JP3109556B2 - Package structure three-axis acceleration sensor and method of manufacturing the same - Google Patents
Package structure three-axis acceleration sensor and method of manufacturing the sameInfo
- Publication number
- JP3109556B2 JP3109556B2 JP06085915A JP8591594A JP3109556B2 JP 3109556 B2 JP3109556 B2 JP 3109556B2 JP 06085915 A JP06085915 A JP 06085915A JP 8591594 A JP8591594 A JP 8591594A JP 3109556 B2 JP3109556 B2 JP 3109556B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- silicon single
- cross
- peripheral frame
- lower electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001133 acceleration Effects 0.000 title claims description 58
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 150
- 229910052710 silicon Inorganic materials 0.000 claims description 150
- 239000010703 silicon Substances 0.000 claims description 150
- 239000013078 crystal Substances 0.000 claims description 143
- 230000002093 peripheral effect Effects 0.000 claims description 114
- 239000011521 glass Substances 0.000 claims description 59
- 239000000758 substrate Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 13
- 230000001105 regulatory effect Effects 0.000 claims description 10
- 238000001312 dry etching Methods 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 8
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 238000005304 joining Methods 0.000 claims description 6
- 238000000059 patterning Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 description 15
- 235000012431 wafers Nutrition 0.000 description 10
- 238000001514 detection method Methods 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000004092 self-diagnosis Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/084—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
Landscapes
- Pressure Sensors (AREA)
- Weting (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の目的】この発明は、自由空間で移動する物体の
速度や加速度を検出する加速度センサに関するものであ
り、1個のセンサによって互いに直角なX,Y,Z3方
向の加速度を同時に検出可能とする新規な構造のパッケ
ージ構造3軸加速度センサ、およびその製造方法を提供
しようとするものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor for detecting the speed and acceleration of an object moving in free space, and it is possible to simultaneously detect accelerations in X, Y and Z directions perpendicular to each other by one sensor. It is an object of the present invention to provide a package structure three-axis acceleration sensor having a novel structure and a method of manufacturing the same.
【0002】[0002]
【従来技術】移動する物体の速度および加速度情報の確
認は、現在までのところ、その多くは1軸方向だけが検
出可能な1軸センサに依存している状況下にあり、した
がって、ロボットの手先等、小さな機械装置の作動を完
全に制御するためのセンサとしてそれら1軸センサを採
用しようとする場合、同時にX,Y,Z軸方向の作動を
制御する必要があることから、少なくとも3個の1軸セ
ンサを組み合わせ、採用しなければならい。しかし、小
型化が進んでいる1軸センサとはいえ、狭いスペース内
にそれら複数個を配置することは、他の機械装置部分と
の関係もあって、レイアウト上においてかなりの困難な
さを伴うばかりではなく、作動を円滑にするための軽量
化の点でも問題を生じてしまうことから、自ずとその利
用範囲に制約を受け、各種機械装置の自動化推進面に支
障を来す結果となっている。2. Description of the Related Art The confirmation of speed and acceleration information of a moving object has so far largely depended on a one-axis sensor that can detect only one axis direction, and therefore, the robot hand If these one-axis sensors are to be used as sensors for completely controlling the operation of small mechanical devices, it is necessary to control the operation in the X, Y, and Z axis directions at the same time. One-axis sensors must be combined and used. However, despite the miniaturization of single-axis sensors, arranging a plurality of such sensors in a narrow space involves considerable difficulty in layout due to the relationship with other mechanical devices. Rather, a problem arises in terms of weight reduction for smooth operation, and the range of use is naturally restricted, resulting in an obstacle to the automation promotion of various mechanical devices.
【0003】そこで、X,Y,Z軸3軸方向の加速度を
同時に検出可能なセンサの開発が試みられ、例えば特開
平5−45377号「加速度検出方法および加速度セン
サ」発明等に散見されるように、円環状のSi基板の中
心部に作用部を形成し、同作用部でガラス等からなる重
錘体の中心部を支持すると共に、作用部の周りに形成し
た薄肉状の環状可撓部をダイヤフラムにした上、外周縁
の固定部と重錘体とのギャップが、センサに加わる加速
度によって重錘体が移動して変化することを利用して静
電容量部となし、その静電容量部の変化量を発信回路に
よって周波数の変化に置換し、各静電容量部の変化に対
応した周波数に基づいて静電容量部の電極の移動量を演
算し、この移動量から加速度を検出するようした加速度
検出方法が提案されると共に、それに自己診断コイルと
磁性体とを組み込んで自己診断機能を有する加速度セン
サも提案されている。[0003] Therefore, development of a sensor capable of simultaneously detecting accelerations in three directions of X, Y, and Z axes has been attempted, for example, as disclosed in Japanese Patent Application Laid-Open No. 5-45377, "Acceleration Detection Method and Acceleration Sensor". A working portion is formed at the center of the annular Si substrate, the working portion supports the center of a weight body made of glass or the like, and has a thin annular flexible portion formed around the working portion. Is used as a diaphragm, and the gap between the fixed portion on the outer peripheral edge and the weight body is formed as a capacitance part by utilizing the fact that the weight body moves and changes due to the acceleration applied to the sensor. The change amount of the part is replaced by the change of the frequency by the transmission circuit, the movement amount of the electrode of the capacitance part is calculated based on the frequency corresponding to the change of each capacitance part, and the acceleration is detected from the movement amount. Such acceleration detection method has been proposed Rutotomoni, it has been proposed an acceleration sensor having a self diagnosis function incorporates a self-diagnosis coil and the magnetic body.
【0004】また、それよりも先の特開平3−2535
号発明には、上記した発明の基本的な構造を含む、作用
部、可撓部、固定部の三つの領域から構成され、作用部
の下に形成された重錘体の移動に起因した可撓部の機械
的変形から抵抗素子の電気抵抗の変化を検出して加速度
の変化を計測する加速度センサと、その製造方法とが開
示されている外、特開平3−66176号発明には、カ
ンテリバー構造で、薄肉部をダイヤフラム部とした加速
度センサの製造方法についても開発済みとなっている。
これら各公知文献に示されている技術的事項等からし
て、現状において、加速度センサの基本的な構造とし
て、物体の移動に伴う加速度の変化を物質の変形量に置
き換え、それらを電気的に、即ち静電容量の変化もしく
は電気抵抗の変化等で捕らえ、電気信号に変換して検知
する技術的思想は、既に公知になっているといえる。Further, Japanese Patent Application Laid-Open No. Hei 3-2535,
The invention of the present application includes three regions including an operation portion, a flexible portion, and a fixed portion, including the basic structure of the above-described invention, and may be caused by movement of a weight body formed below the operation portion. An acceleration sensor for detecting a change in electrical resistance of a resistance element from a mechanical deformation of a flexible portion to measure a change in acceleration and a method of manufacturing the acceleration sensor are disclosed. A method of manufacturing an acceleration sensor having a river structure and a thin portion as a diaphragm has also been developed.
From the technical matters shown in each of these known documents, at present, as a basic structure of an acceleration sensor, a change in acceleration due to movement of an object is replaced with a deformation amount of a substance, and these are electrically converted. That is, the technical idea of capturing a change in capacitance or a change in electric resistance and converting the electric signal to an electric signal for detection is already known.
【0005】しかし、上記公知の技術的思想を元に開
発、提案されている幾つかの具体的な加速度センサにお
いては、電気的変化を捕らえるために加工しなければな
らない構造が、極めて薄い素材であって機械的強度をあ
まり期待できない高価なシリコン単結晶板に対するもの
として極めて不都合なものであって、ウエットエッチン
グ、ドライエッチング、あるいはダイシングソー切断等
の加工が繰り返される製造工程中で破損し易く、部品と
しての歩留まりが非常に悪いものとなってしまうという
難点を抱えている上、組み立て段階における部品として
の取り扱いの面でも、台部への取り付けや錘部の取り付
け時に、破損への配慮と位置決め精度の確保等について
細心の注意を必要とするものとなって、作業効率を悪く
してしまうという問題を抱えるものであった。[0005] However, in some specific acceleration sensors developed and proposed based on the above-mentioned known technical idea, the structure that must be processed in order to capture an electrical change is made of an extremely thin material. It is extremely inconvenient as an expensive silicon single crystal plate that cannot expect much mechanical strength, and is easily damaged during the manufacturing process in which processing such as wet etching, dry etching, or dicing saw cutting is repeated, In addition to having the drawback that the yield as parts is extremely poor, in consideration of handling as parts during the assembly stage, consideration of damage and positioning when attaching to the base and weights It is necessary to pay close attention to ensuring the accuracy, etc., which may reduce the work efficiency. It was those that suffer from.
【0006】これら従前までのものの上記した課題は、
加速度センサの1構成部品となるべき所定構造に加工さ
れたシリコン単結晶部品が、一般的な多くの機械装置の
場合と同様、組み合わせなければならない他の部品に対
し、独立した別個の部品扱いされ、加速度センサ組立て
工程にそのまま取り込まれている結果に起因した問題で
はなかったのか、換言すれば、加速度センサの全体構造
が、シリコン単結晶素材の特異な性状についての配慮が
なされないまま、機構優先で実現されることに起因した
問題ではなかったのかとの認識に及び、この発明ではそ
れら従前からの視点を変え、脆弱で高価なシリコン単結
晶基板という素材の性状に適った加速度センサ全体の製
造工程、あるいはそれを可能とする加速度センサ全体の
構造についての開発、研究に取り組み、幾多の試行錯誤
を繰り返してきた結果、遂に、以下において詳述すると
おりの構成からなるパッケージ構造3軸加速度センサと
それを製造する方法とを完成するに至ったものである。The above-mentioned problems of these prior arts are:
A silicon single crystal part processed into a predetermined structure to be one component of the acceleration sensor is treated as an independent and separate part with respect to other parts that must be combined, as in many general mechanical devices. The problem was not caused by the result of being directly incorporated into the acceleration sensor assembly process. In other words, the overall structure of the acceleration sensor was not prioritized for the mechanism without considering the unique properties of the silicon single crystal material. The present invention changes the viewpoint from the prior art and manufactures an entire acceleration sensor suitable for the property of a fragile and expensive silicon single crystal substrate. We have been engaged in development and research on the process and the structure of the entire acceleration sensor that enables it, and have repeated many trials and errors. Fruit, but finally, that it has completed a process for preparing it and the package structure triaxial acceleration sensor having the structure as will be detailed below.
【0007】[0007]
【発明の構成】この発明のパッケージ構造3軸加速度セ
ンサは、基本的に、ベース板とシリコン単結晶カバー板
との間に、十字形可撓構造部を有するシリコン単結晶層
と、その上で十字形可撓構造部への変形作動要素となる
錘板部を有するガラス層とを規制された箇所において接
合、一体化した構造からなるものであって、加工工程を
工夫したことに伴って実現される特徴ある構成をその要
旨としている。The three-axis acceleration sensor having a package structure according to the present invention basically has a silicon single crystal layer having a cross-shaped flexible structure portion between a base plate and a silicon single crystal cover plate, and a silicon single crystal layer on the silicon single crystal layer. It has a structure in which a glass layer having a weight plate portion serving as a deformation operation element to a cross-shaped flexible structure portion is joined and integrated at a regulated location, and is realized by devising a processing process. The gist is a characteristic configuration to be performed.
【0008】即ち、ベース板とカバー板との間に接合一
体化された周枠部内に、4個の下部電極用島部、および
先端支柱部と中央支柱部、それらを繋ぐ梁構造薄肉部と
からなる十字形可撓構造部が、夫々各下部電極用島部下
面、および十字形可撓構造部の各先端支柱部下面か中央
支柱部下面の何れかだけをベース板面上に接合して配さ
れると共に、裏面に上部電極層を蒸着した錘板部が、上
部電極層の通電部を含む裏面中心で前記中央支柱部上面
に接合、支持させるか、あるいは上部電極層の通電部を
含む裏面四方で前記先端支柱部各上面に接合、支持させ
るかして十字形可撓構造部上に組み合わされ、同じく周
枠部内に配されてなる如くしたパッケージ構造3軸加速
度センサとするものである。[0008] That is, in a peripheral frame portion joined and integrated between a base plate and a cover plate, four lower electrode islands, a tip support portion and a center support portion, and a beam structure thin portion connecting them are provided. The cross-shaped flexible structure portion is formed by joining only the lower surface of each lower electrode island portion and the lower surface of the tip support portion or the lower surface of the center support portion of the cross-shaped flexible structure portion to the base plate surface. While being disposed, the weight plate portion on which the upper electrode layer is vapor-deposited on the back surface is joined or supported on the upper surface of the central support portion at the center of the back surface including the conducting portion of the upper electrode layer, or includes the conducting portion of the upper electrode layer. A package structure three-axis acceleration sensor that is joined to and supported on the upper surface of each of the tip support portions on the four sides on the back side and combined on the cross-shaped flexible structure portion and also disposed in the peripheral frame portion. .
【0009】更に詳しくは、矩形状のベース板とシリコ
ン単結晶カバー板との間に接合一体化された周枠部内
に、シリコン単結晶層の中の4個の下部電極用島部、お
よびそれら4個の下部電極用島部の十字形間隙部分に位
置し、先端支柱部、中央支柱部およびそれらを繋ぐ梁構
造薄肉部とからなる十字形可撓構造部が、全体平面形を
略田の字形配置に分離形成され、それら各部の中の各下
部電極用島部下面および十字形可撓構造部の各先端支柱
部下面か中央支柱部下面の何れかだけをベース板面上に
接合して配されると共に、該シリコン単結晶層の中の4
個の下部電極用島部全体を覆い尽くす平面形を有し、そ
の裏面に、前記下部電極用島部の直上に対応させた4個
の上部電極用島部とそれら個々を繋ぐ通電部とからなる
上部電極層を蒸着した錘板部が、上部電極層の通電部を
含む裏面中心部を前記中央支柱部上面に接合、支持させ
るか、あるいは上部電極層の通電部を含む裏面四方を前
記先端支柱部各上面に接合、支持させるかして十字形可
撓構造部上に組み合わされ、同じく周枠部内に配される
如くしてなるパッケージ構造3軸加速度センサとする構
成からなるものである。More specifically, four lower electrode islands in a silicon single crystal layer are provided in a peripheral frame joined and integrated between a rectangular base plate and a silicon single crystal cover plate. A cross-shaped flexible structure portion, which is located in the cross-shaped gap between the four lower electrode islands and includes a tip support portion, a central support portion, and a beam structure thin portion connecting them, has an overall planar shape of approximately The lower surface of each lower electrode island portion and the lower surface of the tip support portion or the lower surface of the center support portion of the cross-shaped flexible structure portion are joined to the base plate surface. And 4 of the silicon single crystal layer
It has a planar shape that covers the entirety of the lower electrode islands, and on the back surface, there are four upper electrode islands corresponding to immediately above the lower electrode islands and a current-carrying part connecting them. The weight plate portion on which the upper electrode layer is deposited is joined to and supported by the center portion of the back surface including the current-carrying portion of the upper electrode layer on the upper surface of the central support portion, or the top surface of the back surface including the current-carrying portion of the upper electrode layer is contacted with the tip. The package structure is a three-axis acceleration sensor that is joined to and supported on the upper surfaces of the support portions and combined on the cross-shaped flexible structure portion, and is also arranged in the peripheral frame portion.
【0010】この基本的な構成には、以下のような記載
によって示される二通りの構成からなるパッケージ構造
3軸加速度センサが包含されている。その一つが、矩形
状のベース板とシリコン単結晶カバー板との間に、周枠
部、その内側の4個の下部電極用島部およびそれら4個
の下部電極用島部の十字形間隙部分に位置し、先端支柱
部、中央支柱部およびそれらを繋ぐ梁構造薄肉部とから
なる十字形可撓構造部各部が分離形成されてなる全体平
面形を略田の字形配置としたシリコン単結晶層と、該シ
リコン単結晶層の4個の下部電極用島部全体を覆い尽く
す平面形を有し、その裏面に、前記下部電極用島部の直
上に対応させた4個の上部電極用島部とそれら個々を繋
ぐ通電部とをパターン化してなる上部電極層を蒸着した
錘板部およびその周枠部からなるガラス層とを介在、形
成し、ベース板に対し、シリコン単結晶層の中の周枠部
下面、各下部電極用島部下面および十字形可撓構造部の
各先端支柱部下面だけを、そして、十字形可撓構造部の
平面十字形交差部に突出形成した中央支柱部上面に対
し、ガラス層の中の錘板部の上部電極層の通電部を含む
裏面中心部だけを、夫々接合、支持される如くなす一
方、シリコン単結晶カバー板は、シリコン単結晶層の周
枠部上に一体化されたガラス層周枠部だけに接合、支持
させると共に、ベース板に穿設した通孔を通して各下部
電極用島部下面および十字形可撓構造部の中の少なくと
も1個の先端支柱部下面に夫々信号取出し用リード線を
接続してなるパッケージ構造3軸加速度センサとするも
のである。This basic configuration includes a package structure three-axis acceleration sensor having two configurations as described below. One of them is a rectangular frame plate, a silicon single crystal cover plate, a peripheral frame portion, four lower electrode islands inside thereof, and a cross-shaped gap between the four lower electrode islands. , And a silicon single crystal layer in which a cross-shaped flexible structure portion composed of a tip support portion, a center support portion, and a beam structure thin portion connecting them, each of which is separately formed, has a generally square-shaped arrangement in a generally planar shape. And four upper electrode islands corresponding to immediately above the lower electrode islands on the back surface of the silicon single crystal layer, the planar shape covering the entire four lower electrode islands. And a weight plate portion on which an upper electrode layer formed by patterning a current-carrying portion connecting them and a glass layer composed of a peripheral frame portion are interposed and formed. The lower surface of the peripheral frame, the lower surface of the island for each lower electrode, and the cross-shaped flexible structure Only the lower surface of the tip support portion and the upper surface of the central support portion protrudingly formed at the plane cross-shaped crossing portion of the cross-shaped flexible structure portion, including the conducting portion of the upper electrode layer of the weight plate portion in the glass layer Only the center part is bonded and supported respectively, while the silicon single crystal cover plate is bonded and supported only to the glass layer peripheral frame integrated on the peripheral frame of the silicon single crystal layer, and the base is A package structure in which signal extraction lead wires are connected to the lower surface of each lower electrode island portion and the lower surface of at least one tip support portion of the cross-shaped flexible structure portion through through holes formed in the plate, respectively. It is a sensor.
【0011】そして、他の一つが、矩形状のベース板面
上に、周枠部、その内側の4個の下部電極用島部および
それら4個の下部電極用島部の十字形間隙部分に位置
し、先端支柱部、中央支柱部およびそれらを繋ぐ梁構造
薄肉部とからなる十字形可撓構造部各部が分離形成され
てなる全体平面形を略田の字形配置としたシリコン単結
晶層を載置し、それらシリコン単結晶層の中の周枠部下
面、各下部電極用島部下面および十字形可撓構造部の中
央支柱部下面だけをベース板に対して接合、一体化する
一方、該シリコン単結晶層の上には、該シリコン単結晶
層の4個の下部電極用島部全体を覆い尽くす平面形を有
し、その裏面に、前記下部電極用島部の直上に対応させ
た4個の上部電極用島部とそれら個々を繋ぐ通電部とを
パターン化してなる上部電極層を蒸着した錘板部とその
周枠部とからなるガラス層を形成し、該錘板部が、その
上部電極層の通電部を含む裏面四方で、十字形可撓構造
部の4個の先端支柱部上面に接合、支持される如くな
し、更にその上に、シリコン単結晶層の周枠部上に一体
化されたガラス層周枠部だけに接合、支持させたシリコ
ン単結晶カバー板を被冠すると共に、ベース板に穿設し
た通孔を通して各下部電極用島部下面および十字形可撓
構造部の中央支柱部下面に夫々信号取出し用リード線を
接続してなるパッケージ構造3軸加速度センサとするも
のである。これら上記のパッケージ構造3軸加速度セン
サの構造は、以下に示すとおりの第1ないし5工程から
なる特別な製造工程によって初めて実現可能となるもの
である。The other is formed on a rectangular base plate surface with a peripheral frame portion, four lower electrode islands inside the peripheral frame portion, and a cross-shaped gap between the four lower electrode islands. A silicon single crystal layer having a cross-shaped flexible structure portion including a tip support portion, a center support portion, and a beam structure thin portion connecting them, each of which is formed in a cross-sectionally flexible manner, has a generally flat-shaped arrangement. While mounting, only the lower surface of the peripheral frame portion, the lower surface of each lower electrode island, and the lower surface of the central support portion of the cross-shaped flexible structure portion in the silicon single crystal layer are joined and integrated with the base plate, On the silicon single crystal layer, the silicon single crystal layer has a planar shape that covers the entire four lower electrode islands, and the back surface thereof corresponds to the lower electrode islands. Four upper electrode islands and current-carrying parts connecting them are patterned Forming a glass layer comprising a weight plate portion on which a lower electrode layer is vapor-deposited and a peripheral frame portion, wherein the weight plate portion has a cross-shaped flexible structure portion on four sides on the back surface including the conducting portion of the upper electrode layer. The silicon single crystal cover joined and supported only on the glass frame peripheral frame integrated on the peripheral frame of the silicon single crystal layer. A package structure 3 in which a signal extraction lead wire is connected to the lower surface of each lower electrode island portion and the lower surface of the central support portion of the cross-shaped flexible structure portion through a through hole formed in the base plate while covering the plate. It is an axial acceleration sensor. The structure of the three-axis acceleration sensor having the above package structure can be realized only by a special manufacturing process including first to fifth steps as described below.
【0012】「第1工程」予め所定の位置に通孔の穿設
されたベース板上に、これまた予め所定の矩形状シリコ
ン単結晶板を表裏からエツチング加工することにより、
周枠部相当部、下部電極島部相当部、および十字形可撓
構造部における先端支柱部、中央支柱部各相当部を夫々
規制された高さ関係であって、夫々が薄肉部で繋がって
いる構造とした全体平面形で略田の字形に刻設されてな
る一枚板状のシリコン単結晶基板を載置し、それらシリ
コン単結晶基板の中の周枠部相当部下面、各下部電極用
島部相当部下面、および十字形可撓構造部の各先端支柱
部相当部下面か、中央支柱部相当部下面の何れかだけを
ベース板に対して、陽極接合その他の手段等によって接
合、一体化する。[First step] A predetermined rectangular silicon single crystal plate is etched from the front and back sides of a base plate having through holes at predetermined positions.
The peripheral frame portion, the lower electrode island portion, and the tip support portion in the cross-shaped flexible structure portion, the central support portion each have a regulated height relationship, and each is connected by a thin portion. A single-plate silicon single crystal substrate engraved in the shape of a square with a generally planar shape is placed, and the lower surface of each of the silicon single crystal substrates, the lower surface corresponding to the peripheral frame portion, and each lower electrode The lower surface of the portion corresponding to the island, and the lower surface of the tip support portion of the cross-shaped flexible structure, or only the lower surface of the central support portion, are joined to the base plate by anodic bonding or other means. Integrate.
【0013】この工程における一枚板状のシリコン単結
晶基板は、1枚のシリコンウェハから複数枚が同時に形
成されるようにしたものの中の一つとして形成されるよ
うにするのが効率的であって、それらは1枚のシリコン
ウェハ上に正確な複数枚取りの配置で各部が転写され、
公知のエッチング手段を数次に亘って繰り返すことによ
って、夫々が所定構造を有する一枚板状のシリコン単結
晶基板とされるようにする。これら個々の一枚板状のシ
リコン単結晶基板が有する各部、即ち最終構造で周枠部
となる周枠部相当部、下部電極用島部となる下部電極用
島部相当部、十字形可撓構造部における先端支柱部およ
び中央支柱部となる先端支柱部相当部および中央支柱部
相当部、およびそれらの間に残る薄肉部の構造は、次の
ような関係によって実現されていなければならない。In this process, the single-plate silicon single crystal substrate is efficiently formed as one of a plurality of silicon single-crystal substrates simultaneously formed from one silicon wafer. Then, each part is transferred on a single silicon wafer in an accurate multi-cavity arrangement,
By repeating known etching means over several orders, each is made into a single-plate silicon single crystal substrate having a predetermined structure. Each part of each of these single-plate silicon single crystal substrates, that is, a portion corresponding to a peripheral frame portion serving as a peripheral frame portion in a final structure, a portion corresponding to a lower electrode island portion serving as a lower electrode island portion, a cross-shaped flexible member The structures of the tip strut portion and the center strut equivalent portion serving as the tip strut portion and the center strut portion in the structural portion, and the thin-walled portion remaining therebetween must be realized by the following relationship.
【0014】即ち、一枚板状のシリコン単結晶基板の上
面側では、周枠部相当部と十字形可撓構造部における中
央支柱部相当部とは、その上面が、基本的に一枚板状の
シリコン単結晶基板の上面のままとなってエッチング加
工で浸蝕を受けない部分として残る部分であり、それよ
りも僅か、例えば10ミクロン前後薄くして形成される
ようにするのが周枠部相当部内に対称配置で個々に独立
して形成される4個の下部電極用島部相当部であり、更
にそれよりも低くなるようにして十字形可撓構造部にお
ける4個の先端支柱部相当部が形成されるようにするも
のである。That is, on the upper surface side of the single-plate silicon single crystal substrate, the upper surface of the portion corresponding to the peripheral frame portion and the portion corresponding to the central support portion in the cross-shaped flexible structure portion basically have a single-plate shape. Is a portion that remains as the upper surface of the silicon single crystal substrate in the shape of a silicon and is not eroded by etching, and is formed to be slightly thinner, for example, about 10 μm thinner. Four lower electrode island portions, each of which is independently formed in a symmetrical arrangement in the corresponding portion, and four lower end pillar portions of the cross-shaped flexible structure portion which are lower than the four island portions. A part is formed.
【0015】また、同下面側は、上記した上面側の各部
相当部、即ち、周枠部相当部、下部電極用島部相当部お
よび十字形可撓構造部相当部の中、十字形可撓構造部相
当部における中央支柱部相当部下面を除く下面部分を残
して(即ち、シリコンウェハの下面のままとして)他の
部分を僅かにエッチング加工して肉厚を略同一厚、例え
ば20ミクロン程度削り取った構造とし、上面側で最も
低くなるようエッチングされた部分とで相対する部分を
薄肉部とするものであり、その薄肉部の厚さは、例えば
略30ミクロン程度の厚さが一つの目安とされる。な
お、この下面側のエッチング加工の中で、極めて重要な
部分は、同上面側で形成される周枠部相当部の下面に対
応する部分を残すためのエッチング幅に関する部分であ
り、この加工によって削り取られて上面側の周枠部相当
部の下面として残る幅が、上面側の周枠部相当部の幅の
半分以下に規制されて形成されるようにしなければなら
ないことである。The lower surface side has a cross-shaped flexible portion among the above-described portions corresponding to the upper surface side, that is, a portion corresponding to the peripheral frame portion, a portion corresponding to the lower electrode island portion, and a portion corresponding to the cross-shaped flexible structure portion. The other portion is slightly etched and the thickness is substantially the same, for example, about 20 microns except for the lower surface portion of the structural portion corresponding portion except for the lower surface of the central support portion portion (ie, the lower surface of the silicon wafer). A thinned portion is formed by shaving off, and a portion opposed to a portion etched to be the lowest on the upper surface side is a thin portion. The thickness of the thin portion is, for example, approximately 30 μm. It is said. In this etching process on the lower surface side, a very important portion is a portion related to an etching width for leaving a portion corresponding to a lower surface of a portion corresponding to a peripheral frame portion formed on the upper surface side. That is, the width left as a lower surface of the portion corresponding to the peripheral frame portion on the upper surface side must be controlled to be equal to or less than half the width of the corresponding portion of the peripheral frame portion on the upper surface side.
【0016】こうして形成される一枚板状のシリコン単
結晶基板の、規制された関係で刻設された各部相当部の
輪郭で形成される平面形は、略田の字形に似た形を構成
し、田の字の国構部分は周枠部相当部、中の十文字部分
は、交差部分の支柱部相当部と縦横各先端の支柱部相当
部を含み、最終的に十字形可撓構造部を形成する十字形
可撓構造部相当部を形成する部分、そして、それらによ
って区切られた4個の升目部分が下部電極用島部相当部
となり、それら各相当部間に薄肉部が形成された構造で
全体を一枚板状のものに維持することになる。In the single-plate silicon single crystal substrate thus formed, the planar shape formed by the contours of the portions corresponding to the portions engraved in a regulated relationship has a shape similar to a substantially square-shaped character. Then, the national structure of the cross-shaped cross section is equivalent to the peripheral frame, the cross in the middle is the cross-section corresponding to the column and the vertical and horizontal ends of the column, and finally the cross-shaped flexible structure The portion forming the cross-shaped flexible structure portion corresponding to the above, and the four grid portions divided by the portions become the portion corresponding to the island portion for the lower electrode, and the thin portion is formed between the corresponding portions. The whole structure is maintained as a single plate.
【0017】以上のようにして予め形成された一枚板状
のシリコン単結晶基板は、その中の周枠部相当部下面、
各下部電極用島部相当部下面および十字形可撓構造部相
当部の平面十字形各先端の4個の先端支柱部相当部下面
(十字形可撓構造部相当部の中央支柱部相当部下面は除
かれている。)だけを、陽極接合手段等によってベース
板面上に接合、一体化されるものであり、これらの工程
も、所定構造で一枚板状としたシリコン単結晶基板が複
数枚取りとなるように配されたシリコンウェハを、個々
のシリコン単結晶基板に裁断、分割してしまわない状態
で、シリコンウェハと略同形のベース板面上に接合、一
体化してしまうようにするのが効率的で好都合である。The single-plate silicon single crystal substrate formed in advance as described above has a lower surface corresponding to a peripheral frame portion therein.
The lower surface of each lower electrode island-corresponding portion and the cross-shaped flexible structure portion-corresponding flat cross-shaped four tip support portions at each tip (the lower surface of the cross-shaped flexible structure portion-corresponding central pillar portion-corresponding lower surface) Are bonded and integrated on the base plate surface by anodic bonding means or the like. These steps also involve a plurality of single-crystal silicon substrates having a predetermined structure. A silicon wafer arranged in a single piece is bonded and integrated on a base plate surface having substantially the same shape as the silicon wafer without being cut and divided into individual silicon single crystal substrates. It is efficient and convenient.
【0018】一方、ここで採用されるベース板は、予め
4個の下部電極用島部下面個々用および十字形可撓構造
部の中の縦方向あるいは横方向で対をなす4個の先端支
柱部の中の少なくとも1個用の都合5カ所、最適には6
カ所に通じる通孔が穿設されたガラス板である。なお、
この工程で加工される十字形可撓構造部相当部の平面十
字形各先端の4個の先端支柱部相当部と、平面十字形交
差部に位置する中央支柱部相当部とは、上記のような加
工の外、次のような加工によって形成される構造のもの
も包含される。On the other hand, the base plate employed here is composed of four tip pillars which are paired in advance in the vertical or horizontal direction in the four lower electrode island individual lower surfaces and the cross-shaped flexible structure. 5 convenient locations for at least one of the parts, optimally 6
It is a glass plate with perforations leading to various places. In addition,
The four end strut portions corresponding to the four ends of the plane cruciform portion of the cruciform flexible structure portion to be processed in this step, and the central strut portion corresponding to the center cruciform crossing portion are as described above. In addition to the basic processing, those having a structure formed by the following processing are also included.
【0019】即ち、シリコン単結晶基板上面側および下
面側のエッチング加工において、中央支柱部相当部は、
薄肉部よりも上面にだけ突出(したがって、薄肉部の下
には、中央支柱部相当部になる部分は形成されない構造
に)形成され、先端支柱部相当部は、その上面側がシリ
コン単結晶基板上面より下がり、下面側がシリコン単結
晶基板下面そのままの面として残る加工としているが、
これらを逆にして、中央支柱部相当部は、薄肉部よりも
下面にだけ突出(したがって、薄肉部の上には、中央支
柱部相当部になる部分は形成されない構造に)形成さ
れ、先端支柱部相当部は、その上面側がシリコン単結晶
基板上面そのままの面として残る加工とし、下面側がシ
リコン単結晶基板下面より上がるようにした構造のもの
とし、前記のような加工による構造は、請求口2に対応
した構成を実現するための製造工程、そして、後者のよ
うな加工による構造は、請求口3に対応した構成を実現
するための製造工程とする。That is, in the etching process on the upper surface side and the lower surface side of the silicon single crystal substrate, the portion corresponding to the central support portion is:
The projection is formed only on the upper surface from the thin portion (therefore, a portion corresponding to the central support portion is not formed below the thin portion). The lower surface side is processed to remain as the lower surface of the silicon single crystal substrate as it is,
Conversely, the central strut portion is formed so as to protrude only to the lower surface from the thin portion (therefore, a portion corresponding to the central strut portion is not formed on the thin portion). The portion corresponding to the portion has a structure in which the upper surface side is left as the upper surface of the silicon single crystal substrate as it is, and the lower surface side is raised above the lower surface of the silicon single crystal substrate. A manufacturing process for realizing a configuration corresponding to the above, and a structure by processing such as the latter is a manufacturing process for realizing a configuration corresponding to the claim 3.
【0020】[第2工程]上記のようにして所定構造で
一枚板状のシリコン単結晶基板が、ベース板面上に接
合、一体化された後、異方性ドライエッチングにより、
シリコン単結晶基板の中の、周枠部相当部とその内側各
部相当部との間、および平面十字形十字形可撓構造部相
当部の外周と下部電極用島部相当部との間の各薄肉部を
削除して、ベース板上に一体化された周枠部、その内側
の4個の下部電極用島部およびそれら4個の下部電極用
島部の間に位置する十字形可撓構造部が、個々に独立し
た構成部に分離されて、それまで一枚板状であったシリ
コン単結晶基板から、シリコン単結晶製の幾つかの構成
部ブロックが、秩序ある関係でベース板上に配置、一体
化されてなるシリコン単結晶層に加工、形成してしまう
工程となる。[Second Step] After a single-plate silicon single crystal substrate having a predetermined structure is bonded and integrated on the base plate surface as described above, anisotropic dry etching is performed.
In the silicon single crystal substrate, each portion between the portion corresponding to the peripheral frame portion and the portion corresponding to the inside thereof, and the portion between the outer periphery of the portion corresponding to the flat cross-shaped flexible structure and the portion corresponding to the island portion for the lower electrode. A peripheral frame portion integrated on a base plate by removing a thin portion, four lower electrode islands on the inside thereof, and a cross-shaped flexible structure located between the four lower electrode islands The parts are separated into individual independent components, and several component blocks made of silicon single crystal are placed on the base plate in an orderly relationship from a single-crystal silicon substrate This is a step of processing and forming a silicon single crystal layer that is arranged and integrated.
【0021】この工程で残される薄肉部は、十字形可撓
構造部の、交差部に形成されている中央支柱部と同十字
形縦横各先端に形成されている4個の先端支柱部との間
の薄肉部だけとなり、その結果、4個の先端支柱部から
中央支柱部を支える形で延びる薄肉部、あるいはその逆
の構造に形成した請求口3に対応した構成に加工したも
のでは、中央支柱部から先端支柱部を支える形で四方に
延びる薄肉部は、各先端支柱部あるいは中央支柱部に対
してカンテリバー構造となって梁構造薄肉部を形成し、
これら中央支柱部あるいは先端支柱部に加わる、後述の
第3、第4工程で組み合わされる錘板部からの重力の加
速度によって、微妙に変形可能な構造を実現することに
なる。The thin portion left in this step is composed of a central support portion formed at the intersection of the cross-shaped flexible structure portion and four tip support portions formed at each of the vertical and horizontal ends of the cross shape. As a result, only the thin portion extending between the four front-end struts and the central strut extending from the four end struts, or a structure corresponding to the billing opening 3 formed in a converse structure, is used. The thin portion extending in all directions from the support portion to the tip support portion forms a beam structure thin portion with a cantilever structure for each tip support portion or the central support portion,
A delicately deformable structure is realized by the acceleration of gravity applied from the weight plate portion combined in the third and fourth steps to be described later, which is applied to the center support portion or the tip support portion.
【0022】[第3工程]上記工程により一体形成され
たシリコン単結晶層の上に、予めシリコン単結晶層全体
を覆い尽くす平面形を有し、表面側が、最終的に周枠部
となる周枠部相当部よりも、最終的に錘板部となる錘板
部相当部を低く加工されてなるガラス板を載置した上、
該ガラス板を、シリコン単結晶層における周枠部および
十字形可撓構造部の平面十字形交差部に突出形成されて
いる中央支柱部(請求項3に対応した構成に加工したも
のにあっては4個の先端支柱部)各上面だけに一体化し
た後、シリコン単結晶層の周枠部に掛かる位置に規制さ
れたガラス板における周枠部相当部と錘板相当部との境
界を、ダイシングソーにより溝切り加工して、その溝が
シリコン単結晶層の周枠部の中途にまで達しさせたもの
とすることにより、周枠部とそれから分離された錘板部
とからなるガラス層を形成する。但し、この段階では、
未だ錘板部は、十字形可撓構造部だけに支持された構造
を実現し得ていない。[Third Step] On the silicon single crystal layer formed integrally by the above steps, a planar shape which covers the entire silicon single crystal layer in advance, and the surface side of which is finally a peripheral frame portion After placing a glass plate that is processed lower than the frame plate equivalent part, the weight plate part equivalent part that eventually becomes the weight plate part,
The glass plate is formed with a central support portion protruding from the peripheral frame portion and the cross-shaped cross portion of the cross-shaped flexible structure portion in the silicon single crystal layer. Are the four tip support portions) After being integrated only on each upper surface, the boundary between the peripheral frame portion equivalent portion and the weight plate equivalent portion of the glass plate regulated to the position overlapping the peripheral frame portion of the silicon single crystal layer, The glass layer composed of the peripheral frame portion and the weight plate portion separated from the peripheral frame portion is formed by performing groove cutting with a dicing saw so that the groove reaches the middle of the peripheral frame portion of the silicon single crystal layer. Form. However, at this stage,
The weight plate portion has not yet achieved a structure supported only by the cross-shaped flexible structure portion.
【0023】ガラス板は、その裏面に、前記したシリコ
ン単結晶層における下部電極用島部の直上に対応した4
個を上部電極用島部とし、それら個々の上部電極用島部
を裏面中心で通電する通電部となるようにしたパターン
の上部電極層が、予め蒸着、形成されていなければなら
ず、先の工程で積層、一体化されているシリコン単結晶
層上に接合される際には、該ガラス板の裏面に形成した
上部電極層の通電部は、シリコン単結晶層に置ける十字
形可撓構造部の平面十字形交差部に突出形成されている
中央支柱部上面に正しく位置したものとして中央支柱部
に対し通電状となるようにするか、あるいは、請求項3
に対応させた構成のものでは、それら通電部が、4個の
先端支柱部状面に位置するようにして各先端支柱部に通
電状とした上、上部電極層における各上部電極用島部
が、その下方に所定の計画された間隔を置いて、シリコ
ン単結晶層における各対応する下部電極用島部の直上に
対向状となるようにする。The glass plate has, on its back surface, a portion corresponding to the portion immediately above the lower electrode island portion in the silicon single crystal layer.
The upper electrode layer having a pattern in which each of them is an upper electrode island portion, and the upper electrode layer in such a manner that each of the upper electrode island portions becomes an energizing portion for energizing at the center of the back surface, must be previously deposited and formed. When bonded on the silicon single crystal layer laminated and integrated in the process, the current-carrying portion of the upper electrode layer formed on the back surface of the glass plate is a cross-shaped flexible structure portion that can be placed on the silicon single crystal layer. 4. The central support portion, which is positioned correctly on the upper surface of the central support portion protrudingly formed at the plane cross-shaped cross section, is energized with respect to the central support portion.
In the configuration corresponding to the above, the current-carrying portions are located on the four tip-post-shaped surfaces so as to be energized to each tip-post, and each upper-electrode island in the upper electrode layer is At a predetermined planned interval below the lower electrode islands, the silicon single crystal layers are opposed to each other just above the corresponding lower electrode islands.
【0024】この工程で特に重要な部分は、ガラス板接
合、一体化後において実施されるダイシングソーによる
ガラス板所定位置での溝切り加工であって、該溝切り
は、シリコン単結晶層の周枠部に掛かる位置、換言すれ
ばガラス板の下のシリコン単結晶層の周枠部にも溝切り
され、その溝がシリコン単結晶層の周枠部の中途まで達
してしまう箇所に規制して実施されるようにしなければ
ならず、この規制された箇所で溝切り加工が実施される
ことにより、その過程で発生する裁断屑や冷却水が、こ
の発明のセンサで最も重要な構成部分となる上下部電極
用島部間および十字形可撓構造部内に入り込んで、それ
らの後処理が不可能になることを完璧に阻止できるもの
とする。A particularly important part in this step is a grooving process at a predetermined position of the glass plate by a dicing saw which is performed after the bonding and integration of the glass plates. It is restricted to the position where the frame is hung, in other words, the peripheral frame portion of the silicon single crystal layer under the glass plate is also grooved, and the groove reaches the middle of the peripheral frame portion of the silicon single crystal layer. When the grooving process is performed at this restricted place, cutting chips and cooling water generated in the process are the most important components of the sensor of the present invention. It is possible to completely prevent the post-processing from being impossible between the upper and lower electrode islands and the cross-shaped flexible structure.
【0025】この段階では、ガラス板自体は、周枠部と
その内側の錘板部とに分離されて、それらが独立して層
を成すガラス層に一応形成された状態を実現し得たもの
となるが、上記溝切り加工による溝は、シリコン単結晶
層における周枠部の中途、最適には、この後の工程で同
所の切り離しのために実施されるドライエッチング加工
に最適な厚さ(加工可能最大値よりやや薄い、破損して
しまうことのない最小の厚さ)が残される部分に止まっ
ていて、したがって、その残された部分でガラス層にお
ける錘板部周縁下方に接合状となっているシリコン単結
晶層の周枠部の一部が連続した状態となるため、まだシ
リコン単結晶層における十字形可撓構造部の支柱部上端
だけで支持された最終的な錘板部の構造は実現されてい
ない。At this stage, the glass plate itself is separated into a peripheral frame portion and a weight plate portion inside the peripheral frame portion, and it is possible to realize a state in which they are temporarily formed on a glass layer which independently forms a layer. However, the grooves formed by the above-mentioned grooving process have an optimum thickness in the middle of the peripheral frame portion in the silicon single crystal layer, and optimally for a dry etching process to be performed for the same location in a subsequent process. (Slightly thinner than the maximum value that can be processed, the minimum thickness that will not break) is left at the part where it is left. Since a part of the peripheral frame portion of the silicon single crystal layer is continuous, the final weight plate portion still supported only by the upper end of the pillar portion of the cross-shaped flexible structure portion in the silicon single crystal layer The structure has not been realized.
【0026】[第4工程]上記工程における溝きり加工
で残されたシリコン単結晶層周枠部の溝以下のシリコン
単結晶材を、異方性ドライエッチング加工により、完全
に貫通状とし、シリコン単結晶層周枠部の内側部分が、
ガラス層の錘板部外周下面に分離され、宙吊り状とした
構造に加工してしまうことにより、シリコン単結晶層周
枠部の上にガラス層周枠部が断面的に上下に連続、一体
化した構造ものに形成してしまった後、該ガラス層周枠
部上面だけを接合部としてシリコン単結晶カバー板を一
体的に被冠する。[Fourth Step] The silicon single crystal material below the groove in the peripheral portion of the silicon single crystal layer left by the grooving in the above step is completely penetrated by anisotropic dry etching, The inner part of the single crystal layer frame is
Separated on the lower surface of the outer periphery of the weight plate portion of the glass layer, and processed into a suspended structure, the peripheral frame portion of the glass layer is continuous and integrated vertically on the peripheral portion of the silicon single crystal layer. After the formation, the silicon single crystal cover plate is integrally covered with only the upper surface of the glass layer peripheral frame portion as a bonding portion.
【0027】この工程によって、初めてガラス層におけ
る錘板部は、シリコン単結晶層における十字形可撓構造
部の中央支柱部上端か、請求項3に対応させた構造とし
たものでは4個の先端支柱部各上端の何れかだけで支持
された最終的な構造を実現することになり、錘板部の自
重およびその重力による加速度が、十字形可撓構造部の
中央支柱部あるいは4個の先端支柱部を通して、それら
から十文字状に延びる梁構造薄肉部に伝わる構造を実現
することになり、これらこの発明で欠くことができない
検知部を構成する上部電極用島部と下部電極用島部とが
所定間隔に正確に確保されてなる構造、および十字形可
撓構造部の中央支柱部あるいは4個の先端支柱部に錘板
部の中心あるいは四方が支持されてなる構造が実現さ
れ、しかも、シリコン単結晶カバー板が被冠され、最下
層のベース板との間でパッケージ構造、所謂、製造段階
で裁断屑や水分等を紛れ込ませたり、それらを除去する
作業を必要としない構造のセンサを実現することとな
る。According to this step, for the first time, the weight plate portion in the glass layer is the upper end of the central support portion of the cross-shaped flexible structure portion in the silicon single crystal layer, or four tips in the structure according to claim 3. The final structure supported by only one of the upper ends of the strut portions is realized, and the weight of the weight plate portion and the acceleration due to its gravity are reduced by the central strut portion of the cross-shaped flexible structure portion or the four tip ends. Through the pillars, a structure is formed that transmits to the beam structure thin portion extending in a cross shape from them, and the upper electrode islands and the lower electrode islands that constitute the detection unit indispensable in the present invention are formed. A structure in which the center or four sides of the weight plate portion is supported by the center support or the four end supports of the cruciform flexible structure is realized at a predetermined interval. A single crystal cover plate is covered and a sensor with a package structure between the bottom layer and the base plate, that is, a structure that does not require cutting chips or moisture to enter or remove them at the manufacturing stage. Will be done.
【0028】[第5工程]上記のようにして積層、一体
化されたパッケージ構造の最下層であるベース板に予め
穿設されている通孔に信号取出し用リード線を接続して
しまえば、この発明のパッケージ構造3軸センサが完成
する。なお、効率的な製造方法となる1単位体のシリコ
ン単結晶層が複数枚取りされるようにしたシリコンウェ
ハを採用し、各層共それに合わせたものとして順次層構
成を進め、最後に1単位体毎に切断、分離する製造方法
によるものの場合にあっては、ベース板上に順次積層、
一体化された所定構造のシリコン単結晶層、ガラス層お
よびシリコン単結晶カバー板からなる1単位体毎のセン
サの外周輪郭に合わせ、ダイシングソーでまとめて裁
断、分離する工程が必要となる。以下、上記したこの発
明のパッケージ構造3軸加速度センサとその製造方法と
を具体的な例に従って詳述することにする。[Fifth Step] If a signal extraction lead wire is connected to a through hole previously formed in the base plate which is the lowermost layer of the package structure laminated and integrated as described above, The package structure three-axis sensor of the present invention is completed. It is to be noted that a silicon wafer in which a plurality of single-unit silicon single-crystal layers are taken as an efficient manufacturing method is adopted, and the layers are sequentially adapted to each layer, and the layer structure is sequentially advanced. In the case of the production method of cutting and separating each time, it is sequentially laminated on the base plate,
It is necessary to perform a process of cutting and separating the whole by using a dicing saw in accordance with the outer peripheral contour of the sensor for each unit composed of the integrated silicon single crystal layer, glass layer and silicon single crystal cover plate having a predetermined structure. Hereinafter, the package structure three-axis acceleration sensor of the present invention and a method of manufacturing the same will be described in detail with reference to specific examples.
【0029】[0029]
【実施例1】図1の分解斜視図、および図2の一部断面
と破断面を含む要部斜視図とに示されている実施例は、
請求項2に対応した構成からなるものであり、この実施
例のパッケージ型3軸加速度センサは、全体形状が、例
えば平面形で8ミリ角前後、厚さで1◆前後となるよう
なものとして形成されることの多い、極めて小型のもの
であり、下からベース板1、シリコン単結晶層2、ガラ
ス層3およびシリコン単結晶カバー板4のパッケージ構
造を構成する各層の材厚は、夫々 0.3ミリ前後といった
極めて薄い素材が採用されることになり、個々の素材強
度は非常に破損し易く、取り扱いに最新の注意を要する
ものとなることから、従前までの製造法よって、それま
でに提案されている構造のセンサを実現しようとした場
合、その製品歩留まりは必然的に悪いものとならざるを
得なかったといえる。Embodiment 1 The embodiment shown in the exploded perspective view of FIG. 1 and the main part perspective view including a partial cross section and a broken cross section of FIG.
The package-type three-axis acceleration sensor according to the present embodiment has a configuration in which the overall shape is, for example, about 8 mm square in a plane shape and about 1 mm in thickness. Each of the layers constituting the package structure of the base plate 1, the silicon single crystal layer 2, the glass layer 3, and the silicon single crystal cover plate 4 has a thickness of 0.3 from the bottom. Ultra-thin materials such as around millimeters will be adopted, and the strength of each material will be extremely fragile, requiring the latest attention to handling.Therefore, it has been proposed by the conventional manufacturing method until then. It can be said that the product yield was necessarily inferior when trying to realize a sensor having the above structure.
【0030】この実施例のものでは、後述するシリコン
単結晶層2における下部電極用島部21および先端支柱
部23各下面に覆われる箇所に規制して穿設されたリー
ド線配線用の通孔11,11,……、および12を有す
る正方形のベース板1周縁上に、シリコン単結晶層2の
周枠部25とガラス層3の周枠部32とを上下に接合、
一体化して、断面的に上下に繋がった周枠を形成し、該
周枠の内側にシリコン単結晶層2における下部電極用島
部21、および先端支柱部23と中央支柱部22、それ
らを繋ぐ梁構造薄肉部24とからなる十字形可撓構造部
が略田の字形配置となるように規制された配置で、前記
ベース板1上に接合、一体化されると共に、シリコン単
結晶層2の十字形可撓構造部における中央支柱部22の
上面に、ガラス層3の錘板部31裏面中央を接合、支持
する如くして配する。In this embodiment, a through hole for a lead wire is formed by restricting a portion of the silicon single crystal layer 2 to be covered by the lower electrode island 21 and the tip support 23, which will be described later. The peripheral frame 25 of the silicon single crystal layer 2 and the peripheral frame 32 of the glass layer 3 are vertically joined on the peripheral edge of the square base plate 1 having 11, 11,...
Integrally forming a peripheral frame which is connected vertically in the cross section, and the lower electrode island portion 21 in the silicon single crystal layer 2 and the tip support portion 23 and the central support portion 22 are connected inside the peripheral frame. The cruciform flexible structure comprising the beam structure thin portion 24 is joined to and integrated with the base plate 1 in an arrangement regulated so as to have a substantially cross-shaped arrangement. The center of the back surface of the weight plate portion 31 of the glass layer 3 is disposed on the upper surface of the central support portion 22 in the cross-shaped flexible structure so as to be joined and supported.
【0031】上記の錘板部31の裏面には、図1の分解
図に示されているように、予めシリコン単結晶層2の十
字形可撓構造部における下部電極用島部21の直上に対
応する位置に配される上部電極用島部41,41,……
と、それらを中央で接続する通電部42とからなるパタ
ーンの上部電極層4が、蒸着あるいは印刷等の手段で形
成されてあり、シリコン単結晶層2の十字形可撓構造部
における中央支柱部22に電気的に接続した構造となる
ことにより、十字形可撓構造部の梁構造薄肉部24、先
端支柱部23、そしてその下面に接続される信号取出し
用リード線を通じ、下部電極用島部21との間の静電容
量の変化で錘板部31の移動量に演算した上、その加速
度を検出するようにする演算装置の回路に組み込まれる
ことになる。As shown in the exploded view of FIG. 1, the back surface of the weight plate portion 31 is directly above the lower electrode island portion 21 in the cross-shaped flexible structure portion of the silicon single crystal layer 2 in advance. Upper electrode islands 41, 41,... Arranged at corresponding positions.
The upper electrode layer 4 is formed by means of vapor deposition, printing, or the like, and is formed by a means such as vapor deposition or printing, and a central support portion in the cross-shaped flexible structure portion of the silicon single crystal layer 2. 22 is electrically connected to the lower electrode island portion through the thin beam portion 24 of the cross-shaped flexible structure portion, the tip support portion 23, and the signal extraction lead wire connected to the lower surface thereof. The amount of movement of the weight plate portion 31 is calculated based on a change in the capacitance between the weight plate 21 and the weight of the weight plate portion 31, and then the acceleration is detected and incorporated into a circuit of a calculation device.
【0032】なお、錘板部31は、その上面がガラス層
3における周枠部32の上面より低く形成されていて、
それ自体、裏面中央を中央支柱部22で支持されている
以外、接触部はなく、ガラス層3における周枠部32の
上面に接合されるシリコン単結晶カバー板5下方であっ
て周枠部32に囲まれた空間内360度の範囲に亘っ
て、外部からの作用による重力の加速度を受けることが
できる構造を実現している。The upper surface of the weight plate portion 31 is formed lower than the upper surface of the peripheral frame portion 32 in the glass layer 3.
In itself, there is no contact portion except that the center of the back surface is supported by the central support portion 22, and the lower portion of the silicon single crystal cover plate 5 joined to the upper surface of the peripheral frame portion 32 in the glass layer 3 and the peripheral frame portion 32 A structure capable of receiving the acceleration of gravity due to the action from the outside over a range of 360 degrees in the space surrounded by.
【0033】[0033]
【実施例2】次ぎに、図3の分解斜視図、および図4の
一部断面と破断面を含む要部斜視図とに示されている請
求項3に対応した構成からなる実施例ついて説明する
と、錘板部31の支持構造が先の実施例1におけるもの
と異なる構造としたものの代表的な事例であり、即ち、
信号取出し用リード線の通孔11,11,……、および
12を有する正方形のベース板1周縁上に、シリコン単
結晶層2の周枠部25とガラス層3の周枠部32とを上
下に接合、一体化して、断面的に上下に繋がった周枠を
形成し、該周枠の内側にシリコン単結晶層2の下部電極
用島部21、および先端支柱部23と中央支柱部22、
それらを繋ぐ梁構造薄肉部24とからなる十字形可撓構
造部が略田の字形配置となるように規制された配置で、
前記ベース板1上に接合、一体化されると共に、シリコ
ン単結晶層2の十字形可撓構造部における4個の尖端支
柱部22の上面に、ガラス層3の錘板部31裏面四方を
接合、支持する如くして配する。Second Embodiment Next, a description will be given of an embodiment having a configuration corresponding to claim 3 shown in an exploded perspective view of FIG. 3 and a perspective view of a main part including a partial cross section and a broken cross section of FIG. Then, this is a typical case in which the supporting structure of the weight plate portion 31 is different from that in the first embodiment, that is,
The peripheral frame 25 of the silicon single crystal layer 2 and the peripheral frame 32 of the glass layer 3 are vertically mounted on the peripheral edge of the square base plate 1 having the through holes 11, 11,... To form a peripheral frame connected vertically in the cross-section, and the lower electrode island portion 21 of the silicon single crystal layer 2, the tip support portion 23 and the central support portion 22 inside the peripheral frame.
A cross-shaped flexible structure composed of a beam structure thin portion 24 connecting them has an arrangement regulated so as to have a substantially cross-shaped arrangement,
It is bonded and integrated on the base plate 1, and the back surface of the weight plate portion 31 of the glass layer 3 is bonded to the upper surface of the four sharp support portions 22 in the cross-shaped flexible structure portion of the silicon single crystal layer 2. , So that they are supported.
【0034】上記の錘板部31の裏面には、図1の分解
図に示されているように、予めシリコン単結晶層2の十
字形可撓構造部における下部電極用島部21の直上に対
応する位置に配される上部電極用島部41,41,……
と、それらを外周辺りで接続する通電部42とからなる
パターンの上部電極層4が、蒸着あるいは転写等の手段
で形成してあり、十字形可撓構造部における4個の尖端
支柱部22の中の少なくとも何れか一つに電気的に接続
した構造となることにより、十字形可撓構造部の梁構造
薄肉部24、中央支柱部23、そしてその下面に接続さ
れるリード線5を通じ、前記した実施例1同様、その加
速度を検出するようにする演算装置の回路に組み込まれ
ることになる。As shown in the exploded view of FIG. 1, the back surface of the weight plate portion 31 is directly above the lower electrode island portion 21 in the cross-shaped flexible structure portion of the silicon single crystal layer 2 in advance. Upper electrode islands 41, 41,... Arranged at corresponding positions.
The upper electrode layer 4 is formed by means of vapor deposition or transfer or the like, and is formed by means of vapor deposition or transfer. By being electrically connected to at least any one of the above, the beam structure thin portion 24 of the cross-shaped flexible structure portion, the central support portion 23, and the lead wire 5 connected to the lower surface thereof, Similarly to the first embodiment, the acceleration is incorporated in a circuit of an arithmetic unit for detecting the acceleration.
【0035】[0035]
【実施例3】上記のような構造に形成されるこの発明の
パッケージ型3軸加速度センサの構造は、以下のような
特徴ある製造工程(但し、請求項2に対応する)によっ
て実現されるものである。即ち、数次のエッチング加工
によって図5のaに示されている構造とした全体平面形
で略田の字形に刻設されてなる一枚板状のシリコン単結
晶基板を形成しておき、同図bの如く、該シリコン単結
晶基板を、予め所定の位置に通孔11,11,……、お
よび12の穿設されたベース板1上に載置し、それらシ
リコン単結晶基板の中の周枠部相当部25a下面、各下
部電極用島部相当部21a,21a,……下面、および
十字形可撓構造部の各先端支柱部相当部23a,23
a,……下面だけをベース板1に対して、陽極接合その
他の手段等によって接合、一体化する第1工程。Embodiment 3 The structure of the package type three-axis acceleration sensor of the present invention formed as described above is realized by the following characteristic manufacturing process (corresponding to claim 2). It is. That is, a single-plate-shaped silicon single crystal substrate engraved in a substantially rectangular cross-section in the overall plane shape having the structure shown in FIG. As shown in FIG. B, the silicon single crystal substrate is placed on a base plate 1 in which through holes 11, 11,... The lower surface of the peripheral frame portion-equivalent portion 25a, the lower electrode island-equivalent portions 21a, 21a,..., The lower surface, and the tip support portions 23a, 23 of the cross-shaped flexible structure portion
a, a first step of bonding and integrating only the lower surface to the base plate 1 by anodic bonding or other means;
【0036】なお、図示にはしていないが、この工程に
おける一枚板状のシリコン単結晶基板は、1枚のシリコ
ンウェハに転写によって同時に9枚が正確な位置に形成
されるようにし、以下の工程を順次経過してベース板
1、シリコン単結晶層2、ガラス3、およびシリコン単
結晶カバー板5が正確に積層、一体化されてしまった後
の最後の段階で、1単位体ずつ切断して完成品に形成さ
れるようにした実施例によって得られたものを、便宜的
に1単位体として示したものである。また、単位体個々
の一枚板状のシリコン単結晶基板が有する各部、即ち最
終構造で周枠部25となる周枠部相当部25a、下部電
極用島部21となる下部電極用島部相当部21a、十字
形可撓構造部における先端支柱部23および中央支柱部
22となる先端支柱部相当部23aおよび中央支柱部相
当部22a、およびそれらの間に残る梁構造薄肉部24
の関係は、前記基本的な構成を説明する箇所で示した関
係に形成されている。Although not shown in the drawing, nine single silicon single crystal substrates in this step are simultaneously transferred to a single silicon wafer so as to be formed at correct positions on one silicon wafer. In the last stage after the base plate 1, the silicon single crystal layer 2, the glass 3, and the silicon single crystal cover plate 5 are accurately laminated and integrated, and cut one unit at a time. What is obtained by the embodiment which is formed into a finished product is shown as one unit for convenience. Further, each part of the single plate-shaped silicon single crystal substrate of each unit body, that is, a peripheral frame portion equivalent portion 25a which becomes the peripheral frame portion 25 in the final structure, and a lower electrode island portion which becomes the lower electrode island portion 21 Part 21a, a tip strut portion 23a and a center strut equivalent portion 22a to be the tip strut portion 23 and the center strut portion 22 in the cross-shaped flexible structure portion, and the beam structure thin portion 24 remaining therebetween.
Is formed in the relationship described in the section describing the basic configuration.
【0037】上記のようにして所定構造で一枚板状のシ
リコン単結晶基板が、ベース板1面上に接合、一体化さ
れた後、異方性ドライエッチングにより、シリコン単結
晶基板の中の、周枠部相当部25aとその内側各部相当
部との間、および平面十字形十字形可撓構造部相当部の
外周と下部電極用島部相当部21aとの間の各薄肉部を
削除して、ベース板1上に一体化された周枠部25、そ
の内側の4個の下部電極用島部21およびそれら4個の
下部電極用島部21の間に位置する十字形可撓構造部
が、個々に独立した構成部に分離されて、それまで一枚
板状であったシリコン単結晶基板から、シリコン単結晶
製の幾つかの構成部ブロックが、規制された関係でベー
ス板上に配置、一体化されてなるシリコン単結晶層2に
加工、形成してしまう第2工程。After a single-plate silicon single crystal substrate having a predetermined structure is bonded and integrated on one surface of the base plate as described above, anisotropic dry etching is performed on the silicon single crystal substrate. The thin portions between the peripheral frame portion 25a and the corresponding portions on the inner side thereof, and between the outer periphery of the flat cross-shaped cross-shaped flexible structure portion and the lower electrode island portion 21a are removed. The peripheral frame 25 integrated on the base plate 1, the four lower electrode islands 21 inside thereof, and the cross-shaped flexible structure located between the four lower electrode islands 21 However, from the single-crystal silicon single-crystal substrate that had been separated into individual components, several single-crystal silicon component blocks were placed on the base plate in a regulated relationship. It is processed and formed into a silicon single crystal layer 2 that is arranged and integrated. The second step.
【0038】その結果、十字形可撓構造部の、交差部に
形成されている中央支柱部22と同十字形縦横各先端に
形成されている4個の先端支柱部23,23,……との
間の薄肉部だけが残って梁構造薄肉部24,24,……
を構成し、4個の先端支柱部23,23,……個々から
中央支柱部22を支える形で延びる梁構造薄肉部24,
24,……は、各先端支柱部23,23,……個々に対
してカンテリバー構造となって、これら中央支柱部22
に加わる、後述の第3、第4工程で組み合わされる錘板
部31からの重力の加速度によって微妙に変形可能な構
造を実現するものである。As a result, the center support portion 22 formed at the intersection of the cross-shaped flexible structure portion and the four front-end support portions 23, 23,. Only the thin portion between the two remains, and the beam structure thin portion 24, 24,...
, A beam-structure thin portion 24 extending from each of the four end support portions 23, 23,.
.. Have a cantilever structure with respect to each of the tip support portions 23, 23,.
And a structure that can be delicately deformed by the acceleration of gravity from the weight plate portion 31 combined in the third and fourth steps described later.
【0039】第2工程により一体形成されたシリコン単
結晶層2の上に、図5dのように、予めシリコン単結晶
層2全体を覆い尽くす平面形を有し、表面側が、最終的
に周枠部32となる周枠部相当部32aよりも、最終的
に錘板部31となる錘板部相当部31aを低くエッチン
グ加工してなるガラス板を載置した上、該ガラス板を、
シリコン単結晶層2における周枠部25および十字形可
撓構造部の平面十字形交差部に突出形成されている中央
支柱部22各上面だけに一体化した後、シリコン単結晶
層2の周枠部25に掛かる位置に規制されたガラス板に
おける周枠部相当部32aと錘板部相当部31aとの境
界を、ダイシングソーにより溝切り加工して、その溝3
4がシリコン単結晶層2の周枠部25の中途にまで達し
させたものとすることにより、周枠部32とそれから分
離された錘板部31とからなるガラス層3を形成する第
3工程。On the silicon single crystal layer 2 integrally formed in the second step, as shown in FIG. 5D, the silicon single crystal layer 2 has a planar shape which covers the entire silicon single crystal layer 2 in advance, and the front side is finally formed as a peripheral frame. A glass plate obtained by etching a lower portion of the weight plate portion 31a that eventually becomes the weight plate portion 31 than the peripheral frame portion equivalent portion 32a that becomes the portion 32 is placed, and the glass plate is
The peripheral frame 25 of the silicon single crystal layer 2 and the central support 22 protruding from the plane cross-shaped intersection of the cross-shaped flexible structure are integrated only on the upper surfaces of the silicon single crystal layer 2, respectively. The boundary between the peripheral frame portion equivalent portion 32a and the weight plate portion equivalent portion 31a of the glass sheet regulated to the position where the portion extends over the portion 25 is grooved by a dicing saw, and the groove 3 is formed.
The fourth step is to form the glass layer 3 composed of the peripheral frame part 32 and the weight plate part 31 separated therefrom by making the metal element 4 reach the middle of the peripheral frame part 25 of the silicon single crystal layer 2. .
【0040】同図が示しているとおり、錘板部相当部3
1aは、その周縁裏面に接合しているシリコン単結晶層
2の周枠部25が、上記溝34の下部で繋がった構造で
あって、該溝34がシリコン単結晶層2における周枠部
25および十字形可撓構造部側の空間に通じていないた
め、この工程によるダイシング加工時の加工屑や冷却水
等をそれらの空間に一切入り込ませないで、この工程の
加工が実施できることとなる。なお、この工程で使用す
るガラス板は、その裏面に、予め前記したシリコン単結
晶層における下部電極用島部21,21,……の直上に
対応した4個を上部電極用島部41,41,……とし、
それら個々の上部電極用島部41,41,……を裏面中
心で通電する通電部42,42,……となるようにした
パターンの上部電極層4が、予め蒸着、形成されていな
ければならない。図中、26は、シリコン単結晶層2の
下部電極用島部21に形成した錘板部31の下方側への
変位を規制する小突部であり、33は、同上方側への変
位を規制するために錘板部31自身の表面に形成した小
突部を示しており、夫々のエッチング加工工程の中で形
成されるものである。As shown in the figure, the weight plate portion 3
1a is a structure in which the peripheral frame portion 25 of the silicon single crystal layer 2 joined to the peripheral back surface is connected below the groove 34, and the groove 34 is connected to the peripheral frame portion 25 of the silicon single crystal layer 2; Further, since the space does not communicate with the space on the side of the cross-shaped flexible structure portion, the processing in this step can be performed without any processing waste, cooling water, and the like during dicing in this step entering the space. In the glass plate used in this step, four pieces corresponding to immediately above the lower electrode islands 21, 21,. ,……age,
The upper electrode layer 4 having a pattern in which each of the upper electrode islands 41, 41,... Becomes a current-carrying portion 42, 42,. . In the figure, reference numeral 26 denotes a small protrusion which regulates the downward displacement of the weight plate portion 31 formed on the lower electrode island portion 21 of the silicon single crystal layer 2, and 33 designates the upward displacement. The small protrusions formed on the surface of the weight plate portion 31 itself for regulation are shown in each etching process.
【0041】上記第3工程における溝きり加工で残され
たシリコン単結晶層周枠部の溝以下のシリコン単結晶材
を、異方性ドライエッチング加工により、完全に貫通状
とし、シリコン単結晶層周枠部25の内側部分が、ガラ
ス層3の錘板部31の外周下面に分離され、図5eに示
されているように宙吊り状とした構造に加工してしまう
ことにより、シリコン単結晶層周枠部25の上にガラス
層周枠部32が断面的に上下に連続、一体化した構造も
のに形成した後、該ガラス層周枠部32上面だけを接合
部としてシリコン単結晶カバー板5を一体的に被冠する
第4工程。その結果、ガラス層3における錘板部31
が、シリコン単結晶層2の十字形可撓構造部における中
央支柱部22上端だけで支持された最終的な構造を実現
することになり、錘板部31の自重は、十字形可撓構造
部の中央支柱部22を通して、それらから十文字状に延
びるシリコン単結晶梁構造薄肉部24に伝わる構造が実
現される。The silicon single crystal material below the groove in the peripheral portion of the silicon single crystal layer left by the grooving in the third step is completely penetrated by anisotropic dry etching to form a silicon single crystal layer. The inner portion of the peripheral frame portion 25 is separated into the lower surface of the outer periphery of the weight plate portion 31 of the glass layer 3 and is processed into a suspended structure as shown in FIG. After the glass layer peripheral frame part 32 is formed on the peripheral frame part 25 to have a structure in which the glass layer peripheral frame part 32 is continuous and integrated vertically and integrally, the silicon single crystal cover plate 5 is formed by using only the upper surface of the glass layer peripheral frame part 32 as a bonding part. A fourth step of integrally covering with As a result, the weight plate portion 31 in the glass layer 3
Realizes a final structure supported only by the upper end of the central support portion 22 in the cross-shaped flexible structure portion of the silicon single crystal layer 2, and the weight of the weight plate portion 31 is reduced by the cross-shaped flexible structure portion. Through the central support portion 22 of this embodiment, the structure is transmitted to the silicon single crystal beam structure thin portion 24 extending in a cross shape therefrom.
【0042】上記のようにして積層、一体化されたパッ
ケージ構造の最下層であるベース板1に予め穿設されて
いる通孔11,11,……、および12に信号取出し用
リード線6,6,……を接続する第5工程。このリード
線6,6,……を接続する工程に先立ち、ベース板1の
通孔11,11,……、および12を含むベース板1部
分には通電用のAl蒸着層を形成したものとしておき、
同所にリード線6の一端部をハンダ付けしてこの工程を
実施する。そして、最後に、複数枚取りされるようにし
たシリコンウェハを採用して、順次上記までの製造工程
を進めてきた後、ダイシングソーでまとめて1単位体毎
に切断、分離して、ベース板1上に所定構造に形成され
たシリコン単結晶層2、ガラス層3、上部電極層4およ
びシリコン単結晶カバー板5が積層、パッケージされた
この発明のパッケージ型3軸加速度センサを完成する。.., And 12 previously drilled in the base plate 1, which is the lowermost layer of the package structure laminated and integrated as described above, lead wires 6 for signal extraction. The fifth step of connecting 6,... Prior to the step of connecting the lead wires 6, 6,..., The base plate 1 including the through holes 11, 11,. Every
This step is performed by soldering one end of the lead wire 6 to the same place. Finally, a plurality of silicon wafers are taken, and the above-described manufacturing process is sequentially performed. After that, the wafers are cut and separated into one unit by a dicing saw, and the base plate is separated. 1. A package type three-axis acceleration sensor of the present invention in which a silicon single crystal layer 2, a glass layer 3, an upper electrode layer 4, and a silicon single crystal cover plate 5 formed in a predetermined structure are stacked and packaged on 1 is completed.
【0043】[0043]
【作用効果】以上のようにして製造されるこの発明のパ
ッケージ型3軸加速度センサは、各種用途のロボットそ
の他の自動機械装置等に組み込まれ、それら機械装置自
身あるいはそれらを構成する各部部品の移動に伴う加速
度の変化で、センサ内の検知部であるガラス層3の錘板
部31に重力の加速度が加わり、それが同十字形可撓構
造部のシリコン単結晶製梁構造薄肉部24,24,……
に対して外力として作用して夫々敏感に撓み現象を惹起
させることから、その撓みに連動して錘板部31自体の
シリコン単結晶層2に対する相対位置が水平面内で変化
する。その結果、錘板部31の裏面に蒸着されている上
部電極層4における上部電極用島部41,41,……の
下部電極用島部21,21,……に対する上下相対位置
関係が当然に変化して両者間のギャップに変化を生じ、
そのギャップの変化に呼応した静電容量の変化を捕ら
え、電気信号に変換して検知した上、演算回路でそれら
の値から機械装置あるいは部品等物体の3軸加速度を正
確に検出するようにするものである。The package-type three-axis acceleration sensor of the present invention manufactured as described above is incorporated in a robot or other automatic machine for various uses, and moves the machine itself or each component constituting the machine. With the change in acceleration accompanying with the above, a gravitational acceleration is applied to the weight plate portion 31 of the glass layer 3 which is a detection portion in the sensor, and this is the silicon single crystal beam structure thin portions 24 of the same cross-shaped flexible structure portion. , ……
Act as an external force to cause a sensitive bending phenomenon, so that the relative position of the weight plate portion 31 itself to the silicon single crystal layer 2 changes in a horizontal plane in conjunction with the bending. As a result, the upper and lower relative positions of the upper electrode islands 41, 41,... With respect to the lower electrode islands 21, 21,. Change, causing a change in the gap between the two,
The change in capacitance corresponding to the change in the gap is captured, converted into an electric signal and detected, and the arithmetic circuit is used to accurately detect the three-axis acceleration of the object such as a machine or a component from the value. Things.
【0044】このように極めて鋭敏且つ正確に作用する
この発明のパッケージ構造3軸センサは、シリコン単結
晶層2を構成する下部電極用島部21、および先端支柱
部23と中央支柱部22、それらを繋ぐ梁構造薄肉部2
4とからなる十字形可撓構造部が、その構成を実現する
前の段階で、下部電極用島部相当部21a、および先端
支柱部相当部23aと中央支柱部相当部22a、それら
を繋ぐ薄肉部とからなる十字形可撓構造部相当部となる
ようエッチング加工した一枚板状のシリコン単結晶基板
所要部をベース板1上に接合、一体化して壊れ難い状態
を確保した上、シリコン単結晶基板自体の加工、および
その上に接合されるガラス層3と合わせた加工を実施す
るという特徴ある製造方法によって実現されるものとし
たことから、極めて薄くて壊れ易いシリコン単結晶層各
部の構造が、極めて安全、正確に形成され、しかも、特
徴ある工程を経て製造するものとしたことから、工程中
に加工屑等が要部に入り込んで不良品となってしまう確
率もかなりの割合で低減化することができ、したがっ
て、信頼性の高いセンサを高い歩留まりで得ることがで
きるものとなり、各種用途の3軸センサとしての採用が
極めてし易いものになるという優れた効果を奏するもの
である。As described above, the package structure triaxial sensor of the present invention, which operates extremely sensitively and accurately, comprises the island 21 for the lower electrode constituting the silicon single crystal layer 2, the tip support 23 and the center support 22, Thin section 2 connecting beams
Before the cross-shaped flexible structure portion 4 is realized, the portion corresponding to the lower electrode island portion 21a, the tip support portion portion 23a and the center support portion 22a, and a thin wall connecting them A required portion of a single-plate silicon single crystal substrate, which has been etched so as to correspond to a cross-shaped flexible structure portion composed of a silicon substrate, is joined to the base plate 1 to secure a hard-to-break state. The structure of each part of the silicon single crystal layer, which is extremely thin and fragile, is realized by a characteristic manufacturing method in which processing of the crystal substrate itself and processing combined with the glass layer 3 bonded thereon are performed. However, it is extremely safe, accurately formed, and manufactured through a characteristic process.Therefore, there is a considerable probability that processing waste etc. will enter defective parts during the process and become defective. Therefore, a highly reliable sensor can be obtained at a high yield, and an excellent effect that it becomes extremely easy to adopt the sensor as a three-axis sensor for various uses can be obtained. .
【0045】これらの効果は、従前までの、シリコン単
結晶板を微細な形状に加工した後、ガラスを接合するよ
うにしたり、重りを形成する初期段階でダイシングを実
施し、最終工程でドライエッチングを施すようにしたも
のに比較し、高く評価されなければならないものであ
り、しかも、パッケージ型3軸加速度センサは、交差し
た可撓構造構造からなる検知部を採用した3軸加速度セ
ンサであって、構造上からも、従前までのダイヤフラム
構造のものに比較し、3軸感度の揃う安定したものとす
ることができ、信頼性が高いセンサを実現している上、
製造工程中でも補強、保護板の役目を果たすベース板1
およびカバー板5が、検知部を覆い尽くすパッケージ型
構造のセンサとなって、より信頼性の高い構造を実現し
得るものとなっている。These effects are obtained by processing a silicon single crystal plate into a fine shape, performing dicing at the initial stage of joining glass or forming a weight, and performing dry etching at the final process. The package-type three-axis acceleration sensor is a three-axis acceleration sensor that employs a detection unit having a crossed flexible structure structure. From a structural point of view, compared to the conventional diaphragm structure, a three-axis sensitivity can be made stable and stable, and a highly reliable sensor can be realized.
Base plate 1 that functions as a reinforcement and protection plate even during the manufacturing process
In addition, the cover plate 5 serves as a package-type sensor that covers the detection unit, thereby realizing a more reliable structure.
【0046】殊に、各実施例に開示した構造によるパッ
ケージ型3軸加速度センサは、その製造方法が最も効果
的に実施可能なものであって、上記した特徴がより顕著
に発揮されることとなり、しかも、実施例の製造方法で
は、複数個をまとめて製造可能にするという製造効率を
高める効果も付随していることから、精度の高いセンサ
の安定供給が可能になるという実用的な利点も兼備した
ものとなる。叙上の如く、この発明は、その機能上、構
造上で優れた3軸加速度センサを、特徴ある製造方法に
よって効率的且つ安定的に実現できるようにするもので
あり、ロボット化が進む各種機械装置の一層の自動化に
大いに威力を発揮するものとなることが予想されるもの
である。In particular, the package type three-axis acceleration sensor having the structure disclosed in each of the embodiments can be most effectively implemented by the manufacturing method, and the above-mentioned features are more remarkably exhibited. In addition, the manufacturing method of the embodiment also has the effect of increasing the manufacturing efficiency of making it possible to manufacture a plurality of sensors collectively, so that there is also a practical advantage that stable supply of highly accurate sensors becomes possible. It will be combined. As described above, the present invention enables a three-axis acceleration sensor excellent in function and structure to be efficiently and stably realized by a characteristic manufacturing method. It is expected that it will be very effective for further automation of the device.
図面は、この発明を代表する実施例の幾つかを示したに
すぎない。The drawings show only some of the representative embodiments of the present invention.
【図 1】この発明のパッケージ型3軸加速度センサの
分解斜視図である。FIG. 1 is an exploded perspective view of a package type three-axis acceleration sensor of the present invention.
【図 2】同周枠部を省略し、部分的に切開した一部断
面を含む斜視図である。FIG. 2 is a perspective view including a partial cross section in which the peripheral frame portion is omitted and partially cut away.
【図 3】この発明の他の実施例によるパッケージ型3
軸加速度センサの分解斜視図である。FIG. 3 shows a package mold 3 according to another embodiment of the present invention.
It is an exploded perspective view of an axis acceleration sensor.
【図 4】同周枠部を省略し、部分的に切開した一部断
面を含む斜視図である。FIG. 4 is a perspective view including a partial cross section in which the peripheral frame portion is omitted and partially cut away.
【図 5】製造工程を説明するための主要工程段階にお
ける断面図である。FIG. 5 is a cross-sectional view at a main process step for explaining a manufacturing process.
1 ベース板 11 同通孔 12 同通孔 2 シリコン単結晶層 21 同下部電極用島部 21a 同下部電極用島部相当部 22 同中央支柱部 22a 同中央支柱部相当部 23 同先端支柱部 23a 同先端支柱部相当部 24 同梁構造薄肉部 24a 同梁構造薄肉部相当部 25 同周枠部 25a 同周枠部相当部 3 ガラス層 31 同錘板部 32 同周枠部 4 上部電極層 41 同上部電極用島部 42 同通電部 5 シリコン単結晶カバー板 6 リード線 DESCRIPTION OF SYMBOLS 1 Base plate 11 Same through hole 12 Same through hole 2 Silicon single crystal layer 21 Same lower electrode island part 21a Same lower electrode island part 22 Same center support part 22a Same center support part equivalent part 23 Same tip support part 23a Equivalent portion of the same end support portion 24 Thin portion of the same beam structure 24a Thin portion of the same beam structure 25 Same peripheral frame portion 25a Same peripheral frame portion 3 Glass layer 31 Same weight plate portion 32 Same peripheral frame portion 4 Upper electrode layer 41 Upper electrode island 42 Same conducting part 5 Silicon single crystal cover plate 6 Lead wire
───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡 辺 融 山形市沼木字車の前683番地 山形県工 業技術センター内 (72)発明者 中 川 郁太郎 山形市沼木字車の前683番地 山形県工 業技術センター内 (72)発明者 小 林 誠 也 山形市沼木字車の前683番地 山形県工 業技術センター内 (72)発明者 峯 田 貴 山形市沼木字車の前683番地 山形県工 業技術センター内 (72)発明者 渡 部 善 幸 山形市沼木字車の前683番地 山形県工 業技術センター内 (56)参考文献 特開 平6−18552(JP,A) 特開 平4−278464(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/84 G01P 15/125 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Atsushi Watanabe No. 683 in front of Namaki-shaped car in Yamagata City Inside Yamagata Industrial Technology Center (72) Inventor Ikutaro Nakagawa 683 in front of Numaki-shaped car in Yamagata City Yamagata Prefecture Inside the Industrial Technology Center (72) Inventor Seiya Kobayashi 683 in front of Numaki-shaped car in Yamagata City Inside Yamagata Prefecture Industrial Technology Center (72) Inventor Takashi Mineta 683 in front of Numaki-shaped car in Yamagata City Yamagata Prefecture Inside the Industrial Technology Center (72) Inventor Yoshiyuki Watanabe No. 683 in front of Numaki-shaped car in Yamagata City Inside the Yamagata Industrial Technology Center (56) References JP-A-6-18552 (JP, A) JP-A-4- 278464 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 29/84 G01P 15/125
Claims (5)
された周枠部内に、4個の下部電極用島部、および先端
支柱部と中央支柱部、それらを繋ぐ梁構造薄肉部とから
なる十字形可撓構造部が、夫々各下部電極用島部下面、
および十字形可撓構造部の各先端支柱部下面か中央支柱
部下面の何れかだけをベース板面上に接合して配される
と共に、裏面に上部電極層を蒸着した錘板部が、上部電
極層の通電部を含む裏面中心で前記中央支柱部上面に接
合、支持させるか、あるいは上部電極層の通電部を含む
裏面四方で前記先端支柱部各上面に接合、支持させるか
して十字形可撓構造部上に組み合わされ、同じく周枠部
内に配されてなる如くしたパッケージ構造3軸加速度セ
ンサ。In a peripheral frame portion joined and integrated between a base plate and a cover plate, four lower electrode islands, a tip support portion and a center support portion, and a beam structure thin portion connecting them are provided. The cross-shaped flexible structure portion consisting of:
And only one of the lower surface of the tip support portion or the lower surface of the central support portion of the cross-shaped flexible structure portion is disposed on the base plate surface, and the weight plate portion on which the upper electrode layer is vapor-deposited on the back surface has an upper portion. A cross shape is formed by joining and supporting the upper surface of the central support portion at the center of the back surface including the conducting portion of the electrode layer, or by joining and supporting the upper surface of the tip support portion at each of the back surfaces including the conducting portion of the upper electrode layer. A package structure three-axis acceleration sensor combined with a flexible structure part and also arranged in a peripheral frame part.
ー板との間に接合一体化された周枠部内に、シリコン単
結晶層の中の4個の下部電極用島部、およびそれら4個
の下部電極用島部の十字形間隙部分に位置し、先端支柱
部、中央支柱部およびそれらを繋ぐ梁構造薄肉部とから
なる十字形可撓構造部が、全体平面形を略田の字形配置
に分離形成され、それら各部の中の各下部電極用島部下
面、および十字形可撓構造部の各先端支柱部下面か中央
支柱部下面の何れかだけをベース板面上に接合して配さ
れる如くなすと共に、該シリコン単結晶層の中の4個の
下部電極用島部全体を覆い尽くす平面形を有し、その裏
面に、前記下部電極用島部の直上に対応させた4個の上
部電極用島部とそれら個々を繋ぐ通電部とからなる上部
電極層を蒸着した錘板部が、上部電極層の通電部を含む
裏面中心で前記中央支柱部上面に接合、支持させるか、
あるいは上部電極層の通電部を含む裏面四方で前記先端
支柱部各上面に接合、支持させるかして十字形可撓構造
部上に組み合わされ、同じく周枠部内に配されてなる如
くしたパッケージ構造3軸加速度センサ。2. Four lower electrode islands in a silicon single crystal layer and four of them in a peripheral frame joined and integrated between a rectangular base plate and a silicon single crystal cover plate. The cross-shaped flexible structure portion, which is located in the cross-shaped gap portion of the lower electrode island portion and includes the tip support portion, the central support portion, and the thin-walled portion connecting the beams, has an overall planar shape substantially in the shape of a cross. Only the lower surface of the lower electrode island portion in each of these portions and the lower surface of the tip support portion or the lower surface of the central support portion of the cross-shaped flexible structure are joined to the base plate surface. And has a planar shape that covers the entire four lower electrode islands in the silicon single crystal layer, and has four back surfaces corresponding to directly above the lower electrode islands on the back surface thereof. Weight with upper electrode layer consisting of upper electrode islands and current-carrying parts connecting them The plate portion is joined to and supported on the upper surface of the central support portion at the center of the back surface including the conducting portion of the upper electrode layer,
Alternatively, a package structure which is joined to and supported on the upper surface of each of the tip support portions on the four sides on the back surface including the current-carrying portion of the upper electrode layer to be combined with the cross-shaped flexible structure portion and similarly arranged in the peripheral frame portion 3-axis acceleration sensor.
ー板との間に、周枠部、その内側の4個の下部電極用島
部およびそれら4個の下部電極用島部の十字形間隙部分
に位置し、先端支柱部、中央支柱部およびそれらを繋ぐ
梁構造薄肉部とからなる十字形可撓構造部各部が分離形
成されてなる全体平面形を略田の字形配置としたシリコ
ン単結晶層と、該シリコン単結晶層の4個の下部電極用
島部全体を覆い尽くす平面形を有し、その裏面に、前記
下部電極用島部の直上に対応させた4個の上部電極用島
部とそれら個々を繋ぐ通電部とをパターン化してなる上
部電極層を蒸着した錘板部およびその周枠部からなるガ
ラス層とを介在、形成し、ベース板に対し、シリコン単
結晶層の中の周枠部下面、各下部電極用島部下面および
十字形可撓構造部の各先端支柱部下面だけを、そして、
十字形可撓構造部の平面十字形交差部に突出形成した中
央支柱部上面に対し、ガラス層の中の錘板部の上部電極
層の通電部を含む裏面中心だけを、夫々接合、支持され
る如くなす一方、シリコン単結晶カバー板は、シリコン
単結晶層の周枠部上に一体化されたガラス層の中の周枠
部だけに接合、支持させると共に、ベース板に穿設した
通孔を通して各下部電極用島部下面および十字形可撓構
造部の中の少なくとも1個の先端支柱部下面に夫々信号
取出し用リード線を接続してなるパッケージ構造3軸加
速度センサ。3. A cross-shaped gap between a rectangular base plate and a silicon single crystal cover plate, a peripheral frame portion, four lower electrode island portions inside the peripheral frame portion, and the four lower electrode island portions. A single silicon crystal in which a cross-shaped flexible structure portion formed of a tip support portion, a center support portion, and a beam structure thin portion connecting them is separated from each other, and the entire plane is arranged in a generally square shape. Layer, and four upper electrode islands corresponding to immediately above the lower electrode islands on the back surface of the silicon single crystal layer, the planar shape covering the entire four lower electrode islands. A weight plate portion on which an upper electrode layer formed by patterning a portion and a current-carrying portion connecting each of them is deposited and a glass layer composed of a peripheral frame portion are interposed and formed. Of the lower frame, the lower surface of the island for each lower electrode, and the cross-shaped flexible structure. Only the lower surface of each tip support, and
Only the center of the back surface including the conducting portion of the upper electrode layer of the weight plate portion in the glass layer is joined and supported with respect to the upper surface of the central support portion protruding from the cross-shaped cross portion of the cross-shaped flexible structure portion. On the other hand, the silicon single crystal cover plate is bonded and supported only to the peripheral frame portion of the glass layer integrated on the peripheral frame portion of the silicon single crystal layer, and has a through hole formed in the base plate. A three-axis acceleration sensor having a package structure in which signal extraction lead wires are respectively connected to the lower surface of each lower electrode island portion and the lower surface of at least one tip support portion of the cross-shaped flexible structure portion through the same.
内側の4個の下部電極用島部およびそれら4個の下部電
極用島部の十字形間隙部分に位置し、先端支柱部、中央
支柱部およびそれらを繋ぐ梁構造薄肉部とからなる十字
形可撓構造部各部が分離形成されてなる全体平面形を略
田の字形配置としたシリコン単結晶層を載置し、それら
シリコン単結晶層の中の周枠部下面、各下部電極用島部
下面および十字形可撓構造部の中央支柱部下面だけをベ
ース板に対して接合、一体化する一方、該シリコン単結
晶層の上には、該シリコン単結晶層の4個の下部電極用
島部全体を覆い尽くす平面形を有し、その裏面に、前記
下部電極用島部の直上に対応させた4個の上部電極用島
部とそれら個々を繋ぐ通電部とをパターン化してなる上
部電極層を蒸着した錘板部とその周枠部とからなるガラ
ス層を形成し、該錘板部が、上部電極層の通電部を含む
裏面四方で、十字形可撓構造部の4個の先端支柱部上面
に接合、支持される如くなし、更にその上に、シリコン
単結晶層の周枠部上に一体化されたガラス層周枠部だけ
に接合、支持させたシリコン単結晶カバー板を被冠する
と共に、ベース板に穿設した通孔を通して各下部電極用
島部下面および十字形可撓構造部の中央支柱部下面に夫
々信号取出し用リード線を接続してなるパッケージ構造
3軸加速度センサ。4. A rectangular support plate, a peripheral frame portion, four lower electrode islands on the inner side thereof, and a cross-shaped gap between the four lower electrode islands, and a tip support. Cross-shaped flexible structure portion consisting of a portion, a central support portion and a beam structure thin portion connecting them are placed on each other, and a silicon single crystal layer in which the entire plane formed by separating and forming the respective portions is substantially in a U-shape is placed. Only the lower surface of the peripheral frame portion, the lower surface of each island for lower electrodes, and the lower surface of the central support portion of the cross-shaped flexible structure portion in the silicon single crystal layer are joined and integrated with the base plate, while the silicon single crystal layer is Has a planar shape that covers the entire four lower electrode islands of the silicon single crystal layer, and the four upper electrodes corresponding to the upper portions of the lower electrode islands on the back surface thereof. The upper electrode layer was formed by patterning the islands and the conducting parts connecting them. A glass layer composed of a weight plate portion and a peripheral frame portion is formed, and the weight plate portion is formed on the upper surface of the four tip support portions of the cross-shaped flexible structure portion on the four sides of the back surface including the conducting portion of the upper electrode layer. Joined and supported, and further covered with a silicon single crystal cover plate joined and supported only on the glass layer peripheral frame integrated on the peripheral frame of the silicon single crystal layer, A three-axis acceleration sensor having a package structure in which signal extraction lead wires are respectively connected to the lower surface of each lower electrode island and the lower surface of a central support of a cross-shaped flexible structure through through holes formed in a base plate.
ス板上に、これまた予め所定の矩形状シリコン単結晶板
を表裏からエツチング加工することにより、周枠部相当
部、下部電極島部相当部、および十字形可撓構造部にお
ける先端支柱部、中央支柱部各相当部を夫々規制された
高さ関係であって、夫々が薄肉部で繋がっている構造と
した全体平面形で略田の字形に刻設されてなる一枚板状
のシリコン単結晶基板を載置し、それらシリコン単結晶
基板の中の周枠部相当部下面、各下部電極用島部相当部
下面、および十字形可撓構造部の各先端支柱部相当部下
面か、中央支柱部相当部下面の何れかだけをベース板に
対して、陽極接合その他の手段等によって接合、一体化
する第1工程。異方性ドライエッチングにより、前記工
程で一体化されたシリコン単結晶基板の中の、周枠部相
当部とその内側各部相当部との間、および平十字形可撓
構造部相当部の外周と下部電極島部相当部との間の各薄
肉部を削除して、ベース板上に一体化された周枠部、そ
の内側の4個の下部電極用島部およびそれら4個の下部
電極用島部の間隙部分に位置する十字形可撓構造部各部
が分離形成されてなる全体平面形を略田の字形配置とし
たシリコン単結晶層を形成する第2工程。上記工程によ
り一体形成されたシリコン単結晶層の上に、シリコン単
結晶層全体を覆い尽くす平面形を有し、その裏面には、
前記下部電極用島部の直上に対応させた4個の上部電極
用島部とそれら個々を繋ぐ通電部とをパターン化した電
極層が蒸着されると共に、表面側を、同周枠部相当部よ
りも錘板部相当部を低く加工してなるガラス板を載置
し、該ガラス板を、シリコン単結晶層における周枠部、
および十字形可撓構造部の平面十字形交差部に突出形成
された中央支柱部か、あるいは4個の先端支柱部の何れ
か各上面だけに接合、一体化した後、シリコン単結晶層
の周枠部に掛かる位置に規制されたガラス板における周
枠部相当部と錘板相当部との境界を、ダイシングソーに
より溝切り加工して、その溝がシリコン単結晶層の周枠
部の中途にまで達したものとすることにより、周枠部と
それから分離された錘板部とからなるガラス層を形成す
る第3工程。上記工程における溝切り加工で残されたシ
リコン単結晶層周枠部の溝以下のシリコン単結晶材を、
異方性ドライエッチング加工により、完全に貫通状と
し、シリコン単結晶層周枠部の内側部分が、ガラス層の
錘板部外周下面に分離された状態とすることにより、シ
リコン単結晶層周枠部の上にガラス層周枠部が断面的に
上下に連続、一体化されたものとした後、該ガラス層周
枠部上面だけで接合、支持する如くしたシリコン単結晶
カバー板を一体的に被冠する第4工程。ベース板に予め
穿設されている通孔に信号取出し用リード線を接続する
第5工程。以上、第1ないし5工程を順次経由して製造
する請求項1ないし4記載のパッケージ構造3軸加速度
センサの製造方法。5. A portion corresponding to a peripheral frame portion and a lower electrode are formed by etching a predetermined rectangular silicon single crystal plate from the front and back on a base plate having through holes formed at predetermined positions in advance. In the overall planar form, the island portion equivalent portion, the tip support portion in the cross-shaped flexible structure portion, and the central support portion each have a regulated height relationship, and each is connected by a thin portion. A single-plate silicon single crystal substrate engraved in the shape of an approximate square is placed, and a lower surface corresponding to a peripheral frame portion, a lower surface corresponding to an island portion for each lower electrode, and a lower surface of the silicon single crystal substrate, and A first step of joining and integrating only the lower surface of each of the end support portions or the lower surface of the central support portion of the cross-shaped flexible structure with the base plate by anodic bonding or other means. By anisotropic dry etching, in the silicon single crystal substrate integrated in the above step, between the peripheral frame equivalent portion and the corresponding portions inside thereof, and the outer periphery of the flat cross-shaped flexible structure equivalent portion. The peripheral portion integrated on the base plate, the four lower electrode islands, and the four lower electrode islands are removed by removing the thin portions between the lower electrode island equivalent portions. A second step of forming a silicon single crystal layer in which a cross-shaped flexible structure portion located in a gap portion of the portion is formed so as to have a generally flat cross-sectional shape formed by separating and forming respective portions of each portion. On the silicon single crystal layer integrally formed by the above steps, a planar shape covering the entire silicon single crystal layer, and on the back surface,
An electrode layer is formed by patterning four upper electrode islands corresponding directly above the lower electrode islands and a current-carrying part connecting the upper electrode islands, and the front surface side is equivalent to the same peripheral frame part. A glass plate formed by processing a portion equivalent to a weight plate portion lower than the above is placed, and the glass plate is a peripheral frame portion in a silicon single crystal layer,
After joining and integrating only to the upper surface of either the central pillar portion formed at the cross-shaped cross portion of the cross-shaped flexible structure portion or the four tip pillar portions, the periphery of the silicon single crystal layer is formed. The boundary between the peripheral frame part equivalent part and the weight plate equivalent part in the glass sheet regulated to the position where the frame part is hung is grooved by a dicing saw, and the groove is formed in the middle of the peripheral frame part of the silicon single crystal layer. A third step of forming a glass layer composed of a peripheral frame portion and a weight plate portion separated therefrom. The silicon single crystal material below the groove of the silicon single crystal layer peripheral frame portion left by the grooving process in the above process,
The silicon single crystal layer peripheral frame is completely penetrated by anisotropic dry etching, and the inner portion of the silicon single crystal layer peripheral frame portion is separated from the outer peripheral lower surface of the weight plate portion of the glass layer. After the glass layer peripheral frame part is vertically continuous and integrated in cross section on the part, the silicon single crystal cover plate joined and supported only by the upper surface of the glass layer peripheral frame part is integrated. Fourth step of crowning. Fifth step of connecting a signal extraction lead wire to a through hole previously formed in the base plate. 5. The method of manufacturing a three-axis acceleration sensor having a package structure according to claim 1, wherein the manufacturing is performed sequentially through the first to fifth steps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06085915A JP3109556B2 (en) | 1994-03-30 | 1994-03-30 | Package structure three-axis acceleration sensor and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06085915A JP3109556B2 (en) | 1994-03-30 | 1994-03-30 | Package structure three-axis acceleration sensor and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07273353A JPH07273353A (en) | 1995-10-20 |
JP3109556B2 true JP3109556B2 (en) | 2000-11-20 |
Family
ID=13872107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06085915A Expired - Fee Related JP3109556B2 (en) | 1994-03-30 | 1994-03-30 | Package structure three-axis acceleration sensor and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3109556B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111308126A (en) * | 2019-12-10 | 2020-06-19 | 电子科技大学 | A capacitive three-axis accelerometer with increased mass and its manufacturing method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000186931A (en) | 1998-12-21 | 2000-07-04 | Murata Mfg Co Ltd | Small-sized electronic component and its manufacture, and via hole forming method for the small-sized electronic component |
KR100563584B1 (en) | 2002-07-29 | 2006-03-22 | 야마하 가부시키가이샤 | Manufacturing method for magnetic sensor and lead frame therefor |
TWI306297B (en) | 2005-02-18 | 2009-02-11 | Yamaha Corp | Lead frame, sensor including lead frame and method of forming sensor including lead frame |
KR100740358B1 (en) | 2005-02-25 | 2007-07-16 | 야마하 가부시키가이샤 | Sensor including lead frame and method of forming sensor including lead frame |
JP2007036387A (en) * | 2005-07-22 | 2007-02-08 | Star Micronics Co Ltd | Microphone array |
CN110108757A (en) * | 2019-05-31 | 2019-08-09 | 合肥微纳传感技术有限公司 | A kind of gas sensor, transducer production method and sensor array |
-
1994
- 1994-03-30 JP JP06085915A patent/JP3109556B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111308126A (en) * | 2019-12-10 | 2020-06-19 | 电子科技大学 | A capacitive three-axis accelerometer with increased mass and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH07273353A (en) | 1995-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2681215B2 (en) | Method for manufacturing sensor using laminated substrate | |
JP5806254B2 (en) | Capacitive microelectromechanical sensor with single crystal silicon electrode | |
JP5211387B2 (en) | 3-axis thin film accelerometer | |
US5000817A (en) | Batch method of making miniature structures assembled in wafer form | |
EP1514123B1 (en) | Monolithic silicon acceleration sensor | |
US4732647A (en) | Batch method of making miniature capacitive force transducers assembled in wafer form | |
JP3109556B2 (en) | Package structure three-axis acceleration sensor and method of manufacturing the same | |
JP7452492B2 (en) | Inertial sensor and its manufacturing method | |
JP3025313B2 (en) | Manufacturing method of sensor using change in capacitance | |
US7705412B2 (en) | SOI substrate and semiconductor acceleration sensor using the same | |
JPH03114272A (en) | Strain sensor and manufacture thereof | |
JP2006250581A (en) | Triaxial acceleration sensor module and its manufacturing method | |
JP4396009B2 (en) | Integrated sensor | |
US20170089941A1 (en) | Sensor | |
JP2844116B2 (en) | Method of manufacturing sensor for detecting physical quantity | |
CN107764459A (en) | Pressure sensor and its manufacture method | |
JPH07128365A (en) | Semiconductor acceleration sensor and fabrication thereof | |
JPH05340957A (en) | Semiconductor sensor manufacturing method and semiconductor sensor | |
JP3025468B2 (en) | Sensor utilizing change in capacitance and method of manufacturing the same | |
JPH07225243A (en) | Acceleration sensor and its production, method for detecting acceleration by the acceleration sensor and acceleration sensor array | |
JP2549564B2 (en) | Method for manufacturing semiconductor device | |
JP3991419B2 (en) | Manufacturing method of micro device | |
JPH09203746A (en) | Dynamic amount sensor and its manufacture | |
JPH08285884A (en) | Semiconductor capacitance type acceleration sensor | |
CN116358744A (en) | Processing method of pressure sensor and pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |