JP3113434B2 - Optical element - Google Patents
Optical elementInfo
- Publication number
- JP3113434B2 JP3113434B2 JP05031721A JP3172193A JP3113434B2 JP 3113434 B2 JP3113434 B2 JP 3113434B2 JP 05031721 A JP05031721 A JP 05031721A JP 3172193 A JP3172193 A JP 3172193A JP 3113434 B2 JP3113434 B2 JP 3113434B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- polymer material
- optical element
- light
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Liquid Crystal (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、表示素子および光通
信、光信号処理等に用いられる光スイッチに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display device and an optical switch used for optical communication, optical signal processing and the like.
【0002】[0002]
【従来の技術】本発明者らは、先に反射形カラー表示素
子および光スイッチの開発を目的として、電圧によって
光の反射または直進、あるいは回折または直進を制御で
きる光学素子を提案した〔特開平4−178623号公
報および特願平3−341531号〕。図4(a)に光
の回折または直進を制御する光学素子の構造を、図4
(b)に光の反射または直進を制御する光学素子の構造
を模式的に示す。この光学素子は、透明電極3および4
の間に、高分子材料5の領域と液晶6の領域からなる周
期構造を形成してある。液晶6は電界によって屈折率が
変化するため、液晶6と高分子材料5の屈折率差を変化
させることができる。図4(a)において、液晶6と高
分子材料5の屈折率差が大きい場合には、位相形回折格
子の原理〔例えば、光学の原理〔ボルン、ウオルフ著:
東海大学出版(1989年第7刷),p.610を参照〕にした
がって光を回折する。また、電圧を印加し液晶6の屈折
率を変えて高分子材料5と液晶6の屈折率差を小さくす
ると回折格子の構造が消失し光をそのまま直進させるこ
とができる。したがって、光の回折または直進を制御す
ることができる。一方、図4(b)において、液晶6と
高分子材料5の屈折率差が大きい場合には、多層膜の光
学的性質から特定波長の光を反射する。また、電圧を印
加し液晶6の屈折率を変え、高分子材料5と液晶6の屈
折率差を小さくすると多層構造が消失し光をそのまま直
進させることができる。したがって、光の反射または直
進を制御することができる。また、これらの光学素子
は、レーザ光の干渉パタンを利用した手法を用いて極め
て容易に作製することができる。2. Description of the Related Art The inventors of the present invention have previously proposed an optical element capable of controlling the reflection or straight traveling, or the diffraction or straight traveling of light by a voltage for the purpose of developing a reflection type color display element and an optical switch [Japanese Patent Laid-Open Publication No. Hei. 4-178623 and Japanese Patent Application No. 3-34153]. FIG. 4A shows the structure of an optical element that controls the diffraction or straight traveling of light.
(B) schematically shows the structure of an optical element that controls light reflection or straight traveling. This optical element comprises transparent electrodes 3 and 4
Between them, a periodic structure composed of a region of the polymer material 5 and a region of the liquid crystal 6 is formed. Since the refractive index of the liquid crystal 6 changes according to the electric field, the difference in the refractive index between the liquid crystal 6 and the polymer material 5 can be changed. In FIG. 4A, when the refractive index difference between the liquid crystal 6 and the polymer material 5 is large, the principle of the phase-type diffraction grating [for example, the principle of optics [born by Born and Wolff:
Light is diffracted according to Tokai University Press (1989, 7th printing, p.610). When a voltage is applied to change the refractive index of the liquid crystal 6 to reduce the refractive index difference between the polymer material 5 and the liquid crystal 6, the structure of the diffraction grating disappears, and the light can travel straight. Therefore, light diffraction or straight traveling can be controlled. On the other hand, in FIG. 4B, when the refractive index difference between the liquid crystal 6 and the polymer material 5 is large, light of a specific wavelength is reflected due to the optical properties of the multilayer film. When a voltage is applied to change the refractive index of the liquid crystal 6 to reduce the difference between the refractive indices of the polymer material 5 and the liquid crystal 6, the multilayer structure disappears and the light can travel straight. Therefore, light reflection or straight traveling can be controlled. In addition, these optical elements can be manufactured extremely easily by using a technique utilizing an interference pattern of laser light.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は、上述
した従来の光学素子の性能の向上をはかるものであっ
て、光の反射または直進を制御する光学素子においては
光の反射効率を高くし、光の回折または直進を制御する
光学素子においては回折効率または回折角を大きく制御
することが可能な高性能の光学素子を提供することにあ
る。SUMMARY OF THE INVENTION An object of the present invention is to improve the performance of the above-mentioned conventional optical element. In an optical element for controlling light reflection or straight traveling, the light reflection efficiency is increased. It is another object of the present invention to provide a high-performance optical element that can control the diffraction efficiency or the diffraction angle of an optical element that controls the diffraction or straight traveling of light.
【0004】[0004]
【課題を解決するための手段】光の反射または直進を制
御する光学素子では光の反射効率を高くし、さらに光の
回折または直進を制御する光学素子において回折効率ま
たは回折角を大きく制御するためには、100nm程度
の微細な間隔において液晶と高分子材料との分離性をよ
くし、液晶と高分子材料との屈折率差を大きく取れる構
造とする必要がある。本発明者らは、高分子材料として
付加重合が可能な多官能性炭素−炭素不飽和化合物(ポ
リエンと言う)と、多官能性チオール(ポリチオールと
言う):〔例えば“最新UV硬化技術”技術情報協会発
行(1991年),p.20を参照〕を少なくとも含む樹脂(ポ
リエンとポリチオール系樹脂と言う)の硬化生成物から
なる高分子材料を用いれば、100nm程度の微細な間
隔であっても液晶と高分子材料との分離性を極めて良好
にすることができ、かつ液晶と高分子材料との屈折率差
を大きく取れることを見い出した。本発明は、屈折率の
異なる複数の領域を有し、この複数の領域が液晶の領域
と高分子材料の領域からなり、電界によって上記液晶の
屈折率を変化させることにより、入射光の回折または直
進、あるいは反射または直進の制御が可能な光学素子に
おいて、上記液晶の領域と高分子材料の領域とによる屈
折率変調の周期が150nm以上500nm以下の微細
な間隔となし、両者の領域の分離性を良くし、かつ液晶
と高分子材料の屈折率差を大きく取るために、高分子材
料としてポリエンとポリチオール系樹脂の硬化生成物か
らなる高分子材料を用いるものである。SUMMARY OF THE INVENTION In an optical element for controlling the reflection or straight traveling of light, the reflection efficiency of light is increased, and in the optical element for controlling the diffraction or straight traveling of light, the diffraction efficiency or the diffraction angle is largely controlled. In order to achieve this, it is necessary to improve the separability between the liquid crystal and the polymer material at a minute interval of about 100 nm, and to have a structure capable of obtaining a large difference in the refractive index between the liquid crystal and the polymer material. The present inventors have proposed a polyfunctional carbon-carbon unsaturated compound (referred to as polyene) capable of addition polymerization as a polymer material and a polyfunctional thiol (referred to as polythiol): (Information Society of Japan (1991), p.20), use a polymer material consisting of a cured product of a resin containing at least (a polyene and a polythiol resin). It has been found that the separation property between the liquid crystal and the polymer material can be made extremely good, and that the refractive index difference between the liquid crystal and the polymer material can be made large. The present invention has a plurality of regions having different refractive indices, and the plurality of regions include a liquid crystal region and a polymer material region, and change the refractive index of the liquid crystal by an electric field, thereby diffracting or diffracting incident light. In an optical element capable of controlling rectilinear or reflection or rectilinear movement, the bending caused by the liquid crystal region and the polymer material region
In order to make the period of the refractive index modulation a fine interval of 150 nm or more and 500 nm or less, to improve the separation between the two regions, and to take a large difference in the refractive index between the liquid crystal and the polymer material, polyene and polythiol are used as the polymer material. A polymer material composed of a cured product of a base resin is used.
【0005】[0005]
【作用】本発明の光学素子においては、高分子材料とし
てポリエンとポリチオール系樹脂の硬化生成物を用いる
ため、液晶と高分子材料の領域が100nm程度の微細
な間隔であっても液晶と高分子材料との境界を明確に分
離することができ、かつ微細な間隔で大きな屈折率変調
を実現することができる。したがって、光の反射または
直進を制御する光学素子においては反射効率が高く、光
の回折または直進を制御する光学素子においては回折効
率の向上または回折角を大きく制御することが可能とな
る。また、本発明の光学素子を簡便に作る方法として、
例えば複数のレーザ光を上記液晶と高分子材料の原料と
の混合物に照射し、レーザ光の干渉パタンによる光の強
弱層によって屈折率の異なる領域を形成させる手法を用
いることにより、極めて容易に反射効率が高く光の反射
または直進を制御することができる光学素子、および回
折効率または回折角の大きい光の回折または直進を制御
できる光学素子を得ることができる。In the optical element of the present invention, a cured product of a polyene and a polythiol resin is used as a polymer material. The boundary with the material can be clearly separated, and a large refractive index modulation can be realized at fine intervals. Therefore, an optical element that controls light reflection or straight traveling has high reflection efficiency, and an optical element that controls light diffraction or straight traveling can improve the diffraction efficiency or largely control the diffraction angle. Further, as a method for easily making the optical element of the present invention,
For example, a method of irradiating a mixture of the above liquid crystal and a raw material of a polymer material with a plurality of laser beams, and forming a region having a different refractive index by a layer of light having a high or low intensity due to an interference pattern of the laser beams, is very easily reflected. An optical element capable of controlling the reflection or straight traveling of light with high efficiency and an optical element capable of controlling the diffraction or straight traveling of light having a large diffraction efficiency or a large diffraction angle can be obtained.
【0006】[0006]
【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。 〈実施例1〉図1は本実施例において例示する光の回折
または直進を制御する光学素子の構造を示す模式図であ
る。この構造は、図4(a)に示す従来の光学素子とほ
ぼ同様であるが、高分子材料の領域にポリエンとポリチ
オール系樹脂の硬化生成物からなる高分子材料12を用
いたところに特徴がある。例えば、膜厚500ÅのIT
O(InとSnとOの化合物)膜からなる2つの透明電
極3と4の間に、屈折率n3のポリエンとポリチオール
系樹脂(例えば、ノーランド社製NOA65:n3=
1.52,NEA121)の硬化生成物である高分子材
料の領域12と、屈折率が電界によってn1からn2(n
1<n2,n2<n3)まで可変なネマティック液晶(例え
ばメルク社製E−7:n1=1.75,n2=1.52)
13の領域を回折格子の構造に周期的に配列させた。さ
らに、屈折率が可変な透明な液晶13の領域の屈折率を
変化させるための電源7を設けている。この光学素子の
動作原理は、本発明者らの特願平3−341531号に
よる光学素子と同様で、液晶の電界による屈折率の違い
を利用して回折格子構造の発現と消去を制御し、光の回
折または直進を制御することができる。表1に、ポリエ
ンとポリチオール系樹脂(ノーランド社製:NOA6
5)の硬化生成物である高分子材料で作製した試料と、
それと同様な構造をアクリル系樹脂(ICI社製:ラッ
クストラックLCR0208)の硬化生成物で作製した
試料の回折光の強度を示す。なお、試料の作製は、レー
ザ光の干渉パタンに応じて樹脂を硬化させ、高分子材料
と液晶を分離する従来の作製手法に基づいた。回折光強
度は、波長488nmの回折光を測定した。回折光は、
入射光に対する回折光の角αが60°と極めて大きい角
度で回折するように、屈折率変調の周期(1つの高分子
材料の領域と液晶の領域の和)が約500nmになるよ
うに配置した。ポリエンとポリチオール系樹脂を使用し
た場合、アクリル系樹脂で作製した試料に比べ約2倍高
い回折光強度が得られた。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in more detail with reference to the drawings. <Embodiment 1> FIG. 1 is a schematic view showing the structure of an optical element for controlling diffraction or straight traveling of light exemplified in this embodiment. This structure is almost the same as the conventional optical element shown in FIG. 4A, but is characterized in that a polymer material 12 made of a cured product of a polyene and a polythiol resin is used in the polymer material region. is there. For example, for a 500 mm thick IT
O (compounds of In, Sn and O) between the two transparent electrodes 3 4 made of film, the refractive index n 3 of the polyene and polythiol resins (e.g., Norland Corp. NOA65: n 3 =
1.52, a region 12 of a polymer material which is a cured product of NEA 121) and a refractive index of n 1 to n 2 (n
Nematic liquid crystal variable up to 1 <n 2 , n 2 <n 3 (for example, Merck E-7: n 1 = 1.75, n 2 = 1.52)
Thirteen regions were periodically arranged in a diffraction grating structure. Further, a power supply 7 for changing the refractive index of the region of the transparent liquid crystal 13 having a variable refractive index is provided. The principle of operation of this optical element is the same as that of the optical element according to Japanese Patent Application No. 3-341531 of the present inventors. Light diffraction or straight traveling can be controlled. Table 1 shows polyene and polythiol resin (NOA6 manufactured by Norland Corporation).
5) a sample made of a polymer material which is a cured product of
The intensity of diffracted light of a sample made of a cured product of an acrylic resin (Luxtrack LCR0208 manufactured by ICI) having the same structure is shown. Note that the preparation of the sample was based on a conventional manufacturing method in which a resin was cured in accordance with an interference pattern of a laser beam, and a polymer material and liquid crystal were separated. The diffracted light intensity measured the diffracted light of wavelength 488nm. Diffracted light is
The refractive index modulation period (sum of one polymer material region and liquid crystal region) is arranged to be about 500 nm so that the angle α of the diffracted light with respect to the incident light is diffracted at an extremely large angle of 60 °. . When a polyene and a polythiol resin were used, a diffraction light intensity approximately twice as high as that of a sample made of an acrylic resin was obtained.
【0007】[0007]
【表1】 [Table 1]
【0008】〈実施例2〉図2は、本実施例で例示した
光の反射または直進を制御する光学素子の構成を示す模
式図である。構造は、図4(b)に示す従来の光学素子
と同様であるが、高分子材料にポリエンとポリチオール
系樹脂からなる高分子材料を用いた。例えば、膜厚50
0ÅのITO膜による2つの透明電極3と4の間に、屈
折率n3のポリエンとポリチオール系樹脂(例えば、ノ
ーランド社製NOA65:n3=1.52,NEA12
1)の硬化生成物である高分子材料の領域(薄層)12
と、屈折率が電界によってn1からn2(n1<n2,n2
<n3)まで可変のネマティック液晶(例えばメルク社
製E−7:n1=1.75,n2=1.52)13の領域
(薄層)を積層している。また、屈折率が可変な透明な
液晶13の領域の屈折率を変化させるための電源7が設
けられている。この光学素子の動作原理は、特開平4−
178623号公報に示した本発明者らの先願の光学素
子と同様で、液晶の電界による屈折率の違いを利用し多
層構造の発現または消去を制御し、特定波長帯の光の反
射強度を制御するものである。表2に、ポリエンとポリ
チオール系樹脂(ノーランド社製:NOA65)の硬化
生成物である高分子材料で作製した試料と、それと同様
な構造をアクリル系樹脂(ICI社製:ラックストラッ
クLCR0208)の硬化生成物で作製した試料の反射
光の強度を示す。なお、試料の作製はレーザ光の干渉パ
タンに応じて樹脂を硬化させ、高分子材料と液晶を分離
させる従来の作製手法に基づいた。反射光の波長は48
8nmである。波長488nmの反射光を得るために、
屈折率変調の周期(高分子材料の1層の厚さと液晶の1
層の厚さの和)を150nm程度に設定した。このよう
に、ポリエンとポリチオール系樹脂を使用した場合、ア
クリル系樹脂で作製した試料に比べ約3倍高い反射強度
を得ることができた。<Embodiment 2> FIG. 2 is a schematic diagram showing the configuration of an optical element for controlling the reflection or straight traveling of light exemplified in this embodiment. The structure is the same as that of the conventional optical element shown in FIG. 4B, but a polymer material composed of a polyene and a polythiol resin is used as the polymer material. For example, a film thickness of 50
Between two transparent electrodes 3 and 4 by ITO film of 0 Å, refractive index n 3 of the polyene and polythiol resins (e.g., Norland Corp. NOA65: n 3 = 1.52, NEA12
Region (thin layer) 12 of the polymer material which is the cured product of 1)
And the refractive index changes from n 1 to n 2 (n 1 <n 2 , n 2) depending on the electric field.
13 regions (thin layers) of nematic liquid crystals (for example, E-7 manufactured by Merck Ltd .: n 1 = 1.75, n 2 = 1.52) variable up to <n 3 ) are laminated. Further, a power supply 7 is provided for changing the refractive index of a region of the transparent liquid crystal 13 having a variable refractive index. The operating principle of this optical element is disclosed in
In the same manner as the optical element of the prior application of the present inventors described in Japanese Patent Application Publication No. 178623, the development or erasure of a multilayer structure is controlled by utilizing the difference in the refractive index due to the electric field of the liquid crystal, and the reflection intensity of light in a specific wavelength band is increased. To control. Table 2 shows a sample made of a polymer material which is a cured product of a polyene and a polythiol resin (NOA65: NOA65), and a similar structure obtained by curing an acrylic resin (LUXTRACK LCR0208, manufactured by ICI). The intensity of the reflected light of the sample made of the product is shown. Note that the sample was manufactured based on a conventional manufacturing method in which a resin was cured according to an interference pattern of a laser beam, and a polymer material and liquid crystal were separated. The wavelength of the reflected light is 48
8 nm. In order to obtain reflected light with a wavelength of 488 nm,
Period of refractive index modulation (thickness of one layer of polymer material and one
(The sum of the thicknesses of the layers) was set to about 150 nm. As described above, when the polyene and the polythiol-based resin were used, a reflection intensity approximately three times higher than that of the sample made of the acrylic resin could be obtained.
【0009】[0009]
【表2】 [Table 2]
【0010】以上の実施例で示したように、ポリエンと
ポリチオール系樹脂を高分子材料の原料として使用した
場合には、反射効率や回折効率を著しく増加させること
ができた。また、本発明の光学素子の形成方法によれ
ば、ホログラムの原理により2つのレーザ光の照射方向
を変えることにより干渉パタンの方向、間隔を任意に変
えることができ、このため屈折率が異なる領域を任意の
間隔で任意の方向に作製することができる〔例えば、大
越孝敬著:ホログラフィ,電子通信学会編,(1977年),
p.34を参照〕。このため、種々の波長帯域の回折光、
反射光および種々の方向への回折光、反射光が得られる
光学素子を簡便に作製することができた。なお、本実施
例では、液晶にメルク社製E−7を使用したが、これに
限ることなく、液晶の主屈折率n1、n2のどちらかが高
分子材料の屈折率n3とほぼ等しくなる液晶を使用し、
電界によって多層構造の発現または消去を制御できるも
のであればよい。また、屈折率が変化する材料としてネ
マティック液晶を用いたが、これに限定されるものでは
なく、電圧によって屈折率が変化する高分子液晶あるい
は強誘電性液晶であってもよい。また、本実施例ではポ
リエンとポリチオール系樹脂に、市販品であるノーラン
ド社製NOA65、およびNEA121を使用したが、
これに限定するものではなく、逐次的に重合する性質の
あるポリエンとポリチオール系樹脂を用いることが本発
明の基本とするところであり、他のポリエンとポリチオ
ール系樹脂を用いてもよい。また、本実施例では液晶と
高分子材料とが層上に分離した例を示してあるが、この
ように層状に分離していることが本質ではなく、図3
(a)、(b)に示すように液晶ドロップレット13の
ように、液晶が粒として存在してもよく、高分子材料と
液晶とにより周期的に屈折率を変調できる構造であれば
よい。As shown in the above examples, when polyene and polythiol resin were used as raw materials for a polymer material, the reflection efficiency and the diffraction efficiency could be significantly increased. Further, according to the method for forming an optical element of the present invention, the direction and interval of the interference pattern can be arbitrarily changed by changing the irradiation directions of the two laser beams according to the principle of the hologram. Can be produced in any direction at any interval [for example, Takataka Ohkoshi: Holography, edited by the Institute of Electronics and Communication Engineers, (1977),
See p.34]. For this reason, diffracted light of various wavelength bands,
An optical element capable of obtaining reflected light, diffracted light in various directions, and reflected light could be easily manufactured. In the present embodiment, E-7 manufactured by Merck was used for the liquid crystal. However, the present invention is not limited to this, and one of the main refractive indices n 1 and n 2 of the liquid crystal is almost equal to the refractive index n 3 of the polymer material. Using equal liquid crystal,
What is necessary is just to be able to control the development or erasure of the multilayer structure by the electric field. Further, a nematic liquid crystal is used as a material whose refractive index changes, but the material is not limited to this, and a polymer liquid crystal or a ferroelectric liquid crystal whose refractive index changes according to a voltage may be used. In this example, commercially available products NOA65 and NEA121 manufactured by Norland were used for the polyene and the polythiol resin.
The present invention is not limited to this, and it is the basis of the present invention to use a polyene and a polythiol-based resin having a property of sequentially polymerizing, and other polyenes and polythiol-based resins may be used. Further, in this embodiment, an example is shown in which the liquid crystal and the polymer material are separated on a layer. However, it is not essential that the liquid crystal and the polymer material are separated into layers as shown in FIG.
As shown in (a) and (b), the liquid crystal may be present as particles like the liquid crystal droplet 13 and may have any structure capable of periodically modulating the refractive index by the polymer material and the liquid crystal.
【0011】[0011]
【発明の効果】以上説明したように、本発明の光学素子
は、高分子材料にポリエンとポリチオール系樹脂による
硬化生成物を用いているため、液晶の領域と高分子材料
の領域とによる屈折率変調の周期が150nm以上50
0nm以下の微細な間隔であっても、液晶領域と高分子
領域とを明確に分離することができ、光の反射または直
進を制御する素子においては反射効率が高く、また光の
回折または直進を制御する素子においては回折効率の向
上もしくは回折角を大きく制御することができる。As described above, the optical element of the present invention uses a cured product of a polyene and a polythiol-based resin as the polymer material, so that the liquid crystal region and the polymer material are not affected.
Period of the refractive index modulation by the region of
Even at a fine interval of 0 nm or less , the liquid crystal region and the polymer region can be clearly separated from each other, and the element for controlling light reflection or straight traveling has high reflection efficiency. In the element to be controlled, the diffraction efficiency can be improved or the diffraction angle can be largely controlled.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の実施例1で示した光の回折または直進
を制御する光学素子の構造の一例を示す模式図。FIG. 1 is a schematic view showing an example of the structure of an optical element for controlling diffraction or straight traveling of light shown in Embodiment 1 of the present invention.
【図2】本発明の実施例2で示した光の反射または直進
を制御する光学素子の構造の一例を示す模式図。FIG. 2 is a schematic diagram illustrating an example of a structure of an optical element that controls light reflection or straight traveling described in Embodiment 2 of the present invention.
【図3】本発明の他の実施例である光学素子の構造の一
例を示す模式図。FIG. 3 is a schematic view showing an example of the structure of an optical element according to another embodiment of the present invention.
【図4】従来の光の回折または直進を制御する光学素子
(a)の構造および光の反射または直進を制御する光学
素子(b)の構造を示す模式図。FIG. 4 is a schematic diagram showing the structure of a conventional optical element (a) for controlling light diffraction or straight traveling and the structure of an optical element (b) for controlling light reflection or straight traveling.
1、2…ガラス基板 3、4…透明 5…高分子材料 6…液晶 7…電源 8…入射光 9…回折光 10…直進光 11…反射光 12…ポリエンとポリチオール系樹脂の硬化生成物であ
る高分子材料 13…液晶(または液晶ドロップレット)1, 2, glass substrate 3, 4, transparent 5, polymer material 6, liquid crystal 7, power supply 8, incident light 9, diffracted light 10, straight light 11, reflected light 12, cured product of polyene and polythiol resin Certain polymer material 13: Liquid crystal (or liquid crystal droplet)
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−86727(JP,A) 特開 昭62−238519(JP,A) 特開 昭64−927(JP,A) 特開 昭63−4205(JP,A) 特開 平5−72509(JP,A) 特開 平5−173196(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/13 505 G02F 1/1333 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-86727 (JP, A) JP-A-62-238519 (JP, A) JP-A-64-927 (JP, A) JP-A 63-86 4205 (JP, A) JP-A-5-72509 (JP, A) JP-A-5-173196 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/13 505 G02F 1/1333
Claims (1)
は液晶の領域と高分子材料の領域からなり、電界によっ
て上記液晶の屈折率を変化させることにより、入射光の
回折または直進、もしくは反射または直進の制御が可能
な構造の光学素子であって、上記液晶の領域と高分子材
料の領域とによる屈折率変調の周期が150nm以上5
00nm以下であり、上記高分子材料は、付加重合が可
能な多官能性炭素−炭素不飽和化合物と多官能性チオー
ルを少なくとも含む樹脂の硬化生成物からなることを特
徴とする光学素子。1. A liquid crystal device comprising a plurality of regions having different refractive indices, each of which comprises a liquid crystal region and a polymer material region. Or an optical element having a structure capable of controlling reflection or straight traveling, wherein the liquid crystal region and a polymer material are
The period of the refractive index modulation depending on the material region is 150 nm or more 5
An optical element having a thickness of not more than 00 nm, wherein the polymer material is a cured product of a resin containing at least a polyfunctional unsaturated carbon-carbon compound capable of addition polymerization and a polyfunctional thiol.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05031721A JP3113434B2 (en) | 1993-02-22 | 1993-02-22 | Optical element |
US08/198,811 US5751452A (en) | 1993-02-22 | 1994-02-18 | Optical devices with high polymer material and method of forming the same |
US08/661,018 US5748272A (en) | 1993-02-22 | 1996-06-10 | Method for making an optical device using a laser beam interference pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05031721A JP3113434B2 (en) | 1993-02-22 | 1993-02-22 | Optical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06250153A JPH06250153A (en) | 1994-09-09 |
JP3113434B2 true JP3113434B2 (en) | 2000-11-27 |
Family
ID=12338916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05031721A Expired - Fee Related JP3113434B2 (en) | 1993-02-22 | 1993-02-22 | Optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3113434B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6172792B1 (en) * | 1997-01-31 | 2001-01-09 | Mary Lou Jepsen | Method and apparatus for forming optical gratings |
US6618104B1 (en) | 1998-07-28 | 2003-09-09 | Nippon Telegraph And Telephone Corporation | Optical device having reverse mode holographic PDLC and front light guide |
US6819393B1 (en) | 1998-07-28 | 2004-11-16 | Nippon Telegraph And Telephone Corporation | Optical device and display apparatus using light diffraction and light guide |
EP1612596A1 (en) * | 2004-06-29 | 2006-01-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | High-efficient, tuneable and switchable optical elements based on polymer-liquid crystal composites and films, mixtures and a method for their production |
DE102012105487A1 (en) * | 2012-06-22 | 2014-01-23 | Seereal Technologies S.A. | Light modulator with a switchable volume grid |
-
1993
- 1993-02-22 JP JP05031721A patent/JP3113434B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06250153A (en) | 1994-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230030594A1 (en) | Systems and Methods for Fabricating a Multilayer Optical Structure | |
US20190212597A1 (en) | Low Haze Liquid Crystal Materials | |
US5748272A (en) | Method for making an optical device using a laser beam interference pattern | |
KR20060104994A (en) | Optical element using liquid crystal having optical isotropy | |
JPH06194639A (en) | Liquid crystal display panel | |
JP3113434B2 (en) | Optical element | |
US20100182672A1 (en) | Optical switch | |
JP4269788B2 (en) | Reflective light modulator and variable optical attenuator | |
JP3071916B2 (en) | Optical switch and manufacturing method thereof | |
JP3162762B2 (en) | Display element | |
JPH05188343A (en) | Light direction control element | |
KR100254838B1 (en) | Full optical type optical element | |
JP3162235B2 (en) | Optical element and manufacturing method thereof | |
JP3718695B2 (en) | LCD panel | |
JPH1090730A (en) | Optical element, its drive method and display device | |
RU2695937C1 (en) | Method of manufacturing a liquid crystal structure for a diffraction grating (versions), a liquid crystal diffraction grating, a dynamic diffraction grating | |
JP2004325790A (en) | Optical modulation element and optical attenuator | |
JP3144011B2 (en) | Liquid crystal phase grating | |
JPH09185025A (en) | Optical control element | |
JP3512153B2 (en) | Liquid crystal display device and method of manufacturing the same | |
JP2517589B2 (en) | Light modulation element | |
JP3547030B2 (en) | Driving method of optical element | |
JPH012020A (en) | Waveguide type optical switch device | |
JPH07120714A (en) | Forming method of optical element | |
JPS61151618A (en) | Color liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070922 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080922 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080922 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110922 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |