[go: up one dir, main page]

JP3134551B2 - Travel control method for automatic guided vehicles - Google Patents

Travel control method for automatic guided vehicles

Info

Publication number
JP3134551B2
JP3134551B2 JP04291144A JP29114492A JP3134551B2 JP 3134551 B2 JP3134551 B2 JP 3134551B2 JP 04291144 A JP04291144 A JP 04291144A JP 29114492 A JP29114492 A JP 29114492A JP 3134551 B2 JP3134551 B2 JP 3134551B2
Authority
JP
Japan
Prior art keywords
vehicle
sensor
line
vehicle speed
steering angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04291144A
Other languages
Japanese (ja)
Other versions
JPH06138942A (en
Inventor
雅史 徳重
重理 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP04291144A priority Critical patent/JP3134551B2/en
Publication of JPH06138942A publication Critical patent/JPH06138942A/en
Application granted granted Critical
Publication of JP3134551B2 publication Critical patent/JP3134551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は無人搬送車の走行制御方
法に関し、車速に応じて安定してステアリング制御がで
きるよう工夫したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a traveling control method for an automatic guided vehicle, which is devised so that a steering control can be stably performed according to a vehicle speed.

【0002】[0002]

【従来の技術】無人搬送車は、各種の工場・倉庫・オフ
ィス等で無人で誘導されて走行し、部品・製品・小物等
を搬送するものである。ここで無人搬送車の一例を図3
を参照して説明する。図3に示す無人搬送車1は、回転
駆動とステアリングを行う1つの前輪2と、従動輪とし
て機能する2つの後輪3を有する三輪車タイプのもので
ある。車体本体4の前部及び後部には誘導センサ5f,
5bが設置されている。
2. Description of the Related Art An automatic guided vehicle travels unmannedly at various factories, warehouses, offices, and the like, and transports parts, products, small articles, and the like. Here, an example of an automatic guided vehicle is shown in FIG.
This will be described with reference to FIG. The automatic guided vehicle 1 shown in FIG. 3 is of a tricycle type having one front wheel 2 that performs rotational driving and steering, and two rear wheels 3 that function as driven wheels. At the front and rear of the vehicle body 4, guidance sensors 5f,
5b is installed.

【0003】このような無人搬送車1のステアリング角
を設定するのに、幾何制御法を用いることがある。ここ
で幾何制御法を図4を基に説明する。各符号は次のこと
を定義している。 SX:アンテナ長であり、一対の後輪3の車軸と後部の
誘導センサ5bとの間の距離。 L:ホイールベース長。 P1 :後輪間中心点であり、一対の後輪3,3の中央に
位置する。 C1 :車軸線であり、後輪3,3の車軸に沿う直線。 C2 :車体中心線であり、車体本体4の車幅方向中央を
車長(前後)方向に伸びる線。 P2 :センサ中心点であり、後部の誘導センサ5bの中
央に位置する。 P3 :センシング点であり、誘導センサ5bにより誘導
線10を検出した位置。 P4 :中央点であり、線分P1 ,P3 の中央に位置す
る。 P5 :旋回中心点であり、線分P1 ,P3 に直交して点
4 から延長した線rsoが車軸線C1 と交差する点。 P6 :操舵点であり、前輪2はこの点を中心に操舵され
る。 rso:点P4 ,P5 を結ぶ線分。 rfo:点P5 ,P6 を結ぶ線分。 rco:点P5 ,P1 を結ぶ線分。 rθo :点P6 を通り線分rfoに直交する線。 SY:ズレ量であり、点P2 ,P3 間の距離、つまり、
車体本体4の後部における車体中心線C2 と誘導線10
との間の距離。 αo :検出角であり、線分P1 ,P2 と線分P1 ,P3
とでなす角。 θo :設定ステアリング角
In order to set such a steering angle of the automatic guided vehicle 1, a geometric control method may be used. Here, the geometric control method will be described based on FIG. Each code defines the following. SX is the antenna length, and is the distance between the axles of the pair of rear wheels 3 and the guidance sensor 5b at the rear. L: Wheelbase length. P 1 : a center point between the rear wheels, which is located at the center of the pair of rear wheels 3, 3. C 1 : the axle line, a straight line along the axles of the rear wheels 3, 3. C 2 : a vehicle center line extending in the vehicle length (front-back) direction at the center of the vehicle body 4 in the vehicle width direction. P 2 : sensor center point, located at the center of the rear guidance sensor 5b. P 3 : a sensing point, a position at which the guidance line 10 is detected by the guidance sensor 5b. P 4 : a center point, which is located at the center of the line segments P 1 and P 3 . P 5 : a turning center point, a point at which a line r so that is orthogonal to the line segments P 1 and P 3 and extended from the point P 4 intersects the axle line C 1 . P 6 is a steering point, and the front wheels 2 are steered around this point. r so : a line segment connecting points P 4 and P 5 . r fo : a line segment connecting points P 5 and P 6 . r co : a line segment connecting points P 5 and P 1 . rθ o: line perpendicular to the point P 6 as the line segment r fo. SY: The amount of deviation, the distance between points P 2 and P 3 ,
The vehicle center line C 2 and the guide line 10 at the rear of the vehicle body 4
Distance between. α o : detection angle, line segments P 1 and P 2 and line segments P 1 and P 3
And the angle made. θ o : Set steering angle

【0004】図4に示す幾何学的条件から次式(1)〜
(4)が得られる。 αo =arc tan (SY/SX) …(1) rso=(SX/2)sin αo …(2) rco=rso cos αo +(SY/2) …(3) θo =arc tan (L/rco) …(4)
[0004] From the geometric conditions shown in FIG.
(4) is obtained. α o = arc tan (SY / SX) (1) r so = (SX / 2) sin α o (2) r co = r so cos α o + (SY / 2) (3) θ o = arc tan (L / r co ) ... (4)

【0005】制御装置6は、上式(1)〜(4)の関係
を利用し、検出したズレ量SYに応じて設定すべきステ
アリング角θ0 を求め、前輪2のステアリング角がθ0
となるようにステアリング角制御をする。かかる手法
を、幾何制御法と称している。
The control device 6 uses the relations of the above equations (1) to (4) to determine a steering angle θ 0 to be set according to the detected deviation amount SY, and the steering angle of the front wheels 2 is θ 0.
The steering angle is controlled so that Such a method is called a geometric control method.

【0006】[0006]

【発明が解決しようとする課題】ところで上述した従来
の幾何制法では、アンテナ長SXが固定であるため、同
一のズレ量SYであれば、車速が速くても遅くても、ス
テアリング角θ0 は同じである。
In the above-described conventional geometrical control method, since the antenna length SX is fixed, the steering angle θ 0 can be obtained regardless of whether the vehicle speed is high or low with the same shift amount SY. Is the same.

【0007】しかしスムーズなステアリングをするため
には、同一のズレ量SYに対し、低速時にはステアリン
グ角が大きく、高速になるにつれてステアリング角が小
さくなった方がよい。このように同一のズレ量であって
も、車速に応じてステアリング角を変えるためには、信
号処理系のゲイン調整をすること等が考えられるが、こ
のようにすると信号演算が複雑になってしまう。
However, in order to perform smooth steering, it is preferable that the steering angle is large at a low speed and the steering angle is reduced at a high speed for the same shift amount SY. In order to change the steering angle according to the vehicle speed even with the same deviation amount as described above, it is conceivable to adjust the gain of the signal processing system. However, this makes signal calculation complicated. I will.

【0008】本発明は、上記従来技術に鑑み、同一のズ
レ量であっても車速に応じて最適なステアリング角を簡
単に得られるようにした無人搬送車の走行制御方法を提
供するものである。
The present invention has been made in view of the above-mentioned prior art, and provides a traveling control method for an automatic guided vehicle in which an optimum steering angle can be easily obtained according to the vehicle speed even with the same deviation amount. .

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明は、車体本体の車幅方向の中央を車長方向に伸びる車
体中心線C2 に対し車幅方向に沿い対称に配置してある
2個の後輪と、ステアリングをする前輪とを有するとと
もに、車体本体のうち後輪相互の車軸を結ぶ車軸線C 1
よりも後部に車幅方向に沿い備えた誘導センサにより走
行路に敷設した誘導線を検出し、前記車軸線C1 と車体
中心線C2 との交点である後輪間中心点P1 と誘導セン
サにより誘導線を検出したセンシング点とを結ぶ線分
と、車体中心線C2 とでなす検出角を下式(i)(ii)(iii)
に適用することにより設定ステアリング角θを求め、前
輪のステアリング角が設定ステアリング角θと一致する
ようにステアリング制御する無人搬送車の走行制御方法
において、車体本体のうち前記車軸線C 1 よりも後部の
位置のあらかじめ決めた範囲内にて、前記誘導センサを
前後方向にスライド移動可能とし、車速があらかじめ設
定した設定車速よりも遅いときには誘導センサをスライ
ド移動範囲内の最前位置にスライド移動させ、車速が
らかじめ設定した設定車速よりも速いときには車速が速
くなるに従い誘導センサを後側にスライド移動させる
とを特徴とする。 SO =(誘導センサと点P 1 との間の距離/2)sin (検出角)・・(i) CO =r SO cos (検出角)+(ズレ量/2)・・・・・・・・・・(ii) θ=arctan(ホイールベース長/r CO )・・・・・・・・・・・・(iii)
Means for Solving the Problems The present invention for solving the above problems, there to the vehicle body center line C 2 extending the center in the vehicle width direction of the vehicle body in the vehicle length direction and arranged symmetrically along the vehicle width direction An axle line C 1 having two rear wheels and a front wheel for steering and connecting the axles of the rear wheels of the vehicle body.
And detecting the induction lines laid on the traveling path by induction sensor provided along the vehicle width direction to the rear than the guided wheel between the center points P 1 after the an intersection of the axle line C 1 and the body center line C 2 the following formula and a line segment connecting the sensing point of detecting the guide wire with a sensor, the detection angle formed between the vehicle body center line C 2 (i) (ii) (iii)
In the traveling control method of the automatic guided vehicle, in which the set steering angle θ is obtained by applying the steering angle so that the steering angle of the front wheels coincides with the set steering angle θ, the rear part of the vehicle body with respect to the axle line C 1 of
Within the predetermined range of the position, the guidance sensor is
It can slide forward and backward, and the vehicle speed is set in advance.
When the vehicle speed is lower than the set vehicle speed , slide the induction sensor.
Is slid to the frontmost position in the de-moving range, the vehicle speed Oh
When the vehicle speed is faster than the preset vehicle speed,
The guide sensor is slid rearward as it becomes smaller . r SO = (distance / 2 between the inductive sensor and the point P 1) sin (detection angle) ·· (i) r CO = r SO cos ( detection angle) + (amount of deviation / 2) -----・ ・ ・ ・ ・ (Ii) θ = arctan (wheel base length / r CO ) ・ ・ ・ ・ (iii )

【0010】[0010]

【作用】同一のズレ量であっても、車速が遅いときには
誘導センサが前側に位置して検出角及び設定ステアリン
グ角が大きく、車速が速いときには誘導センサが後側に
位置して検出角及び設定ステアリング角が小さくなる。
よって車速が変化しても安定したステアリングができ
る。
With the same deviation amount, when the vehicle speed is low, the guidance sensor is located on the front side and the detection angle and the set steering angle are large. When the vehicle speed is high, the guidance sensor is located on the rear side and the detection angle and the detection angle are set. The steering angle becomes smaller.
Therefore, stable steering can be performed even if the vehicle speed changes.

【0011】[0011]

【実施例】以下に本発明の実施例を図面に基づき詳細に
説明する。なお従来技術と同一機能をはたす部分には同
一符号を付し重複する説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. In addition, the parts performing the same functions as those of the prior art are denoted by the same reference numerals, and overlapping description will be omitted.

【0012】図1は本発明を適用する無人搬送車1であ
り、車速を検出する速度センサ11と、誘導センサ5b
を前後方向にスライドさせるスライド機構12が備えら
れている。制御装置6は、速度センサ11で検出した車
速を基に、低速であるときには誘導センサ5bが前側に
位置し車速が速くなるに従い誘導センサ5bが後側に移
動していくようにスライド機構12の制御を行う。なお
誘導センサ5bが最前位置から最後位置まで移動するス
ライド長をSSXとする。
FIG. 1 shows an automatic guided vehicle 1 to which the present invention is applied. The speed sensor 11 detects a vehicle speed, and the guidance sensor 5b.
Is provided with a slide mechanism 12 which slides the front and rear in the front-rear direction. The control device 6 controls the sliding mechanism 12 based on the vehicle speed detected by the speed sensor 11 such that the guide sensor 5b is located on the front side when the vehicle speed is low and the guide sensor 5b moves rearward as the vehicle speed increases. Perform control. Note that the slide length by which the guidance sensor 5b moves from the foremost position to the last position is SSX.

【0013】次に、図2を基に本発明方法を説明する。
なお図2において、誘導センサ5bが最前位置にある状
態を実線で示し最後位置にある状態を点線で示してい
る。更に各符号を次のように定義した。 P7 :センシング点であり、最後位置に位置した誘導セ
ンサ5により誘導線10を検出した位置。 P8 :中央点であり、線分P1 ,P7 の中央に位置す
る。 P9 :旋回中央点であり、線分P1 ,P7 に直交して点
8 から延長した線rsが車軸線C1 と交差する点。 rs :点P8 ,P9 を結ぶ線分。 rf :点P9 ,P6 を結ぶ線分。 rc :点P9 ,P1 を結ぶ線分。 rθ:点P6 を通り線分rf に直交する線。 α:検出角であり、線分P1 ,P2 と線分P1 ,P7
でなす角。
Next, the method of the present invention will be described with reference to FIG.
In FIG. 2, the state in which the guidance sensor 5b is at the forefront position is indicated by a solid line, and the state at the last position is indicated by a dotted line. Further, each code is defined as follows. P 7 : a sensing point, a position at which the guidance line 10 is detected by the guidance sensor 5 located at the last position. P 8 : a center point, which is located at the center of the line segments P 1 and P 7 . P 9: turning a central point, that the line segment P 1, a line r s which extends from the point P 8 and perpendicular to P 7 intersects the axle line C 1. r s : a line segment connecting points P 8 and P 9 . r f : a line segment connecting points P 9 and P 6 . r c : a line segment connecting points P 9 and P 1 . rθ: line perpendicular to the point P 6 as the line segment r f. α: detection angle, which is an angle formed between the line segments P 1 and P 2 and the line segments P 1 and P 7 .

【0014】図2に示す幾何学的条件から、スライド長
SSXを含んで次式(5)〜(8)が得られる。 α=arc tan {SY/(SX+SSX)} …(5) rs ={(SX+SSX)/2)}sin α …(6) rc =rs cos α +(SY/2) …(7) θ =arc tan (L/rc ) …(8)
From the geometric conditions shown in FIG. 2, the following equations (5) to (8) are obtained including the slide length SSX. α = arc tan {SY / ( SX + SSX)} ... (5) r s = {(SX + SSX) / 2)} sin α ... (6) r c = r s cos α + (SY / 2) ... (7) θ = arc tan (L / r c ) ... (8)

【0015】車速が低速のときには誘導センサ5bは実
線で示す位置にあり、制御装置6は従来と同様(図4参
照)な手法によりステアリング角θ0 を求める。
When the vehicle speed is low, the guidance sensor 5b is at the position shown by the solid line, and the control device 6 obtains the steering angle θ 0 in the same manner as in the prior art (see FIG. 4).

【0016】車速が速くなると誘導センサ5bは徐々に
後方に移動していき、最高速のときには点線で示す位置
に達する。最高速のときには制御装置6は、上式(5)
〜(8)の関係を利用し、検出したズレ量SYに応じて
設定すべきステアリング角θを求める。ステアリング角
θは、ズレ量SYが同一であっても、ステアリング角θ
0 よりも小さい。よって、高速で走行するときには、ス
テアリング角θを用いてステアリング制御をすれば緩や
かなステアリング操作がされ、走行が安定して行われ
る。
When the vehicle speed increases, the guidance sensor 5b gradually moves backward, and reaches the position shown by the dotted line at the maximum speed. At the highest speed, the control device 6 uses the above equation (5).
The steering angle θ to be set in accordance with the detected shift amount SY is obtained using the relationship of (8). The steering angle θ is the same as the steering angle θ even if the shift amount SY is the same.
Less than 0 . Therefore, when traveling at high speed, if steering control is performed using the steering angle θ, gentle steering operation is performed, and traveling is performed stably.

【0017】結局、本発明によれば、ズレ量SYが同一
であっても、車速が速くなるにつれて、スライド機構1
2により誘導センサ5bが後方に移動していってスライ
ド長SSXが大きくなり、ステアリング角θが小さくな
っていく。よって車速に応じて安定したステアリングが
できる。
After all, according to the present invention, even if the displacement amount SY is the same, as the vehicle speed increases, the sliding mechanism 1
2, the guide sensor 5b moves backward, the slide length SSX increases, and the steering angle θ decreases. Therefore, stable steering can be performed according to the vehicle speed.

【0018】なお上記実施例では誘導センサ5bを、車
速に応じて連続的にスライドさせていったが、誘導セン
サ5bの取付位置を前後方向に沿いステップ状に複数設
定しておき、その無人搬送車の走行態様に応じて任意の
取付位置に誘導センサ5bの位置決めをするようにして
もよい。
In the above embodiment, the guide sensor 5b is continuously slid according to the vehicle speed. However, a plurality of mounting positions of the guide sensor 5b are set in steps along the front-rear direction, and the unmanned transport is performed. The guidance sensor 5b may be positioned at an arbitrary mounting position according to the traveling mode of the vehicle.

【0019】[0019]

【発明の効果】以上実施例とともに具体的に説明したよ
うに、本発明によれば、幾何制御法を利用してズレ量か
らステアリング角を設定する場合に、車速に応じて誘導
センサの位置を前後方向に沿いシフトさせるようにした
ので、同一のズレ量であっても、低速時にはステアリン
グ角が大きく車速が速くなるにつれてステアリング角が
小さくなるので、安定したステアリング走行ができる。
しかも誘導センサ位置を車速に応じて移動させるだけで
あるので、信号処理系を変更する必要はなく、簡単に本
発明を実現することができる。
As described above in detail with the embodiment, according to the present invention, when the steering angle is set from the deviation amount using the geometric control method, the position of the guidance sensor is changed according to the vehicle speed. Since the shift is performed in the front-rear direction, the steering angle is large at a low speed and the steering angle is reduced as the vehicle speed is increased even at the same deviation amount, so that stable steering traveling can be performed.
Moreover, since the position of the guidance sensor is merely moved according to the vehicle speed, there is no need to change the signal processing system, and the present invention can be easily realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する無人搬送車を示す斜視図。FIG. 1 is a perspective view showing an automatic guided vehicle to which the present invention is applied.

【図2】本発明を説明するための説明図。FIG. 2 is an explanatory diagram for explaining the present invention.

【図3】無人搬送車を示す斜視図。FIG. 3 is a perspective view showing an automatic guided vehicle.

【図4】従来の幾何制御法を示す説明図。FIG. 4 is an explanatory diagram showing a conventional geometric control method.

【符号の説明】[Explanation of symbols]

1 無人搬送車 2 前輪 3 後輪 4 車体本体 5f,5b 誘導センサ 6 制御装置 10 誘導線 11 速度センサ 12 スライド機構 C1 車軸線 C2 車体中心線 α0 ,α 検出角 θ0 ,θ 設定ステアリング角1 AGV 2 front wheel 3 rear wheel 4 car body 5f, 5b inductive sensor 6 control device 10 guiding line 11 velocity sensor 12 sliding mechanism C 1 axle line C 2 body centerline alpha 0, alpha detection angle theta 0, theta set steering Corner

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G05D 1/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G05D 1/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 車体本体の車幅方向の中央を車長方向に
伸びる車体中心線C2 に対し車幅方向に沿い対称に配置
してある2個の後輪と、ステアリングをする前輪とを有
するとともに、車体本体のうち後輪相互の車軸を結ぶ車
軸線C 1 よりも後部に車幅方向に沿い備えた誘導センサ
により走行路に敷設した誘導線を検出し、前記車軸線C
1 と車体中心線C2 との交点である後輪間中心点P1
誘導センサにより誘導線を検出したセンシング点とを結
ぶ線分と、車体中心線C2 とでなす検出角を下式(i)(i
i)(iii)に適用することにより設定ステアリング角θを
求め、前輪のステアリング角が設定ステアリング角θと
一致するようにステアリング制御する無人搬送車の走行
制御方法において、車体本体のうち前記車軸線C 1 よりも後部の位置のあら
かじめ決めた範囲内にて、前記誘導センサを前後方向に
スライド移動可能とし、 車速があらかじめ設定した設定車速よりも遅いときには
誘導センサをスライド移動範囲内の最前位置にスライド
移動させ、車速があらかじめ設定した設定車速よりも
いときには車速が速くなるに従い誘導センサを後側に
ライド移動させることを特徴とする無人搬送車の走行制
御方法。 SO =(誘導センサと点P 1 との間の距離/2)sin (検出角)・・(i) CO =r SO cos (検出角)+(ズレ量/2)・・・・・・・・・・(ii) θ=arctan(ホイールベース長/r CO )・・・・・・・・・・・・(iii)
And 1. A two rear wheels relative to the vehicle body center line C 2 extending the center in the vehicle width direction in the vehicle length direction are disposed symmetrically along the vehicle width direction of the vehicle body, and a front wheel for steering A vehicle that has the rear axles of the vehicle body
Of the axis C 1 and detecting the induction lines laid on the traveling path by induction sensor provided along the rear in the vehicle width direction, the axle line C
The following formula and a line segment connecting one and the sensing point of detecting the guide line by wheel between the center points P 1 and inductive sensor after an intersection of the body center line C 2, the detection angle formed between the vehicle body center line C 2 (i) (i
i) (iii) determine the set steering angle theta by applying, in the travel control method of the automatic guided vehicle to the steering control such front wheel steering angle is coincident with the set steering angle theta, the axle line of the vehicle body Oh the rear position than C 1
Move the guidance sensor forward and backward within the predetermined range.
The slide sensor can be slid, and when the vehicle speed is lower than the preset vehicle speed , the guidance sensor slides to the forefront position within the slide movement range.
When the vehicle speed is higher than the preset vehicle speed , the guidance sensor is moved rearward as the vehicle speed increases .
A traveling control method for an automatic guided vehicle, wherein the traveling control is performed on a ride . r SO = (distance / 2 between the inductive sensor and the point P 1) sin (detection angle) ·· (i) r CO = r SO cos ( detection angle) + (amount of deviation / 2) ----- ···· (ii) θ = arctan (wheel base length / r CO ) ··· (iii)
JP04291144A 1992-10-29 1992-10-29 Travel control method for automatic guided vehicles Expired - Lifetime JP3134551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04291144A JP3134551B2 (en) 1992-10-29 1992-10-29 Travel control method for automatic guided vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04291144A JP3134551B2 (en) 1992-10-29 1992-10-29 Travel control method for automatic guided vehicles

Publications (2)

Publication Number Publication Date
JPH06138942A JPH06138942A (en) 1994-05-20
JP3134551B2 true JP3134551B2 (en) 2001-02-13

Family

ID=17765013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04291144A Expired - Lifetime JP3134551B2 (en) 1992-10-29 1992-10-29 Travel control method for automatic guided vehicles

Country Status (1)

Country Link
JP (1) JP3134551B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104149852B (en) * 2014-08-08 2016-08-24 湖北机电院装备制造有限责任公司 A kind of automatic navigation vehicle and driving structure thereof

Also Published As

Publication number Publication date
JPH06138942A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
JP3275364B2 (en) Reverse traveling control method for automatic guided vehicles
JP3134551B2 (en) Travel control method for automatic guided vehicles
JPH07210246A (en) Steering controller for automated guided vehicle
JP3361280B2 (en) Three-wheel steering automatic guided vehicle
JP3370200B2 (en) How to determine the steering wheel steering angle of an automatic guided vehicle
JP2001225744A (en) Steering control device for unmanned carrying vehicle
JP3275366B2 (en) Travel control method for automatic guided vehicles
JPH08272443A (en) Attitude control method for unmanned carrier using front and back wheels
JP2779444B2 (en) Automatic guided vehicle
JP3846828B2 (en) Steering angle control device for moving body
JP2907876B2 (en) Autopilot running device for vehicles
JPH0546083Y2 (en)
JPS6247713A (en) Guiding equipment for unmanned carrier
JP2814823B2 (en) Attitude control device of unmanned forklift
JPH0340846B2 (en)
JP3227950B2 (en) Travel control method for automatic guided vehicles
JPH03174609A (en) Turning drive control method for unmanned carrier
JPS62175813A (en) Method for guiding curved route of unmanned vehicle
JPH0313768Y2 (en)
JP2566814Y2 (en) Automatic guided vehicle
JPH0820901B2 (en) How to drive an automated guided vehicle
JPH08179830A (en) Guiding device for unmanned vehicle
JP3022503B2 (en) Transport trolley
JPH08106325A (en) Direction changing method of automated guided vehicle
JPH03175505A (en) Guidance method for unattended carriage

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 12

EXPY Cancellation because of completion of term