金はそれより高い2150゜Fという温度で
より長い150時間の間さらしても試片の一面当たり1.5ミ
ルしか、すなわち本発明に従う一面に付き約5ミル未満
しか損失しないことが示された。追加の比較としての別
の試験で、ルネ(Rene′)150合金は2075゜Fのマッハ
(Mach)1の空気流量で82時間後試片一面に付き40ミル
損失た。Although the castability of alloys such as Rene'150 was very good and acceptable for thin-walled castings, their surface stability has been improved in some harsh environments. Was unacceptable for high temperature applications. Rene (Re
ne ') The surface stability of the alloy of the present invention at 150 ° C was compared with that of the alloy of the present invention. It was found that Rene' 150 exposed to Mach 1 air at 2075 ° F for 100 hours. The alloys of the invention in the form shown in Table II, while exposed to 50-65 mils of coated metal, had a higher temperature of 2150 ° F. for 1.5 hours exposed to 1.5 It has been shown that only mils are lost, ie less than about 5 mils per side according to the invention. In another test as an additional comparison, Rene'150 alloy lost 40 mils per specimen after 82 hours at a Mach 1 air flow of 2075 ° F.
傑出した高温酸化抵抗性を有すると思われたひとつの
ニッケル基合金は表IIに表示したMA754合金である。こ
のような合金は鋳造合金ではなくて鍛錬されているが、
本発明の酸化抵抗性とさらに比較するために上の表に含
めた。MA754の試片を2150゜Fでマッハ(Mach)1の流量
の空気にさらすと、140時間後に試片一面当たり10ミル
の損失が起こった。本発明の優れた高温酸化抵抗性は、
本発明の合金の3000ポンド加熱で得られた試片に対して
行なった試験で確認された。2150゜Fでマッハ(Mach)
1の流量の空気は170時間さらした場合試片の金属損失
は面当たり1.6ミルだけであり、同じ条件で176時間後に
は一面当たり金属の損失は2ミルだけであった。One nickel-based alloy that appeared to have outstanding high-temperature oxidation resistance is the MA754 alloy shown in Table II. Although such alloys are not cast alloys but forged,
Included in the table above for further comparison with the oxidation resistance of the present invention. Exposing MA754 coupons to air at 2150 ° F. and a flow of Mach 1 resulted in a loss of 10 mils per coupon after 140 hours. The excellent high-temperature oxidation resistance of the present invention is:
This was confirmed by tests performed on specimens obtained by heating 3000 lbs of the alloy of the present invention. Mach at 2150 ゜ F
When exposed to air at a flow rate of 1 for 170 hours, the metal loss of the specimen was only 1.6 mils per side, and after 176 hours under the same conditions the metal loss was only 2 mils per side.
酸化抵抗性で現わされる本発明の傑出した高温表面安
定性を他の合金と比べた別の形態の比較の結果を添付の
図にグラムで示す。この比較は、2150゜Fでマッハ(Mac
h)1のスピードで動く高速空気(HVO)にさらした時間
に対する試片の表面損失を示している。本明細書中でい
うマッハ(Mach)1酸化試験片は直径が0.23″で長さが
3.5″であった。24個の試片を丸い金属板の上に載せ、
航空機のジェット燃料で加熱した炉内で試験した。これ
らの試験片は約24時間毎に検査した。図から分かるよう
に本発明によって顕著な表面安定性をもった鋳造品が得
られる。The results of another form of comparison of the outstanding high temperature surface stability of the present invention, expressed in terms of oxidation resistance, with other alloys are shown in grams in the accompanying figures. This comparison is based on Mach (Mac
h) Surface loss of the specimen versus time exposed to high speed air (HVO) moving at 1 speed. As used herein, a Mach 1 oxidation test specimen has a diameter of 0.23 ″ and a length of 0.23 ″.
3.5 ″. 24 specimens were placed on a round metal plate,
The test was performed in a furnace heated with aircraft jet fuel. These specimens were inspected approximately every 24 hours. As can be seen, the present invention results in a casting having significant surface stability.
上で述べたように、本発明の重要な特徴は、上で論じ
た傑出した表面安定性と共に、長手方向の応力破壊強度
が改良され、かつ長手方向と横方向の応力破壊特性のバ
ランスが改善されていることである。本発明の合金は、
DS柱状粒子合金において、ルネ(Rene′)150合金の良
好な応力破壊強度と、上の表IIに示したルネ(Rene′)
N5組成の単結晶物品の傑出した酸化抵抗性とを示す。次
の表IVに、いくつかの応力破壊特性を比較して示す。As noted above, an important feature of the present invention is that, along with the outstanding surface stability discussed above, improved longitudinal stress fracture strength and improved balance of longitudinal and transverse stress fracture properties. That is being done. The alloy of the present invention
Among the DS columnar grain alloys, the good stress rupture strength of Rene '150 alloy and the Rene' shown in Table II above
9 shows the outstanding oxidation resistance of single crystal articles of N5 composition. Table IV below compares some of the stress fracture properties.
本発明の合金の場合、下の表Vで見られるように、18
00゜F、公称32,000psi(32ksi)で横方向の応力破壊強
度は約80〜120時間の範囲であった。 For the alloys of the present invention, as seen in Table V below,
At 00 ° F, nominally 32,000 psi (32 ksi), the transverse stress rupture strength ranged from about 80 to 120 hours.
本発明の評価の間にいくつかの熱処理を研究した。一
速の熱処理試験において、表IIに公称組成を挙げた本発
明に係る合金をDS鋳造して、1/4″厚×2″幅×4″長
の柱状粒子厚板を作成し、この厚板を熱処理した後機械
加工して標準の応力破壊試験片を作成した。以前の評価
では、たとえばルネ(Rene′)150合金製の柱状粒子物
品の場合、所望の特性を得るのには部分的な溶体化が必
要であっただけであり、充分に溶体化(90〜95%)する
と横方向の応力破壊特性がひどく低下した。しかしなが
ら、所望の特性を得るのにほとんど完全な溶体化熱処理
(γ−γ′共晶および粗大二次γ′の少なくとも90%の
溶体化と約4%までの初期融解)が必要であることが判
明した。本発明の熱処理の好ましいひとつの形態には、
ほとんど完全な溶体化のほかに、連続する追加の時効工
程の組合せが含まれる。すなわち、延性と横方向の応力
破壊特性を改良するための基本的な第一の時効と、γ′
の特性をさらに最適化するために基本的な時効の温度よ
り低い連続的な温度で行なう2つの追加の時効処理であ
る。Several heat treatments were studied during the evaluation of the present invention. In a first-speed heat treatment test, the alloys according to the present invention whose nominal compositions are listed in Table II were subjected to DS casting to produce 1/4 "thick x 2" wide x 4 "long columnar grain thick plates. The plate was heat treated and then machined to produce a standard stress fracture specimen, which has been previously evaluated, for example, in the case of columnar particle articles made of Rene '150 alloy, a partial However, sufficient solution (90-95%) severely reduced the transverse stress fracture properties, however, an almost complete solution heat treatment (to achieve the desired properties). It has been found that at least 90% solution of the γ-γ ′ eutectic and coarse secondary γ ′ and an initial melting of up to about 4%) are required.
Besides almost complete solution, a combination of successive additional aging steps is included. A basic first aging to improve ductility and transverse stress fracture properties;
Two additional aging treatments are performed at a continuous temperature below the basic aging temperature to further optimize the properties of the aging.
下記表Vに、評価した別の一連の熱処理の概要と得ら
れた応力破壊強度を示す。A、B、CおよびDと表示し
た熱処理は、熱処理工程を示しており、第一工程は2300
〜2335゜Fの範囲の溶体化温度で2時間処理し、その後
それぞれの組合せで熱処理した。これらの表示法は冶金
業界で認められ広く使用されているものである。溶体化
工程と時効工程は非酸化性雰囲気、すなわち真空、アル
ゴンまたはヘリウム中で実施した。このような雰囲気中
では時効工程間に行なった1200゜F以下への冷却は必要
がなかった。評価した熱処理のうちで、熱処理Dでは第
一時効温度から第二時効温度までの独特の比較的遅い冷
却工程を採用したが、この場合に最も良好な特性の組合
せが得られた。Table V below gives an overview of another series of heat treatments evaluated and the resulting stress rupture strength. The heat treatments labeled A, B, C and D indicate heat treatment steps, the first being 2300
Treated at a solution temperature in the range of 22335 ° F. for 2 hours and then heat treated in each combination. These designations are recognized and widely used in the metallurgical industry. The solution and aging steps were performed in a non-oxidizing atmosphere, ie, vacuum, argon or helium. In such an atmosphere, there was no need to cool to 1200 ° F. or lower performed during the aging step. Among the heat treatments evaluated, heat treatment D employed a unique and relatively slow cooling step from the first aging temperature to the second aging temperature, in which case the best combination of properties was obtained.
本発明の熱処理にほとんど完全な溶体化工程が含まれ
る。これは、ルネ(Rene′)150などのような表IIに挙
げた合金から作成したDS物品の場合に普通使われている
部分的な溶体化とは対照的である。ルネ(Rene′)150
などの場合には完全な溶体化熱処理をするとその性質の
いくつかが損われる。本発明においては、少なくとも約
90%のγ−γ′共晶および粗大二次γ′の溶体化と約4
%未満の初期融解とが重要である。γ′共晶および粗大
二次γ′の溶体化が増大すると応力破壊寿命が増大する
からである。下記表VIに、本発明の合金に関して溶体化
の量と応力破壊寿命を比較して示す。 The heat treatment of the present invention involves an almost complete solution treatment step. This is in contrast to the partial solution commonly used for DS articles made from the alloys listed in Table II, such as Rene'150. Rene'150
In such cases, complete solution heat treatment impairs some of its properties. In the present invention, at least about
Solution of 90% of γ-γ 'eutectic and coarse secondary γ'
An initial melting of less than% is important. This is because the stress rupture life increases as the solution of γ ′ eutectic and coarse secondary γ ′ increases. Table VI below compares the amount of solution and the stress rupture life for the alloys of the present invention.
溶体化の後、たとえば約2025〜2075゜Fまでの冷却は
少なくとも100゜F/分の速度で行なうのが好ましい。上
で援用した同時係属中の米国特許出願第790,439号に記
載されているように速い冷却速度の方が応力破壊強度な
どのような特性に有益な効果を示す。 After solution, cooling to, for example, about 2025-2075 ° F is preferably performed at a rate of at least 100 ° F / min. Faster cooling rates have a more beneficial effect on properties such as stress rupture strength as described in co-pending US Patent Application No. 790,439, incorporated above.
本発明の熱処理は、さらに、溶体化の後の連続する時
効工程の組合せを特徴としている。第一の基本的な時効
は、約2025〜2075゜Fの温度範囲の非酸化性雰囲気中
で、たとえば約1〜10時間実施して物品の延性と応力破
壊強度を改良する。第一の溶体化の後、たとえば約1950
〜2000゜Fの範囲までの冷却は約75゜F/分の速度で行な
い、その後さらに冷却するのが好ましい。第一時効の温
度より低い、たとえば約1950〜2000゜Fの範囲の温度で
約4〜12時間、通常は4〜8時間実施する第二の時効工
程により、γの成長が可能になり、延性が改善される。
表Vのデータから分かるように、このユニークな連続加
熱工程の組合せの結果、改良された機械的特性の構造が
得られ、薄い壁を有する鋳造品の壁には悪影響を与える
ことなくその鋳造品の熱処理をすることが可能になる。The heat treatment of the present invention is further characterized by a combination of successive aging steps after solution. The first basic aging is performed in a non-oxidizing atmosphere at a temperature in the range of about 2025-2075 ° F., for example, for about 1-10 hours to improve the ductility and stress rupture strength of the article. After the first solution, for example, about 1950
Cooling to the range of 2000 ° F. is preferably at a rate of about 75 ° F./min, followed by further cooling. A second aging step, performed at a temperature lower than the temperature of the first aging, for example, at a temperature in the range of about 1950-2000 ° F. for about 4-12 hours, usually 4-8 hours, allows for the growth of γ, Is improved.
As can be seen from the data in Table V, this unique combination of continuous heating steps resulted in a structure with improved mechanical properties, and did not adversely affect the walls of the casting with thin walls. Can be heat treated.
上記の時効工程の後、最終の時効工程は、普通、たと
えば約1625〜1675゜Fの範囲で約2〜10時間、通常は約
4〜8時間行なうのが有益である。After the above aging step, the final aging step is usually beneficially carried out, for example, in the range of about 1625 to 1675 ° F for about 2 to 10 hours, usually about 4 to 8 hours.
本発明による合金を用いたDS鋳造物品に関連して、本
発明の熱処理により長手方向の応力破壊強度が最大にな
り、一方許容できる程度の横方向の強度と延性は保持さ
れる。これは、少なくとも部分的には、比較的高い温度
でのγ′の増大した溶体化による。約2025〜2075゜Fの
範囲での基本的すなわち第一時効、その後の約1950〜20
00゜Fの範囲の温度までの比較的遅い冷却(たとえば約
1時間)、そしてさらに冷却することの結果、長手方向
の応力破壊寿命がさらに改良されると共に横方向の応力
破壊特性も改善された。In the context of DS cast articles using the alloy according to the invention, the heat treatment according to the invention maximizes the longitudinal stress rupture strength, while retaining acceptable transverse strength and ductility. This is due, at least in part, to the increased solution of γ 'at relatively high temperatures. Basic or first-order effect in the range of about 2025-2075 ° F, followed by about 1950-20
Relatively slow cooling to a temperature in the range of 00 ° F. (eg, about 1 hour) and further cooling resulted in further improved longitudinal stress fracture life and improved transverse stress fracture properties. .
本発明に従って合金の選択、鋳造の実施条件、および
熱処理を組合せた結果、ほとんど亀裂のない約0.035イ
ンチ未満の薄い壁を有する改良されたDS柱状粒子物品が
得られる。放射状の中心線を有するガスタービンエンジ
ンのタービンブレードの形態では粒界と一次樹枝状晶配
向が直線で平行である。さらに、そのような物品では、
そのようなブレードのエアフォイルから発生するいかな
る粒子も、そのエアフォイルの前縁または後縁と15゜以
下の角度で交差し、他の粒界および一次樹枝状晶はすべ
て放射状中心線と15゜以内であることが好ましいし、本
発明によればそれが可能なのである。The combination of alloy selection, casting conditions, and heat treatment in accordance with the present invention results in an improved DS columnar particle article having less than about 0.035 inch thin walls with little cracking. In the form of a gas turbine engine turbine blade having a radial centerline, the grain boundaries and the primary dendritic orientation are straight and parallel. Further, in such articles,
Any particles emanating from the airfoil of such a blade intersect the leading or trailing edge of the airfoil at an angle of no more than 15 °, and all other grain boundaries and primary dendrites will be 15 ° from the radial centerline. It is preferably within the range, and according to the present invention, it is possible.
上記のような評価の結果、本発明の物品と熱処理は特
定の合金範囲で使用可能であることが分かった。特定の
合金範囲は本発明の熱処理と組合せると特に独特であ
る。下の表VIIにそのように有用で新規な特定の合金範
囲を示す。As a result of the above evaluation, it was found that the article and the heat treatment of the present invention can be used in a specific alloy range. The particular alloy range is particularly unique when combined with the heat treatment of the present invention. Table VII below shows a range of such useful and novel alloys.
特定の実施例と具体例に関して本発明を説明して来た
が、本発明が特許請求の範囲の範囲内に入るさまざまな
他の形態と態様が可能であることは冶金業界の当業者に
は理解できるであろう。 Although the present invention has been described with respect to particular embodiments and examples, it will be apparent to those skilled in the metallurgy industry that the present invention is capable of various other forms and aspects which fall within the scope of the appended claims. You can understand.
添付の図は、本発明に関する合金と他の合金の酸化抵抗
性を比較したグラフである。The attached figure is a graph comparing the oxidation resistance of the alloy according to the present invention with another alloy.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ケビン・スウェイン・オハラ アメリカ合衆国、マサチューセッツ州、 ボックスフォード、ワイルドメドウ・ロ ード、9番 (56)参考文献 特開 昭54−58612(JP,A) 特開 昭61−223155(JP,A) 特開 昭61−223171(JP,A) (54)【発明の名称】 ニッケル基超合金、ニッケル基超合金から成る物品、ニッケル基合金製鋳造物品の熱処理方法、 柱状粒子ニッケル基超合金鋳造物品の製造方法及び柱状粒子ニッケル基超合金製ガスタービン・ エンジンのタービン・ブレード鋳造部材の製造方法 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kevin Swain O'Hara No. 9, Wild Meadow Road, Boxford, Mass., USA (56) References JP-A-54-58612 (JP, A) JP-A-61-223155 (JP, A) JP-A-61-223171 (JP, A) (54) [Title of the Invention] Nickel-based superalloys, articles made of nickel-based superalloys, and cast articles made of nickel-based alloys Heat treatment method, method for producing columnar particle nickel-base superalloy cast article, and method for producing turbine blade cast member for columnar particle nickel-base superalloy gas turbine engine
Claims (11)
ウムと、12重量%のコバルトと、6.35重量%のタンタル
と、6.8重量%のクロムと、1.5重量%のモリブデンと、
4.9重量%のタングステンと、6.15重量%のアルミニウ
ムと、2.8重量%のレニウムと、0.015重量%のホウ素
と、実質的に存在していないジルコニウムと、実質的に
存在していないチタンと、実質的に存在していないバナ
ジウムと、残部のニッケル及び付随的な不純物とから本
質的に成っているニッケル基超合金。1% by weight of carbon, 1.5% by weight of hafnium, 12% by weight of cobalt, 6.35% by weight of tantalum, 6.8% by weight of chromium, 1.5% by weight of molybdenum,
4.9% by weight of tungsten, 6.15% by weight of aluminum, 2.8% by weight of rhenium, 0.015% by weight of boron, substantially free of zirconium, substantially free of titanium, A nickel-based superalloy consisting essentially of vanadium, which is not present in, and the balance nickel and incidental impurities.
品の外面内に内部間隙を有しており、前記間隙は、実質
的に亀裂のない0.035インチ未満の壁断面厚を有してい
ると共に少なくとも1つの冷却通路を画定している一体
型鋳造壁を含んでいる物品。2. An article comprising the alloy of claim 1 having an internal gap in the outer surface of the article, wherein the gap has a substantially crack-free wall cross-sectional thickness of less than 0.035 inches. An article that includes an integral casting wall that is defined and defines at least one cooling passage.
物品壁により前記外面から離隔されている請求項2に記
載の鋳造物品。3. The cast article of claim 2, wherein said internal gap is separated from said outer surface by an article wall having a thickness of less than 0.035 inches.
後縁とを有するエアフォイルを含んでいるタービン・ブ
レード部材の形態を成す請求項2に記載の鋳造物品であ
って、 粒界及び1次樹枝状晶の配向がほぼまっすぐ且つ平行で
あり、 前記エアフォイルの前縁及び後縁と交差しているいかな
る出現結晶粒子も前記縁と15゜までの角度を成してお
り、他のすべての粒界及び1次樹枝状晶は、前記放射状
中心線と15゜以下の角度を成している鋳造物品。4. The cast article of claim 2 in the form of a turbine blade member having a radial centerline and including an airfoil having a leading edge and a trailing edge. The orientation of the boundaries and primary dendrites is substantially straight and parallel, and any emerging crystal grains intersecting the leading and trailing edges of the airfoil form an angle with the edge of up to 15 °; A cast article wherein all other grain boundaries and primary dendrites form an angle of less than 15 ° with said radial centerline.
物品は、ガスタービン・エンジンのエアフォイルである
物品。5. An article comprising the alloy of claim 1 wherein the article is an airfoil of a gas turbine engine.
Hfと、11〜14重量%のCoと、5〜9重量%のTaと、0.05
重量%未満のZrと、それぞれが1重量%を超えることな
く実質的に存在していないV及びTiと、5〜10重量%の
Crと、0.5〜3重量%のMoと、4〜7重量%のWと、5
〜7重量%のAlと、1.5〜4重量%のReと、0.005〜0.03
重量%のBと、1.5重量%までのCbと、0.5重量%までの
Yと、残部のNi及び付随的な不純物とから本質的に成っ
ている合金で製造されたニッケル基合金製鋳造物品の熱
処理方法であって、 (a) 初期融解が4%以下となるように少なくとも90
%のγ−γ′共晶及び粗大2次γ′を溶体化するのに十
分な時間の間、非酸化性雰囲気内で溶体化温度に加熱し
て、前記雰囲気内で2025〜2075゜Fの範囲の温度まで冷
却する工程と、 (b) 非酸化性雰囲気内で1〜10時間の間、2025〜20
75゜Fの範囲の第1の時効温度に加熱して、前記雰囲気
内で1950〜2000゜Fの範囲の温度まで冷却する工程と、 (c) 前記第1の時効温度よりも低い1950〜2000゜F
の範囲の第2の時効温度に4〜12時間の間加熱する工程
とを備えたニッケル基合金製鋳造物品の熱処理方法。6. A method according to claim 1, wherein 0.1 to 0.15% by weight of C and 0.3 to 2% by weight of C are used.
Hf, 11-14% by weight of Co, 5-9% by weight of Ta, 0.05
Less than 5% by weight of Zr, V and Ti each being substantially absent without exceeding 1% by weight, and 5-10% by weight.
Cr, 0.5 to 3% by weight of Mo, 4 to 7% by weight of W,
~ 7 wt% Al, 1.5-4 wt% Re, 0.005-0.03
% Of B, up to 1.5% by weight of Cb, up to 0.5% by weight of Y, and the balance of Ni and alloys. A heat treatment method comprising: (a) at least 90% so that the initial melting is 4% or less.
% Γ-γ ′ eutectic and coarse secondary γ ′ are heated to a solution temperature in a non-oxidizing atmosphere for a time sufficient to solutionize the solution to 2025-2075 ° F. in said atmosphere. Cooling to a temperature in the range: (b) 2025-20 for 1-10 hours in a non-oxidizing atmosphere
Heating to a first aging temperature in the range of 75 ° F and cooling in said atmosphere to a temperature in the range of 1950-2000 ° F; (c) 1950-2000 lower than said first aging temperature.゜ F
Heating to a second aging temperature in the range of 4 to 12 hours.
0時間の間加熱する第3の時効工程を含んでいる請求項
6に記載の方法。7. The temperature range of 1625 to 1675 ° F.
7. The method according to claim 6, comprising a third aging step of heating for 0 hours.
であり、前記加熱する時間は、少なくとも30分である請
求項6に記載の方法。8. The method of claim 6, wherein the solution temperature ranges from 2275 ° F. to 2360 ° F. and the heating time is at least 30 minutes.
0時間の間加熱する第3の時効工程を含んでいる請求項
8に記載の方法。9. A temperature range of 1625 to 1675 ° F.
9. The method according to claim 8, comprising a third aging step of heating for 0 hours.
ル基超合金鋳造物品の製造方法であって、前記物品は、
0.035インチ未満の壁厚を有する一体型鋳造壁を含んで
いる内部間隙を有しており、 (a) 柱状多粒子指向性凝固鋳造による鋳造と一体形
成された鋳造壁と共に、0.1〜0.15重量%のCと、0.3〜
2重量%のHfと、11〜14重量%のCoと、5〜9重量%の
Taと、0.05重量%未満のZrと、それぞれが1重量%を超
えることなく実質的に存在していないV及びTiと、5〜
10重量%のCrと、0.5〜3重量%のMoと、4〜7重量%
のWと、5〜7重量%のAlと、1.5〜4重量%のReと、
0.005〜0.03重量%のBと、1.5重量%までのCbと、0.5
重量%までのYと、残部のNi及び付随的な不純物とから
本質的に成っている合金から前記物品を精密鋳造する工
程と、 (b) 該鋳造物品を請求項6に記載の方法に従って熱
処理する工程とを備えた柱状粒子ニッケル基超合金鋳造
物品の製造方法。10. A method for producing a columnar particle nickel-base superalloy cast article having excellent high-temperature oxidation resistance, wherein the article comprises:
Having an internal gap including an integral casting wall having a wall thickness of less than 0.035 inches, and (a) 0.1-0.15% by weight with the casting wall integrally formed with the columnar multi-particle directional solidification casting. C and 0.3 ~
2% by weight Hf, 11-14% by weight Co, 5-9% by weight
Ta, Zr less than 0.05% by weight, V and Ti each substantially not present without exceeding 1% by weight,
10 wt% Cr, 0.5-3 wt% Mo, 4-7 wt%
W, 5-7% by weight of Al, 1.5-4% by weight of Re,
0.005 to 0.03 wt% B, up to 1.5 wt% Cb, 0.5
7. precision casting the article from an alloy consisting essentially of up to% by weight Y and the balance Ni and incidental impurities; and (b) heat treating the cast article according to the method of claim 6. And a method for producing a columnar particle nickel-based superalloy cast article.
ル基超合金製ガスタービン・エンジンのタービン・ブレ
ード鋳造部材の製造方法であって、前記部材は、0.035
インチ未満の壁厚を有する一体型鋳造壁を含んでいる少
なくとも1つの内部間隙を有しており、 (a) 0.1〜0.14重量%のCと、1.2〜1.7重量%のHf
と、11.7〜12.3重量%のCoと、6.2〜6.5重量%のTaと、
0.1重量%までのVと、0.03重量%までのZrと、6.6〜7
重量%のCrと、1.3〜1.7重量%のMoと、4.7〜5.1重量%
のWと、0.02重量%未満のTiと、6〜6.3重量%のAl
と、2.6〜3重量%のReと、0.01〜0.02重量%のBと、
0.1重量%までのCbと、0.2重量%までのYと、残部のNi
及び付随的な不純物とから本質的に成っている超合金を
提供する工程と、 (b) 該超合金を精密鋳造して、0.035インチ未満の
壁厚の一体型鋳造壁を含んでいる少なくとも1つの内部
間隙を有している物品を提供する工程と、 (c) 鋳造された該物品を請求項8に記載の方法に従
って熱処理する工程とを備えた柱状粒子ニッケル基超合
金製ガスタービン・エンジンのタービン・ブレード鋳造
部材の製造方法。11. A method for manufacturing a cast turbine blade member for a gas turbine engine made of a columnar particle nickel-base superalloy having excellent high-temperature oxidation resistance, wherein said member is 0.035.
(B) having at least one internal gap including an integral cast wall having a wall thickness of less than inches, comprising: (a) 0.1-0.14% by weight C and 1.2-1.7% by weight Hf;
And 11.7-12.3 wt% Co, 6.2-6.5 wt% Ta,
V up to 0.1% by weight, Zr up to 0.03% by weight, 6.6-7
Wt% Cr, 1.3-1.7 wt% Mo, 4.7-5.1 wt%
Of W, less than 0.02% by weight of Ti, and 6 to 6.3% by weight of Al
2.6 to 3% by weight of Re, 0.01 to 0.02% by weight of B,
Up to 0.1% by weight of Cb, up to 0.2% by weight of Y and the balance of Ni
Providing a superalloy consisting essentially of: and (b) precision casting the superalloy, comprising at least one integrally cast wall having a wall thickness of less than 0.035 inches. A gas turbine engine made of a columnar particle nickel-based superalloy comprising: providing an article having two internal gaps; and (c) heat treating the cast article according to the method of claim 8. A method for producing a turbine blade cast member.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25310988A | 1988-10-03 | 1988-10-03 | |
US253,109 | 1988-10-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02153037A JPH02153037A (en) | 1990-06-12 |
JP3148211B2 true JP3148211B2 (en) | 2001-03-19 |
Family
ID=22958896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25718889A Expired - Fee Related JP3148211B2 (en) | 1988-10-03 | 1989-10-03 | Nickel-based superalloy, article made of nickel-based superalloy, method of heat treatment of cast article made of nickel-based alloy, method of manufacturing cast article made of columnar particle nickel-based superalloy, and turbine blade of gas turbine engine made of columnar particle nickel-based superalloy Manufacturing method of cast member |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0362661B1 (en) |
JP (1) | JP3148211B2 (en) |
AU (1) | AU630623B2 (en) |
DE (1) | DE68921530T2 (en) |
ES (1) | ES2070155T3 (en) |
GR (1) | GR3015341T3 (en) |
IL (1) | IL91793A (en) |
NO (1) | NO175875C (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5316866A (en) * | 1991-09-09 | 1994-05-31 | General Electric Company | Strengthened protective coatings for superalloys |
US5443789A (en) * | 1992-09-14 | 1995-08-22 | Cannon-Muskegon Corporation | Low yttrium, high temperature alloy |
US5783318A (en) * | 1994-06-22 | 1998-07-21 | United Technologies Corporation | Repaired nickel based superalloy |
JP2905473B1 (en) | 1998-03-02 | 1999-06-14 | 科学技術庁金属材料技術研究所長 | Method for producing Ni-based directionally solidified alloy |
EP1053804A1 (en) * | 1999-05-20 | 2000-11-22 | Asea Brown Boveri AG | Chaplet |
KR20040008381A (en) * | 2002-07-18 | 2004-01-31 | 한국기계연구원 | Single crystal Ni based superalloy having excellent high temperature creep characteristic |
JP4449337B2 (en) * | 2003-05-09 | 2010-04-14 | 株式会社日立製作所 | High oxidation resistance Ni-base superalloy castings and gas turbine parts |
JP4885530B2 (en) | 2005-12-09 | 2012-02-29 | 株式会社日立製作所 | High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method |
EP1900839B1 (en) | 2006-09-07 | 2013-11-06 | Alstom Technology Ltd | Method for the heat treatment of nickel-based superalloys |
US20100135846A1 (en) * | 2008-12-01 | 2010-06-03 | United Technologies Corporation | Lower cost high strength single crystal superalloys with reduced re and ru content |
EP2876176B1 (en) | 2013-11-25 | 2017-06-21 | Mitsubishi Hitachi Power Systems, Ltd. | Ni-based casting superalloy and cast article therefrom |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1417474A (en) * | 1973-09-06 | 1975-12-10 | Int Nickel Ltd | Heat-treatment of nickel-chromium-cobalt base alloys |
US4169742A (en) * | 1976-12-16 | 1979-10-02 | General Electric Company | Cast nickel-base alloy article |
DE2741271A1 (en) * | 1976-12-16 | 1978-06-22 | Gen Electric | NICKEL-BASED SUPER ALLOY AND CAST BODY FROM THEM |
GB1562082A (en) * | 1977-10-17 | 1980-03-05 | Gen Electric | Nickel-base olloys |
DE3162552D1 (en) * | 1980-01-17 | 1984-04-19 | Cannon Muskegon Corp | Nickel base alloy and turbine engine blade cast therefrom |
US4643782A (en) * | 1984-03-19 | 1987-02-17 | Cannon Muskegon Corporation | Single crystal alloy technology |
FR2578554B1 (en) * | 1985-03-06 | 1987-05-22 | Snecma | SINGLE CRYSTAL ALLOY WITH NICKEL-BASED MATRIX |
CA1315572C (en) * | 1986-05-13 | 1993-04-06 | Xuan Nguyen-Dinh | Phase stable single crystal materials |
-
1989
- 1989-09-22 AU AU41700/89A patent/AU630623B2/en not_active Ceased
- 1989-09-25 EP EP89117666A patent/EP0362661B1/en not_active Expired - Lifetime
- 1989-09-25 DE DE68921530T patent/DE68921530T2/en not_active Expired - Fee Related
- 1989-09-25 ES ES89117666T patent/ES2070155T3/en not_active Expired - Lifetime
- 1989-09-27 IL IL9179389A patent/IL91793A/en not_active IP Right Cessation
- 1989-10-02 NO NO893913A patent/NO175875C/en unknown
- 1989-10-03 JP JP25718889A patent/JP3148211B2/en not_active Expired - Fee Related
-
1995
- 1995-03-09 GR GR940403923T patent/GR3015341T3/en unknown
Also Published As
Publication number | Publication date |
---|---|
IL91793A0 (en) | 1990-06-10 |
AU630623B2 (en) | 1992-11-05 |
NO175875C (en) | 1994-12-21 |
JPH02153037A (en) | 1990-06-12 |
EP0362661B1 (en) | 1995-03-08 |
GR3015341T3 (en) | 1995-06-30 |
ES2070155T3 (en) | 1995-06-01 |
IL91793A (en) | 1994-07-31 |
NO175875B (en) | 1994-09-12 |
AU4170089A (en) | 1990-04-05 |
NO893913L (en) | 1990-04-04 |
EP0362661A1 (en) | 1990-04-11 |
NO893913D0 (en) | 1989-10-02 |
DE68921530D1 (en) | 1995-04-13 |
DE68921530T2 (en) | 1995-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0246082B1 (en) | Single crystal super alloy materials | |
US5173255A (en) | Cast columnar grain hollow nickel base alloy articles and alloy and heat treatment for making | |
US5151249A (en) | Nickel-based single crystal superalloy and method of making | |
US9574451B2 (en) | Ni-based superalloy, and turbine rotor and stator blades for gas turbine using the same | |
US20020062886A1 (en) | Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof | |
CN106119608A (en) | Goods and the method forming goods | |
RU2295585C2 (en) | High-strength nickel-based superalloy resistant to high-temperature corrosion and oxidation, and directionally solidified product of this superalloy | |
JP4885530B2 (en) | High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method | |
JP7305660B2 (en) | Nickel-based superalloys, single crystal blades and turbomachinery | |
JP3148211B2 (en) | Nickel-based superalloy, article made of nickel-based superalloy, method of heat treatment of cast article made of nickel-based alloy, method of manufacturing cast article made of columnar particle nickel-based superalloy, and turbine blade of gas turbine engine made of columnar particle nickel-based superalloy Manufacturing method of cast member | |
JP5626920B2 (en) | Nickel-base alloy castings, gas turbine blades and gas turbines | |
EP2913416B1 (en) | Article and method for forming an article | |
US20040042927A1 (en) | Reduced-tantalum superalloy composition of matter and article made therefrom, and method for selecting a reduced-tantalum superalloy | |
JP5063550B2 (en) | Nickel-based alloy and gas turbine blade using the same | |
JP5186215B2 (en) | Nickel-based superalloy | |
JPWO2005064027A1 (en) | Ni-base superalloy and gas turbine component using the same | |
EP1438441B1 (en) | Heat treatment of alloys having elements for improving grain boundary strength | |
US20120175027A1 (en) | Heat Treatment of Alloys Having Elements for Improving Grain Boundary Strength | |
JP5396445B2 (en) | gas turbine | |
US20060249233A1 (en) | Heat treatment of alloys having elements for improving grain boundary strength | |
JP2013185210A (en) | Nickel-based alloy and gas turbine blade using the same | |
JP2023018394A (en) | Ni-based superalloy and turbine wheel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |