JP3129565B2 - Heat exchanger tubes for heat exchangers - Google Patents
Heat exchanger tubes for heat exchangersInfo
- Publication number
- JP3129565B2 JP3129565B2 JP05069455A JP6945593A JP3129565B2 JP 3129565 B2 JP3129565 B2 JP 3129565B2 JP 05069455 A JP05069455 A JP 05069455A JP 6945593 A JP6945593 A JP 6945593A JP 3129565 B2 JP3129565 B2 JP 3129565B2
- Authority
- JP
- Japan
- Prior art keywords
- groove
- heat transfer
- tube
- ratio
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005485 electric heating Methods 0.000 claims 1
- 239000003507 refrigerant Substances 0.000 description 22
- 238000005096 rolling process Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はルームエアコン等に使用
されるフィンドコイル式、或いはシェルアンドチューブ
式等の熱交換器に適する伝熱管に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube suitable for a heat exchanger of a find coil type or a shell and tube type used for a room air conditioner or the like.
【0002】[0002]
【従来の技術】ルームエアコン等の熱交換器に用いられ
る伝熱管として、現状では、管内にフロンなどの冷媒を
蒸発又は凝縮させ、管外側の流体との熱交換を高効率に
行うために、図1に示すように、伝熱管1の管内面に螺
旋状に三角形や台形の微細な溝2を形成して表面積を増
大し、かつ、この溝により冷媒に撹乱を生じさせること
により伝熱性能を高めている。2. Description of the Related Art At present, as a heat transfer tube used in a heat exchanger such as a room air conditioner, a refrigerant such as chlorofluorocarbon is evaporated or condensed in the tube, and heat exchange with a fluid outside the tube is performed with high efficiency. As shown in FIG. 1, a triangular or trapezoidal fine groove 2 is spirally formed on the inner surface of the heat transfer tube 1 to increase the surface area, and the groove causes the refrigerant to be disturbed. Is increasing.
【0003】更に、図2に示す伝熱管3のように、図1
のような溝の溝底に空洞5を設け、その開口部6を設け
ることにより、特に蒸発伝熱性能の向上が図られている
(特開昭62−62195号参照)。Further, as in a heat transfer tube 3 shown in FIG.
By providing the cavity 5 at the groove bottom of such a groove and providing the opening 6, particularly, the improvement of the evaporative heat transfer performance is achieved.
(See JP-A-62-62195).
【0004】更にはまた、図3に示す伝熱管7のよう
に、図1のような溝の溝底に半円形状のへこみ部10を
一定ピッチで設けて、図1の伝熱管よりも更に撹乱を起
こすことにより、伝熱性能を高めている(特開平3−1
70797号参照)。Further, as in a heat transfer tube 7 shown in FIG. 3, semicircular recesses 10 are provided at a constant pitch at the bottom of the groove as shown in FIG. The heat transfer performance is enhanced by causing disturbance (Japanese Unexamined Patent Publication No.
70797).
【0005】[0005]
【発明が解決しようとする課題】しかしながら、図1及
び図3に示す伝熱管においては、溝及びへこみを設ける
ことにより、流れに撹乱を与えているが、山部の形状が
図4のような突出物12である伝熱管11の場合、その
高さの数倍の下流位置の再付着点(2つの冷媒流れ14
のうち上側の流れが溝部13に達する個所)において高
い伝熱性能を図ることができる反面、突出物直後(渦状
の冷媒流れ14)では伝熱性能が低下する場合があり、
更に、突出物によっては圧力損失が増大するという問題
がある。伝熱性能が増大しても圧力損失がそれに比例し
て増大すれば、管内冷媒を流すための動力が増大し、伝
熱性能向上が無意味になってしまう欠点がある。In the heat transfer tube shown in FIGS. 1 and 3, however, the flow is disturbed by providing grooves and depressions. In the case of the heat transfer tube 11 which is the protrusion 12, the reattachment point (the two refrigerant flows 14
Among them, high heat transfer performance can be achieved at the point where the upper flow reaches the groove portion 13), but heat transfer performance may be reduced immediately after the protrusion (vortex refrigerant flow 14),
Further, there is a problem that the pressure loss increases depending on the protrusion. Even if the heat transfer performance increases, if the pressure loss increases in proportion thereto, the power for flowing the refrigerant in the pipe increases, and there is a disadvantage that the heat transfer performance improvement becomes meaningless.
【0006】また、図2に示す伝熱管においては、管内
の蒸発伝熱性能の向上を図るために開発されたものであ
る。しかし、この伝熱管を製作する際には、空洞5を成
形した後に山部4を成形するが、山部を成形する際、特
開昭62−64421号の製法では、空洞5がつぶれる
恐れがあり、空洞による効果がなくなる恐れがある。The heat transfer tube shown in FIG. 2 has been developed in order to improve the evaporative heat transfer performance in the tube. However, when manufacturing the heat transfer tube, the ridges 4 are formed after the cavities 5 are formed. Yes, the effect due to the cavity may be lost.
【0007】本発明は、上記従来技術の問題点を解決し
て、従来の伝熱管よりも蒸発伝熱性能が向上すると共に
圧力損失が低く、また溝成形が容易な熱交換器用伝熱管
を提供することを目的としている。[0007] The present invention solves the above-mentioned problems of the prior art, and provides a heat exchanger tube for a heat exchanger that has improved evaporative heat transfer performance, lowers pressure loss, and is easier to form grooves than conventional heat exchanger tubes. It is intended to be.
【0008】[0008]
【課題を解決するための手段】前記課題を解決するため
の手段として、本発明は、管内面の管軸方向に平行な断
面が略矩形状又は略逆台形の第1溝を設け、この第1溝
部上に、第1溝よりも深さが浅く、断面が略矩形又は略
台形の第2溝を管軸方向に対し螺旋状に設けた伝熱管
で、第1溝の円周方向のピッチPに対する溝幅Sの比
(S/P)が1/10<S/P<1/2であり、第1溝の
溝幅Sに対する第2溝の溝底部からの深さLの比(L/
S)がL/S>1/2であり、更に第1溝の溝底に突起
を設け、該突起の高さhと突起のピッチtの比(t/h)
が1/2≦t/h≦2であることを特徴とする熱交換器
用伝熱管を要旨とするものである。As a means for solving the above-mentioned problems, the present invention provides a first groove having a substantially rectangular or substantially inverted trapezoidal cross section parallel to the tube axis direction on the inner surface of the tube. A heat transfer tube in which a second groove having a depth smaller than that of the first groove and having a substantially rectangular or substantially trapezoidal cross section is provided on one groove in a spiral shape with respect to the tube axis direction. Ratio of groove width S to P
(S / P) is 1/10 <S / P < 1/2, and the ratio (L / L) of the depth L from the groove bottom of the second groove to the groove width S of the first groove.
S) is L / S> 1/2, and a projection is provided at the bottom of the first groove, and a ratio (t / h) of the height h of the projection to the pitch t of the projection.
Satisfies 1/2 ≦ t / h ≦ 2.
【0009】以下に本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.
【0010】[0010]
【0011】本発明の伝熱管は、第1に、まず、図5に
示すように、伝熱管15の管内面に突起19を有する略
矩形状又は略逆台形の断面形状の第1溝16が設けられ
ている。更に、この第1溝と交差するように、第1溝よ
りも浅く、断面が略矩形又は略逆台形の第2溝17を設
けることにより、従来の単溝の溝付管よりも管内伝熱面
積の増加を図ることができる。第1溝19は溝底とその
両側の突起19とで略矩形又は略逆台形をなしており、
第2溝17は溝底とその両側の山部18とで略矩形又は
略逆台形をなしていることが図示より理解される。In the heat transfer tube of the present invention, first, as shown in FIG. 5, a first groove 16 having a substantially rectangular or inverted trapezoidal cross section having a projection 19 on the inner surface of the heat transfer tube 15 is formed. Is provided. Further, by providing the second groove 17 which is shallower than the first groove and has a substantially rectangular or substantially inverted trapezoidal cross section so as to intersect with the first groove, the heat transfer in the pipe can be more improved than the conventional single grooved pipe. The area can be increased. The first groove 19 has a substantially rectangular or substantially inverted trapezoidal shape with the groove bottom and the protrusions 19 on both sides thereof,
It can be understood from the drawing that the second groove 17 has a substantially rectangular or substantially inverted trapezoidal shape at the groove bottom and the ridges 18 on both sides thereof.
【0012】また、第1溝16のリード角は0°、すな
わち、管軸と平行である。従来の溝付管は管内の撹乱を
促進させるため、管軸に対して一定のリード角を有して
いた。しかし、リード角が大きいほど撹乱効果は大きく
なるが、圧力損失の増加が性能向上を上回るため、リー
ド角を大きくとりすぎるのは好ましくない。一方、本発
明では、圧損に大きく影響を与える第1溝(深溝)16を
管軸に平行にしているため、圧力損失は従来の溝付管よ
りも低くすることができる。The lead angle of the first groove 16 is 0 °, that is, parallel to the tube axis. Conventional grooved tubes have a constant lead angle with respect to the tube axis to promote disturbance in the tube. However, although the disturbance effect increases as the lead angle increases, the increase in pressure loss exceeds the improvement in performance, so it is not preferable to set the lead angle too large. On the other hand, in the present invention, the first groove (deep groove) 16, which greatly affects the pressure loss, is made parallel to the pipe axis, so that the pressure loss can be made lower than that of a conventional grooved pipe.
【0013】すなわち、図6(内面溝の展開図)及び図7
(図6のA部の拡大断面図)に模式的に示すように、冷媒
は、第1溝内をスムーズに流れると共に、第2溝内の山
部を乗り越えてスムーズに流れ、同時に第2溝から第1
溝内へも分岐して流れる。しかも、図7に示すように第
1溝の突起19や第2溝の山部18の直後に渦状の冷媒
流れは発生しない。FIG. 6 (exploded view of the inner surface groove) and FIG.
As schematically shown in FIG. 6 (enlarged sectional view of the portion A), the refrigerant flows smoothly in the first groove, flows smoothly over the ridges in the second groove, and simultaneously flows in the second groove. From first
It also branches into the groove and flows. In addition, as shown in FIG. 7, no vortex refrigerant flow occurs immediately after the protrusion 19 of the first groove or the crest 18 of the second groove.
【0014】第2に、本発明では、第1溝16の円周方
向の溝ピッチPに対する溝幅Sの比(S/P)が1/10
<S/P<1/2の関係を満たしていることを特徴とし
ている。S/P比が小さすぎると圧力損失が大きくな
り、逆にS/P比が大きすぎるとフィン厚が薄くなるた
め成形性に問題が生じる。このため、本発明では、S/
P比を1/10<S/P<1/2の範囲とする。Secondly, in the present invention, the ratio (S / P) of the groove width S to the circumferential groove pitch P of the first groove 16 is 1/10.
<S / P <1/2 is satisfied. If the S / P ratio is too small, the pressure loss increases. Conversely, if the S / P ratio is too large, the fin thickness becomes thin, causing a problem in formability. For this reason, in the present invention, S /
The P ratio is in the range of 1/10 <S / P <1/2.
【0015】第3に、本発明では、第1溝16の溝幅S
と第2溝17の溝底部からの溝深さLの比(L/S)がL
/S>1/2の関係を満たしていることを特徴としてい
る。L/S比が小さすぎるとリード角のある第2溝17
による冷媒の旋回流の影響が出にくく性能向上が望めな
い。したがって、L/S比はL/S>1/2が好まし
い。これにより、図8及び図9に示すように旋回流が発
生する。Third, in the present invention, the groove width S of the first groove 16 is
And the ratio (L / S) of the groove depth L from the bottom of the second groove 17 to the groove bottom is L
/ S> 1/2. If the L / S ratio is too small, the second groove 17 having a lead angle
The effect of the swirling flow of the refrigerant due to this is hard to appear, and the performance cannot be improved. Therefore, the L / S ratio is preferably L / S> 1/2. Thereby, a swirling flow is generated as shown in FIGS.
【0016】第4に、本発明では、第1溝16の溝底に
前述の如く突起19が設けられているが、この突起は、
高さhとピッチtの比(t/h)が1/2≦t/h≦2の
関係を満たす突起である。第1溝では溝に沿って冷媒が
流れるが、第1溝に突起を設けることにより、冷媒の剥
離、再付着が生じる(図7参照)。再付着が生じる点にお
いて熱伝達効率が高くなるため、突起がない場合に比べ
て伝熱性能が向上する。しかし、突起が高くなるか或い
はピッチが小さくてt/h比が小さくなりすぎると圧力
損失が大きくなる。また、突起が低くなるか或いはピッ
チが大きくなってt/h比が大きくなりすぎると撹乱効
果が小さくなり、熱伝達の向上は望めない。したがっ
て、t/h比は1/2≦t/h≦2が好ましい。Fourth, in the present invention, the projection 19 is provided at the bottom of the first groove 16 as described above.
The protrusions have a ratio (t / h) between the height h and the pitch t that satisfies the relationship of 1/2 ≦ t / h ≦ 2. In the first groove, the refrigerant flows along the groove. However, the provision of the protrusion in the first groove causes the refrigerant to separate and reattach (see FIG. 7). Since the heat transfer efficiency is increased at the point where reattachment occurs, the heat transfer performance is improved as compared with the case where there is no protrusion. However, if the t / h ratio becomes too small due to the height of the projections or the pitch being small, the pressure loss increases. On the other hand, if the protrusions become low or the pitch becomes large and the t / h ratio becomes too large, the disturbance effect becomes small, and improvement in heat transfer cannot be expected. Therefore, the t / h ratio is preferably 1/2 ≦ t / h ≦ 2.
【0017】なお、本発明の伝熱管は後述のように圧延
法により製作されるが、その際、図2に示した従来の伝
熱管のような空洞がないので、第1溝と第2溝を成形す
る際に空洞がつぶれないように配慮する必要がなく、成
形が容易である。The heat transfer tube of the present invention is manufactured by a rolling method as described later. At this time, since there is no cavity like the conventional heat transfer tube shown in FIG. 2, the first groove and the second groove are provided. It is not necessary to take care that the cavity is not collapsed when molding, and the molding is easy.
【0018】次に本発明の実施例を示す。Next, an embodiment of the present invention will be described.
【0019】[0019]
【0020】図10〜図14に圧延装置を示す。この圧
延装置は、図10に示す溝付きロール及び図13に示す
ガイド付き平面ロールからなるロール対と、図12に示
す溝付きロール及び図13に示すガイド付き平面ロール
からなるロール対とを配置した圧延装置であり、これら
のロール対によつて金属条が圧延される。図10の溝付
きロールは表面に深さL1、ピッチP1、幅S1の突起が
リード角0゜にて形成されているものであり、図12の
溝付きロールは表面に所定のリード角で螺旋状の溝が形
成されているものである。更に、図11の圧延ロールは
図10の圧延ロールの横断面図であり、ロール溝の山部
にピッチt、深さhの溝がロール軸に平行に成形されて
いる。FIGS. 10 to 14 show a rolling apparatus. This rolling device arranges a roll pair consisting of a grooved roll shown in FIG. 10 and a guided flat roll shown in FIG. 13, and a roll pair consisting of a grooved roll shown in FIG. 12 and a guided flat roll shown in FIG. And the metal strip is rolled by these roll pairs. The grooved roll shown in FIG. 10 has projections with a depth L 1 , pitch P 1 and width S 1 formed on the surface at a lead angle of 0 °, and the grooved roll shown in FIG. 12 has a predetermined lead on the surface. A spiral groove is formed at the corner. Further, the roll shown in FIG. 11 is a cross-sectional view of the roll shown in FIG. 10, and a groove having a pitch t and a depth h is formed in the crest of the roll groove in parallel with the roll axis.
【0021】この圧延装置を用いて、銅条(C1220)
を圧延し、ロールフォーミングで成形した後、溶接し、
表1に示す緒元で外径9.52mmの銅管を作成した。こ
の管を二重管式熱交換器に組み込み、次に示す条件で蒸
発伝熱性能測定を行った。Using this rolling device, copper strip (C1220)
After rolling and forming by roll forming, welding
A copper tube having an outer diameter of 9.52 mm was prepared according to the specifications shown in Table 1. This tube was incorporated into a double tube heat exchanger, and the evaporative heat transfer performance was measured under the following conditions.
【0022】測定条件: (1)冷 媒 :R−22、 (2)冷媒流量:20〜70kg/h、 (3)冷媒圧力:5.4kg/cm2。Measurement conditions: (1) Refrigerant: R-22, (2) Refrigerant flow rate: 20 to 70 kg / h, (3) Refrigerant pressure: 5.4 kg / cm 2 .
【0023】なお、この測定を行うにあたり、表1に示
すように、比較品1〜6及び従来品(台形溝)との比較を
行った。In this measurement, as shown in Table 1, a comparison was made between Comparative Products 1 to 6 and a conventional product (trapezoidal groove).
【0024】第1溝部の深さL、ピッチP、幅Sを比較
した場合の冷媒流量と管内蒸発伝熱係数の関係を図15
に、冷媒流量と管内圧力損失の関係を図16に示す。FIG. 15 shows the relationship between the refrigerant flow rate and the in-pipe evaporation heat transfer coefficient when comparing the depth L, pitch P, and width S of the first groove.
FIG. 16 shows the relationship between the refrigerant flow rate and the pipe pressure loss.
【0025】本発明品の性能は、従来品に比べて約2.
6倍の性能向上が認められた。しかし、比較品3(S/
P<1/2、L/S<1/2)は、従来品と比べて約1.
6倍と本発明品より性能向上せず、比較品1(S/P>
1/2)は従来品と比べて約1.4倍の向上にとどまっ
た。The performance of the product of the present invention is about 2.
A six-fold improvement in performance was observed. However, comparative product 3 (S /
(P <1/2, L / S <1/2) are about 1.
Compared to the product of the present invention, which is 6 times higher, and the performance is not improved.
(1/2) only improved about 1.4 times as compared with the conventional product.
【0026】管内圧力損失に関しては、本発明品は従来
品に比べて約0.56倍と低い値となった。しかし、比
較品2及び4のようにS/P<1/10又はS/P>1
/2であると、管内圧力損失は従来品と比べるとやや低
い値を示しているが、本発明品に比べると高く、比較品
1及び3のようにL/S<1/2の場合、管内圧力損失
は本発明品より低い値であるが、伝熱性能向上が低い値
を示している。よって1/10<S/P<1/2かつL
/S>1/2であれば、従来品よりも高性能かつ低圧力
損失の伝熱管であることがわかる。The pressure loss in the pipe of the present invention was about 0.56 times lower than that of the conventional product. However, as in Comparative products 2 and 4, S / P <1/10 or S / P> 1
/ 2, the pressure loss in the pipe shows a slightly lower value as compared with the conventional product, but is higher than the product of the present invention, and when L / S <1/2 like the comparative products 1 and 3, Although the pressure loss in the pipe is lower than that of the product of the present invention, the improvement in heat transfer performance is low. Therefore, 1/10 <S / P <1/2 and L
If / S> 1/2, it is understood that the heat transfer tube has higher performance and lower pressure loss than the conventional product.
【0027】次に、第1溝部に突起を設けた場合のt/
hの影響を比較した。その時の冷媒流量と管内蒸発伝熱
係数の関係を図17に、冷媒流量と管内圧力損失の関係
を図18に示す。Next, when the protrusion is provided in the first groove portion, t /
The effect of h was compared. FIG. 17 shows the relationship between the refrigerant flow rate and the pipe evaporation heat transfer coefficient at that time, and FIG. 18 shows the relationship between the refrigerant flow rate and the pipe pressure loss.
【0028】本発明品の伝熱性能は、従来品と比べて約
1.7〜3.1倍に性能向上が確認された。しかし、比較
品5のようにt/h>2になると突起による効果がな
く、第1溝部に突起を設けていない比較品7と同等の性
能となった。The heat transfer performance of the product of the present invention was confirmed to be about 1.7 to 3.1 times that of the conventional product. However, when t / h> 2 as in the comparative product 5, the effect of the projection was not obtained, and the performance was equivalent to that of the comparative product 7 in which the projection was not provided in the first groove portion.
【0029】また、管内圧力損失に関しては、比較品6
のようにt/h<1/2になると圧力損失が増大する傾
向が見られた。As for the pressure loss in the pipe, the comparative product 6
When t / h <1/2, the pressure loss tended to increase.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【発明の効果】以上詳述したように、本発明によれば、
従来の伝熱管よりも蒸発伝熱性能が向上すると共に圧力
損失が低い熱交換器用伝熱管を提供できる。また溝成形
も容易である。As described in detail above, according to the present invention,
It is possible to provide a heat exchanger tube for a heat exchanger that has improved evaporative heat transfer performance and lower pressure loss than conventional heat exchanger tubes. Groove formation is also easy.
【図1】従来の伝熱管の内面を平面に展開した状態を示
す斜視図である。FIG. 1 is a perspective view showing a state where an inner surface of a conventional heat transfer tube is developed into a plane.
【図2】他の従来の伝熱管の内面を平面に展開した状態
を示す斜視図である。FIG. 2 is a perspective view showing a state in which the inner surface of another conventional heat transfer tube is developed in a plane.
【図3】更に他の従来の伝熱管の内面を平面に展開した
状態を示す斜視図である。FIG. 3 is a perspective view showing a state in which the inner surface of still another conventional heat transfer tube is developed in a plane.
【図4】従来の伝熱管における溝形状と冷媒流れを説明
する図である。FIG. 4 is a diagram illustrating a groove shape and a refrigerant flow in a conventional heat transfer tube.
【図5】本発明の伝熱管の内面を平面に展開した状態を
示す斜視図である。FIG. 5 is a perspective view showing a state where the inner surface of the heat transfer tube of the present invention is developed into a plane.
【図6】本発明の伝熱管の内面を平面に展開した状態を
示す平面図である。FIG. 6 is a plan view showing a state where the inner surface of the heat transfer tube of the present invention is developed into a plane.
【図7】本発明の伝熱管の内面を平面に展開した状態を
示す断面図である。FIG. 7 is a cross-sectional view showing a state where the inner surface of the heat transfer tube of the present invention is developed in a plane.
【図8】本発明の伝熱管の内面を平面に展開した状態を
示す斜視図である。FIG. 8 is a perspective view showing a state in which the inner surface of the heat transfer tube of the present invention is developed in a plane.
【図9】図9のA−A´断面図である。FIG. 9 is a sectional view taken along line AA ′ of FIG. 9;
【図10】圧延装置における第1ロール対の溝付きロー
ルを示す縦断面図である。FIG. 10 is a longitudinal sectional view showing a grooved roll of a first roll pair in a rolling device.
【図11】図10図の横断面図である。FIG. 11 is a cross-sectional view of FIG.
【図12】圧延装置における第2ロール対の溝付きロー
ルを示す側面図である。FIG. 12 is a side view showing a grooved roll of a second roll pair in the rolling device.
【図13】圧延装置における平面ロールを示す側面図で
ある。FIG. 13 is a side view showing a flat roll in a rolling device.
【図14】圧延装置のロール配置を示す斜視図である。FIG. 14 is a perspective view showing a roll arrangement of a rolling device.
【図15】第1溝部の深さL、ピッチP、幅Sを比較し
た場合の冷媒流量と管内蒸発伝熱係数の関係を示す図で
ある。FIG. 15 is a diagram showing the relationship between the refrigerant flow rate and the in-pipe evaporation heat transfer coefficient when comparing the depth L, pitch P, and width S of the first groove.
【図16】第1溝部の深さL、ピッチP、幅Sを比較し
た場合の冷媒流量と管内圧力損失の関係を示す図であ
る。FIG. 16 is a diagram showing the relationship between the refrigerant flow rate and the pressure loss in the pipe when the depth L, pitch P, and width S of the first groove are compared.
【図17】第1溝部に突起を設けた場合のt/hの影響
を比較した時の冷媒流量と管内蒸発伝熱係数の関係を示
す図である。FIG. 17 is a diagram showing the relationship between the refrigerant flow rate and the in-pipe evaporation heat transfer coefficient when comparing the effects of t / h when a projection is provided in the first groove.
【図18】第1溝部に突起を設けた場合のt/hの影響
を比較した時の冷媒流量と管内圧力損失の関係を示す図
である。FIG. 18 is a diagram illustrating a relationship between a refrigerant flow rate and a pressure loss in a pipe when comparing the influence of t / h when a protrusion is provided in a first groove portion.
15 伝熱管 16 第1溝 17 第2溝 18 山部 19 突起 30 溝付きロール 31 溝付きロール 32 平面ロール 33 平面ロールのガイド 34 金属条 Reference Signs List 15 heat transfer tube 16 first groove 17 second groove 18 peak 19 protrusion 30 grooved roll 31 grooved roll 32 plane roll 33 plane roll guide 34 metal strip
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田哲夫 神奈川県秦野市平沢65番地株式会社神戸 製鋼所秦野工場内 (72)発明者 石川 守 神奈川県秦野市平沢65番地株式会社神戸 製鋼所秦野工場内 (56)参考文献 特開 昭62−62195(JP,A) 特開 平3−170797(JP,A) 特開 昭62−64421(JP,A) (58)調査した分野(Int.Cl.7,DB名) F28F 1/40 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tetsuo Uchida 65, Hirasawa, Hadano City, Kanagawa Prefecture Inside the Hadano Plant, Kobe Steel Co., Ltd. (72) Inventor Mamoru Ishikawa 65, Hirasawa, Hadano City, Kanagawa Prefecture Hadano Plant, Kobe Steel Co., Ltd. (56) References JP-A-62-62195 (JP, A) JP-A-3-170797 (JP, A) JP-A-62-64421 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F28F 1/40
Claims (1)
状又は略逆台形の第1溝を設け、この第1溝部上に、第
1溝よりも深さが浅く、断面が略矩形又は略台形の第2
溝を管軸方向に対し螺旋状に設けた伝熱管で、第1溝の
円周方向のピッチPに対する溝幅Sの比(S/P)が1/
10<S/P<1/2であり、第1溝の溝幅Sに対する
第2溝の溝底部からの深さLの比(L/S)がL/S>1
/2であり、更に第1溝の溝底に突起を設け、該突起の
高さhと突起のピッチtの比(t/h)が1/2≦t/h
≦2であることを特徴とする熱交換器用電熱管。1. A first groove having a substantially rectangular or substantially inverted trapezoidal cross section parallel to the pipe axis direction on the inner surface of the pipe is provided, and the depth of the first groove is smaller than that of the first groove, and the cross section is substantially the same. Rectangular or nearly trapezoidal second
A heat transfer tube in which grooves are spirally provided in the tube axis direction. The ratio (S / P) of the groove width S to the circumferential pitch P of the first groove is 1 / S.
10 <S / P <1 /, which is relative to the groove width S of the first groove.
The ratio (L / S) of the depth L from the groove bottom of the second groove is L / S> 1.
/ 2, and further, a projection is provided on the groove bottom of the first groove, and the ratio (t / h) of the height h of the projection to the pitch t of the projection is 1/2 ≦ t / h.
An electric heating tube for a heat exchanger, wherein ≦ 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05069455A JP3129565B2 (en) | 1993-03-04 | 1993-03-04 | Heat exchanger tubes for heat exchangers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05069455A JP3129565B2 (en) | 1993-03-04 | 1993-03-04 | Heat exchanger tubes for heat exchangers |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06257978A JPH06257978A (en) | 1994-09-16 |
JP3129565B2 true JP3129565B2 (en) | 2001-01-31 |
Family
ID=13403145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05069455A Expired - Fee Related JP3129565B2 (en) | 1993-03-04 | 1993-03-04 | Heat exchanger tubes for heat exchangers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3129565B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150083382A1 (en) * | 2013-09-24 | 2015-03-26 | Zoneflow Reactor Technologies, LLC | Heat exchanger |
-
1993
- 1993-03-04 JP JP05069455A patent/JP3129565B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06257978A (en) | 1994-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100245383B1 (en) | Cross groove forming heat pipe and manufacturing method | |
JP2788793B2 (en) | Heat transfer tube | |
US6298909B1 (en) | Heat exchange tube having a grooved inner surface | |
EP1502067A1 (en) | Heat transfer tubes, including methods of fabrication and use thereof | |
JP3129565B2 (en) | Heat exchanger tubes for heat exchangers | |
JPH04260793A (en) | Heat transfer tube with inner surface groove | |
JPH09101093A (en) | Heat transfer tube with internal groove | |
JP2912826B2 (en) | Heat transfer tube with internal groove | |
JP3199636B2 (en) | Heat transfer tube with internal groove | |
JP2524983B2 (en) | Small diameter heat transfer tube | |
JPH0579783A (en) | Heat transfer tube with internal groove | |
JP3286171B2 (en) | Heat transfer tube with internal groove | |
JP2001074384A (en) | Internally grooved tube | |
JP2802184B2 (en) | Heat transfer tube for condenser | |
JP3076167B2 (en) | Manufacturing method of heat exchanger tube for heat exchanger by rolling method | |
JPH04260792A (en) | Small-diameter heat transfer tube | |
JP2721755B2 (en) | Heat transfer tube and method of manufacturing the same | |
JP2997189B2 (en) | Condensation promoting type heat transfer tube with internal groove | |
JP2922824B2 (en) | Heat transfer tube with internal groove | |
JP2749673B2 (en) | Heat transfer tube and method of manufacturing the same | |
JPH02161290A (en) | Inner face processed heat transfer tube | |
JPH11108579A (en) | Pipe with grooved inner face | |
JP3226182B2 (en) | Heat exchanger tubes for heat exchangers | |
JPH10300379A (en) | Heat exchanger tube having groove in internal surface | |
JP2726480B2 (en) | Heat transfer tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |