[go: up one dir, main page]

JP3089503B2 - Method for producing sweetener containing isopanose - Google Patents

Method for producing sweetener containing isopanose

Info

Publication number
JP3089503B2
JP3089503B2 JP03258575A JP25857591A JP3089503B2 JP 3089503 B2 JP3089503 B2 JP 3089503B2 JP 03258575 A JP03258575 A JP 03258575A JP 25857591 A JP25857591 A JP 25857591A JP 3089503 B2 JP3089503 B2 JP 3089503B2
Authority
JP
Japan
Prior art keywords
reaction
isopanose
maltosyl
glucose
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03258575A
Other languages
Japanese (ja)
Other versions
JPH05316992A (en
Inventor
茂孝 岡田
績 神原
隆 栗木
洋樹 高田
美千代 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ezaki Glico Co Ltd
Original Assignee
Ezaki Glico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ezaki Glico Co Ltd filed Critical Ezaki Glico Co Ltd
Priority to JP03258575A priority Critical patent/JP3089503B2/en
Publication of JPH05316992A publication Critical patent/JPH05316992A/en
Application granted granted Critical
Publication of JP3089503B2 publication Critical patent/JP3089503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Seasonings (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はイソパノース(6−0−
α−マルトシル−グルコース)や62 −0−α−マルト
シル−マルトースで代表される分岐マルトトリオース及
び分岐マルトテトラオースを含む甘味料の製造方法に関
するものである。
The present invention relates to isopanoses (6-0-
alpha-maltosyl - glucose) and 6 2 -0-alpha-maltosyl - a process for producing a sweetener containing branched maltotriose and branched maltotetraose represented by maltose.

【0002】[0002]

【従来の技術と本発明が解決しようとする課題】近年マ
ルトオリゴ糖のうちα−1,6−グルコシド結合を含む
イソマルトース、パノース、イソパノース、イソマルト
トリオース、および62 −0−α−マルトシル−マルト
ースなど、いわゆる分岐オリゴ糖は、腸内有用細菌であ
るビフィズス菌の増殖因子であることが認められ、これ
らのいくつかを含む糖混合物が甘味料として使用されて
いる。
Isomaltose containing alpha-1,6-glucosidic bonds of the Prior Art and Problems which the present invention is to solve In recent years maltooligosaccharides panose, isopanose, isomaltotriose, and 6 2 -0-alpha-maltosyl So-called branched oligosaccharides, such as maltose, have been found to be growth factors for bifidobacteria, a useful intestinal bacterium, and saccharide mixtures containing some of these have been used as sweeteners.

【0003】この製造方法としては、主として澱粉より
マルトースを多量に含む水飴をまず製造し、つづいて
spergillus nigerなどのかび類の生産
するα−グルコシダーゼを作用させ、本酵素によるα−
1,6−グルコシル基転移反応により分岐オリゴ糖を生
成させるのが一般的である。この場合反応の初期にはパ
ノースが、後期ではイソマルトースおよびイソマルトト
リオースが集積する。しかし反応の性質上多量のグルコ
ースが副産物として生成し、目的とするイソマルトース
およびパノースの合計含量は40%程度にすぎない。一
方イソパノースは分岐オリゴ3糖であり、62 −0−α
−マルトシル−マルトースは分岐オリゴ4糖であるが、
これらもまた腸内でビフィズス菌の増殖を示す糖質であ
ることが知られている。しかしイソパノースの製造は、
これまでせいぜい高価な多糖類プルランをイソプルラナ
ーゼで加水分解する以外に手段はなく、また62 −0−
α−マルトシル−マルトースにしてもプルランを酸加水
分解した後、分画して得る他なく、とうてい食品用素材
として製造できなかった。
[0003] In this production method, starch syrup containing maltose in a larger amount than starch is first produced, followed by A
α-glucosidase produced by molds such as S. spargillus niger is allowed to act, and α-glucosidase is produced by the enzyme.
Generally, branched oligosaccharides are produced by a 1,6-glucosyl transfer reaction. In this case, panose accumulates in the early stage of the reaction, and isomaltose and isomalttriose in the late stage. However, a large amount of glucose is produced as a by-product due to the nature of the reaction, and the total content of the target isomaltose and panose is only about 40%. Meanwhile isopanose is branched oligo trisaccharide, 6 2 -0-α
-Maltosyl-maltose is a branched oligotetrasaccharide,
These are also known to be carbohydrates that show growth of bifidobacteria in the intestine. However, the production of isopanose
This not means other than hydrolysis with Isopururanaze the most expensive polysaccharides pullulan up, also 6 2 -O-
Even with α-maltosyl-maltose, pullulan was hydrolyzed with acid and then fractionated, so that it could not be produced as a food material.

【0004】[0004]

【課題を解決するための手段】使用できる酵素はプルラ
ンに作用しそのα−1,4−グルコシド結合のみをある
いはそのα−1,4−及びα−1,6−グルコシド結合
の両方を切断し主としてパノースを生成する、いわゆる
ネオプルラナーゼに属するものならばどれでも良い。た
とえば、Bacillus stearothermo
philusTRS40(微工研菌寄託第9609号)
由来のネオプルラナーゼ(Journal of Ba
cteriology第170巻、第1554頁、19
88年刊行に記載あり)、Thermoactinom
yces vulgalis由来のα−アミラーゼ(A
gricultural and Biologica
l Chemistry、第42巻、第1681頁、1
978年刊行に記載あり)、Bacillus ste
arothermophilus KP1064のプル
ラン加水分解酵素(Applied Microbio
logy andBiotechnology、第21
巻、第20頁、1985年刊行に記載あり)、及びBa
cteroides thetaiotaomicro
95−1のネオプルラナーゼ(Journal o
f Bacteriology、第173巻、第296
2頁、1991年刊行に記載あり)、などもこれに当た
る。
An enzyme which can be used acts on pullulan to cleave only its α-1,4-glucosidic bond or both α-1,4- and α-1,6-glucosidic bonds. Any substance belonging to the so-called neopullulanases that mainly produce panose may be used. For example, Bacillus stearothermo
philus TRS40 (Microorganism Deposit No. 9609)
Neopluranase (Journal of Ba)
cterology, 170, 1554, 19
Published in 1988 ), Thermoactinom
α-amylase from Yces vulgaris (A
gricultural and Biologicala
l Chemistry, Vol. 42, p. 1681, 1
978), Bacillus ste
aulothermophilus KP1064 pullulan hydrolase (Applied Microbio
logy and Biotechnology, 21st
Volume, page 20, published in 1985), and Ba
cteroides thetaiotaomicro
n 95-1 neopluranase (Journal o)
f Bacteriology, Vol. 173, No. 296
2 pages, published in 1991), and the like.

【0005】基質としては澱粉、プルラン、デキストリ
ン、水飴、各種マルトオリゴ糖などα−1,4−のみあ
るいはα−1,4−およびα−1,6−グルコシド結合
を含む糖類であればいずれも使用できる。それ故澱粉を
細菌液化型α−アミラーゼで液化したもの、さらにこれ
に細菌糖化型(以下、BSAという)またはかび類のα
−アミラーゼで分解を行ったデキストリンも有効な基質
である。
As the substrate, any of saccharides containing only α-1,4- or α-1,4- and α-1,6-glucosidic bonds such as starch, pullulan, dextrin, starch syrup, and various maltooligosaccharides can be used. it can. Therefore, starch liquefied with bacterial liquefied α-amylase, and further added with bacterial glycated (hereinafter referred to as BSA) or mold α
Dextrins degraded with amylase are also effective substrates.

【0006】本反応は転移反応と縮合反応を主体とする
ので高濃度の方が反応が進行する。表1に基質濃度を変
化させたときのイソパノースの生成割合を示した。この
ように濃度5重量%(本願においては、重量%を%と表
記する)以上、望ましくは20%以上の基質濃度で反応
させるのがよい。反応の条件であるpH、温度などは酵
素の作用範囲であれば良い。また本反応はオリゴ糖に対
する転移作用であるので、酵素を固定化しても不都合な
く進行する。このためキトサンなど各種固定化担体を使
用し固定化酵素を作成し作用させても効率よく使用でき
る。このようにして得られた糖化液は、必要に応じ活性
炭による脱色、イオン交換樹脂による精製を行って製品
とすることが出来る。
[0006] Since this reaction mainly comprises a transfer reaction and a condensation reaction, the reaction proceeds at a higher concentration. Table 1 shows the production ratio of isopanose when the substrate concentration was changed. As described above, the reaction is preferably performed at a substrate concentration of 5% by weight or more (in the present application,% by weight is expressed as%), preferably 20% or more. The reaction conditions such as pH and temperature may be within the working range of the enzyme. In addition, since this reaction is a transfer effect on oligosaccharides, it proceeds without inconvenience even if the enzyme is immobilized. For this reason, even if various immobilized carriers such as chitosan are used to prepare and act on an immobilized enzyme, it can be used efficiently. The saccharified solution thus obtained can be decolorized with activated carbon and purified with an ion-exchange resin, if necessary, to give a product.

【0007】 表1 基質濃度とイソパノースの生成割合 ────────────────────────────────── 基質濃度(%) 1 5 10 20 30 ────────────────────────────────── 生成オリゴ糖中の イソパノースの割合(%)<2 12.2 17.2 21.3 22.4 ────────────────────────────────── 基質:コーンスターチ液化液(D.E.10) 糖化条件:58℃、pH6.0、40時間、ネオプルラ
ナーゼ10u/g基質
Table 1 Substrate Concentration and Isopanose Production Ratio 基質 Substrate Concentration (% ) 15 10 20 30 割 合 Proportion of Isopanose (% ) <2 12.2 17.2 21.3 22.4 ────────────────────────────────── Substrate : Liquefied corn starch liquid (DE10) Saccharification conditions: 58 ° C, pH 6.0, 40 hours, neopullulanase 10u / g substrate

【0008】[0008]

【作用】本発明者らは、近年好熱菌Bacillus
stearothermophilus TRS40の
生産するネオプルラナーゼについて研究し、本酵素がプ
ルランを分解して主としてパノースを生成することとマ
ルトトリオース、マルトテトラオース、マルトペンタオ
ースなど各種マルトオリゴ糖、各種デキストリンのほか
澱粉にも作用する性質があることを明らかにした。更に
研究の結果、本酵素は高濃度の基質に作用させると著し
いα−1,4−およびα−1,6−糖転移作用と縮合作
用を示すことを発見した。
The present inventors have recently proposed a thermophilic bacterium Bacillus.
Study on neopluranase produced by stearothermophilus TRS40. This enzyme degrades pullulan to produce mainly panose. Revealed that there is a nature to do. As a result of further studies, it has been found that the present enzyme exhibits remarkable α-1,4- and α-1,6-glycosylation and condensation when acted on a high concentration of substrate.

【0009】一般にα−アミラーゼは高濃度基質に作用
させるとα−1,4−糖転移反応することが知られてい
る。またα−グルコシダーゼはα−1,4−およびα−
1,6−糖転移反応をすることが知られている。しかし
ながら、ネオプルラナーゼの糖転移反応および縮合反応
については全く知られておらず、その反応特異性は、こ
れらの酵素と全く異なっている。即ち、ネオプルラナー
ゼはα−1,6−糖転移反応をする点でα−アミラーゼ
の転移反応と異なる。また、ネオプルラナーゼの糖転移
反応が主にマルトシル基転移であるのに対し、α−グル
コシダーゼのそれはグルコシル基転移である点で明瞭に
異なる。以上の理由から、ネオプルラナーゼの糖転移反
応はきわめて新規なものと言える。
In general, it is known that α-amylase reacts with α-1,4-glycosylation reaction when it acts on a high-concentration substrate. Α-glucosidase is used for α-1,4- and α-
It is known to carry out a 1,6-glycosylation reaction. However, the sugar transfer reaction and the condensation reaction of neopluranase are not known at all, and the reaction specificity is completely different from these enzymes. That is, neopluranase differs from α-amylase in that it undergoes α-1,6-glycosylation. In addition, the transglycosylation reaction of neopurulanase is mainly maltosyl transfer, whereas that of α-glucosidase is glucosyl transfer. For the above reasons, it can be said that the glycosyltransfer reaction of neopluranase is extremely novel.

【0010】1%程度以下の濃度のマルトトリオースに
ネオプルラナーゼを作用させると、グルコースおよびマ
ルトースのみが生成するのに対して、例えば実験1のご
とく10%マルトトリオースに微量の14Cグルコースを
添加してネオプルラナーゼを反応させると、反応初期に
は還元性末端に放射性を示すマルトトリオース、イソパ
ノース、6−0−α−マルトトリオシル−グルコースを
生じる。このうちマルトトリオースは基質のマルトトリ
オースが分解されそのマルトース部分が放射性グルコー
スにα−1,4−結合で転移したもの(α−1,4−マ
ルトシル基転移)、イソパノースはマルトース部分が放
射性グルコースにα−1,6−結合で転移したものであ
る(α−1,6−マルトシル基転移)。また6−0−α
−マルトトリオシル−グルコースはマルトトリオースが
放射性グルコースとα−1,6−結合で縮合したもので
ある(縮合反応)。すなわち本酵素は単なる加水分解酵
素ではなく、高濃度の基質に作用させると転移反応と縮
合反応を起こす。そして生成糖としてα−1,4−結合
及びα−1,6−結合を含むオリゴ糖を生成する。更に
本酵素はα−1,6−結合よりもα−1,4−結合を切
断する能力が高いので反応の後期でα−1,6−結合を
含む分岐オリゴ糖が集積する。
When neoplulanase is allowed to act on maltotriose having a concentration of about 1% or less, only glucose and maltose are produced. On the other hand, a small amount of 14 C glucose is added to 10% maltotriose as in Experiment 1, for example. When neoplulanase is added and allowed to react, maltotriose, isopanose, and 6-0-α-maltotriosyl-glucose, which show radioactivity at the reducing end, are generated in the initial stage of the reaction. Among them, maltotriose is a substance in which maltotriose as a substrate is decomposed and the maltose moiety is transferred to radioactive glucose by α-1,4-bond (α-1,4-maltosyl group transfer), and isopanose is that the maltose moiety is radioactive. It has been transferred to glucose by an α-1,6-bond (α-1,6-maltosyl group transfer). 6-0-α
-Maltotriosyl-glucose is a product of maltotriose condensed with radioactive glucose at an α-1,6-bond (condensation reaction). That is, the present enzyme is not a mere hydrolase, and causes a transfer reaction and a condensation reaction when acted on a high concentration of a substrate. Then, an oligosaccharide containing an α-1,4-linkage and an α-1,6-linkage is generated as a generated sugar. Furthermore, since the present enzyme has a higher ability to cleave α-1,4-linkage than α-1,6-linkage, branched oligosaccharides containing α-1,6-linkage accumulate later in the reaction.

【0011】実験1 10%マルトトリオース溶液0.1mlに14Cグルコー
ス2.5μgを溶解した後ネオプルラナーゼ(1U/m
l)0.1mlを加え40℃、pH6.0で反応し経時
的にろ紙にスポットしブタノール/ピリジン/水(6/
4/3)を溶媒として4回展開、X線フィルムと密着し
てオートラジオグラムを作成すると図1のようになっ
た。生成した放射性オリゴ糖はRf値及び各種酵素の消
化実験により構造を確認した。ネオプルラナーゼの活性
測定法は次のとおりである。2%プルランの200mM
リン酸ナトリウム緩衝液に等量の酵素液を加え、50℃
で30分間反応させる。生じた還元糖の量をジニトロサ
リチル酸法で定量する。この条件で、1分間に1μmo
lのグルコースに相当する還元糖を生じる酵素量を1U
とした。
Experiment 1 After dissolving 2.5 μg of 14 C glucose in 0.1 ml of a 10% maltotriose solution, neoplulanase (1 U / m
l) 0.1 ml was added and reacted at 40 ° C. and pH 6.0, spotted on a filter paper over time, and butanol / pyridine / water (6 /
4/3) was developed four times with a solvent, and an autoradiogram was prepared in close contact with the X-ray film. The result was as shown in FIG. The structure of the produced radioactive oligosaccharide was confirmed by Rf value and digestion experiments of various enzymes. The method for measuring the activity of neopluranase is as follows. 200% of 2% pullulan
Add an equal volume of enzyme solution to the sodium phosphate buffer,
And react for 30 minutes. The amount of reducing sugars generated is quantified by the dinitrosalicylic acid method. Under these conditions, 1 μmo per minute
The amount of the enzyme that produces reducing sugars corresponding to 1 glucose is 1 U
And

【0012】[0012]

【0013】また10%マルトトリオースにネオプルラ
ナーゼを作用させると生成糖としてマルトペンタオース
のほか、分岐オリゴ糖であるB5(以下、分岐糖をBで
示すこととし、そのペンタオースをB5で示す)、おそ
らく63 −0−α−マルトシル−マルトトリオースが生
成する。さらに反応後期では糖転移反応、総合反応およ
び加水分解を繰り返し最終的にイソパノース(6−0−
α−マルトシル−グルコース)および62 −0−α−マ
ルトシル−マルトースを主とする分岐オリゴ糖を生成す
る。
When neoplulanase is allowed to act on 10% maltotriose, maltopentaose is produced as a sugar, and B5 is a branched oligosaccharide (hereinafter, the branched sugar is represented by B, and the pentaose is represented by B5). perhaps 6 3 -0-alpha-maltosyl - maltotriose generated. Further, in the latter stage of the reaction, the transglycosylation reaction, the overall reaction, and the hydrolysis are repeated, and finally the isopanose (6-0-
alpha-maltosyl - glucose) and 6 2 -0-alpha-maltosyl - generating a branch oligosaccharides mainly maltose.

【0014】このうちイソパノースの構造は、ペーパー
クロマト法によるRf値およびグルコアミラーゼ及びネ
オプルラナーゼによる消化実験、及びメチル化分析によ
り確かめられた。一方62 −0−α−マルトシル−マル
トースは標準物質とともにプルラナーゼ、グルコアミラ
ーゼによる消化実験を行い、その結果から同定する事が
出来た。
Among them, the structure of isopanose was confirmed by Rf value by paper chromatography, digestion experiment with glucoamylase and neopurulanase, and methylation analysis. Meanwhile 6 2 -0-alpha-maltosyl - maltose performs pullulanase, digestion experiments with glucoamylase together with standards, it could be identified from the result.

【0015】[0015]

【効果】本願発明ではマルトオリゴ糖やデキストリン、
澱粉などにネオプルラナーゼを作用させることにより、
これまで健康上有効性が期待されながら量産できなかっ
たイソパノース(6−0−α−マルトシル−グルコー
ス)および62 −0−α−マルトシルマルトースを多量
に含む甘味料を容易に製造できることになった。
According to the present invention, maltooligosaccharides, dextrins,
By making neoplulanases act on starch etc.,
Previously it could not mass-produced while health effectiveness is expected isopanose (6-0-alpha-maltosyl - glucose) and became 6 2 -0-alpha-maltosyl that maltose may be easily prepared sweetener containing a large amount of Was.

【0016】[0016]

【実施例】【Example】

実施例1 コーンスターチの液化液(DE10)30%溶液に、ネ
オプルラナーゼとBSA(細菌糖化型α−アミラーゼ)
とを加えた系とBSAのみを加えた系を、夫々58℃、
pH6.0において48時間反応させた。反応生成物は
高速液体クロマトグラフィーで分析し、生成物中の各種
オリゴ糖の割合を定量したところ、表2のようになっ
た。このうちG1、G2、G3、および≧G4はそれぞ
れグルコース、マルトース、マルトトリオース、および
マルトテトラオース以上の重合度の直鎖オリゴ糖を、B
2、B3、およびB4はそれぞれイソマルトース、イソ
パノース、および62 −0−α−マルトシル−マルトー
スを示す。 表2 反応生成物中の各オリゴ糖の割合(%) ────────────────────────────────── G1 G2 G3 ≧G4 B2 B3 B4 ────────────────────────────────── ネオプルラナーゼ+BSA 25.7 13.4 0 0 6.7 30.4 23.8 BSA 29.8 26.0 14.1 30.1 0 0 0 ────────────────────────────────── すなわちBSAのみを作用させるとG1、G2、G3、
および重合度4以上の直鎖オリゴ糖が生ずるがこれにネ
オプルラナーゼを共存させるとG3の全部およびG2と
重合度4以上の直鎖オリゴ糖の一部が消失し目的とする
B2、B3、およびB4を与える。
Example 1 Neopurulanase and BSA (bacterial saccharified α-amylase) were added to a 30% cornstarch liquefied liquid (DE10) solution.
And a system to which only BSA was added at 58 ° C., respectively.
The reaction was carried out at pH 6.0 for 48 hours. The reaction products were analyzed by high performance liquid chromatography, and the proportions of various oligosaccharides in the products were quantified, as shown in Table 2. Among them, G1, G2, G3, and ≧ G4 represent linear oligosaccharides having a polymerization degree of glucose, maltose, maltotriose, and maltotetraose or more, respectively.
2, B3, and B4 respectively isomaltose, isopanose, and 6 2 -0-alpha-maltosyl - shows the maltose. Table 2 Ratio (%) of each oligosaccharide in the reaction product G G1 G2 G3 ≧ G4 B2 B3 B4 ────────────────────────────────── neopurulanase + BSA 25.7 13.4 0 0 6.7 30.4 23.8 BSA 29.8 26.0 14.1 30.1 0 0 0 ────────────────────────────────── That is, when only BSA is activated G1, G2, G3,
And when a linear oligosaccharide having a degree of polymerization of 4 or more is produced, and in the presence of neopurulanase, all of G3 and a part of the linear oligosaccharide having a degree of polymerization of 4 and G2 disappear, and the desired B2, B3, and Give B4.

【0017】実施例2 30%デキストリン(パインデックス#1、松谷化学
(株)製)溶液に、BSA(細菌糖化型α−アミラー
ゼ)を加えて、58℃、pH6.0において24時間反
応させた。次に、この系にネオプルラナーゼを加え、同
条件で24時間さらに反応させた。反応生成物は高速液
体クロマトグラフィーで分析し、生成物中の各種オリゴ
糖の割合を定量すると表3のようになった。 表3 反応生成物中の各オリゴ糖の割合(%) ────────────────── G1 G2 G3 B2 B3 B4 ────────────────── 24.3 15.0 1.4 15.5 30.3 13.4 ──────────────────
Example 2 BSA (bacterial saccharified α-amylase) was added to a 30% dextrin (Paindex # 1, manufactured by Matsutani Chemical Co., Ltd.) solution and reacted at 58 ° C. and pH 6.0 for 24 hours. . Next, neopurulanase was added to this system, and further reacted for 24 hours under the same conditions. The reaction products were analyzed by high performance liquid chromatography, and the proportions of various oligosaccharides in the products were quantified, as shown in Table 3. Table 3 Ratio (%) of each oligosaccharide in the reaction product {G1 G2 G3 B2 B3 B4} ─────── 24.3 15.0 1.4 15.5 30.3 13.4 ──────────────────

【0018】実施例3 30%デキストリン(パインデックス#1、松谷化学
(株)製)溶液100mlにネオプルラナーゼ750U
を加え、50℃で24時間反応を行った。反応生成物中
の各オリゴ糖の割合は表4のようになった。 表4 反応生成物中の各オリゴ糖の割合(%) ────────────────── G1 G2 G3 B2 B3 B4 ────────────────── 22.0 27.9 2.6 5.6 25.4 16.5 ──────────────────
Example 3 750 U of neopluranase was added to 100 ml of a 30% dextrin (Paindex # 1, manufactured by Matsutani Chemical Co., Ltd.) solution.
Was added and the reaction was carried out at 50 ° C. for 24 hours. The ratio of each oligosaccharide in the reaction product was as shown in Table 4. Table 4 Ratio (%) of each oligosaccharide in the reaction product {G1 G2 G3 B2 B3 B4} ─────── 22.0 27.9 2.6 5.6 25.4 16.5 ──────────────────

【0019】実施例4 ネオプルラナーゼ(50U/ml)1mlをキトパール
(富士紡績(株)製)1gに加え、1.5時間ゆるやか
に攪拌して固定化酵素を作成する。これに100mlの
マルトトリオースを主とするマルトオリゴ糖溶液(10
%)を加え、50℃で16時間振盪反応後、生成糖を高
速液体クロマトグラフィーで分析すると表5のような糖
組成を示した。 表5 反応生成物中の各オリゴ糖の割合(%) ────────────────── G1 G2 G3 B2 B3 B4 ────────────────── 21.0 19.8 1.4 9.4 25.8 22.6 ──────────────────
Example 4 1 ml of neopurulanase (50 U / ml) was added to 1 g of chitopearl (manufactured by Fuji Boseki Co., Ltd.) and gently stirred for 1.5 hours to prepare an immobilized enzyme. To this, 100 ml of a maltooligosaccharide solution mainly composed of maltotriose (10
%), And the resulting saccharide was subjected to a shaking reaction at 50 ° C. for 16 hours, and the resulting saccharide was analyzed by high performance liquid chromatography to show the saccharide composition shown in Table 5. Table 5 Ratio (%) of each oligosaccharide in the reaction product {G1 G2 G3 B2 B3 B4} ─────── 21.0 19.8 1.4 9.4 25.8 22.6 ──────────────────

【図面の簡単な説明】[Brief description of the drawings]

【図1】 反応生成物のペーパークロマトグラフィーと
オートラジオグラムによる分析の図である。
FIG. 1 is a diagram of analysis of a reaction product by paper chromatography and autoradiogram.

フロントページの続き (56)参考文献 特開 昭61−181354(JP,A) 特開 平4−108356(JP,A) (58)調査した分野(Int.Cl.7,DB名) A23L 1/236 C12P 19/14 C12P 19/16 JICSTファイル(JOIS) JAFICファイル(JOIS)Continuation of the front page (56) References JP-A-61-181354 (JP, A) JP-A-4-108356 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) A23L 1 / 236 C12P 19/14 C12P 19/16 JICST file (JOIS) JAFIC file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 α−1,4−のみあるいはα−1,4−
およびα−1,6−グルコシド結合を含む糖類にネオプ
ルラナーゼを作用させることを特徴とするイソパノース
を含む甘味料の製造方法。
1. The method according to claim 1, wherein only α-1,4- or α-1,4-
And a method for producing a sweetener containing isopanose, wherein neoplulanase is allowed to act on a saccharide containing an α-1,6-glucosidic bond.
【請求項2】 糖質濃度5%以上のα−1,4−のみあ
るいはα−1,4−およびα−1,6−グルコシド結合
を含む糖類にネオプルラナーゼを作用させることを特徴
とするイソパノースを含む甘味料の製造方法。
2. Isopanose characterized by allowing neopluranase to act on α-1,4-only or a saccharide containing α-1,4- and α-1,6-glucosidic bonds having a carbohydrate concentration of 5% or more. A method for producing a sweetener comprising:
【請求項3】 α−1,4−のみあるいはα−1,4−
およびα−1,6−グルコシド結合を含む糖類にα−ア
ミラーゼとネオプルラナーゼを作用させることを特徴と
するイソパノースを含む甘味料の製造方法。
3. The method according to claim 1, wherein only α-1,4- or α-1,4-
And a method for producing a sweetener containing isopanose, wherein α-amylase and neopurulanase are allowed to act on a saccharide containing an α-1,6-glucoside bond.
【請求項4】 α−1,4−のみあるいはα−1,4−
およびα−1,6−グルコシド結合を含む糖類にα−ア
ミラーゼを作用させたのちネオプルラナーゼを作用させ
ることを特徴とするイソパノースを含む甘味料の製造方
法。
4. The method according to claim 1, wherein only α-1,4- or α-1,4-
And a method for producing a sweetener containing isopanose, which comprises reacting a saccharide containing an α-1,6-glucosidic bond with α-amylase and then reacting neopullulase.
JP03258575A 1991-09-09 1991-09-09 Method for producing sweetener containing isopanose Expired - Fee Related JP3089503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03258575A JP3089503B2 (en) 1991-09-09 1991-09-09 Method for producing sweetener containing isopanose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03258575A JP3089503B2 (en) 1991-09-09 1991-09-09 Method for producing sweetener containing isopanose

Publications (2)

Publication Number Publication Date
JPH05316992A JPH05316992A (en) 1993-12-03
JP3089503B2 true JP3089503B2 (en) 2000-09-18

Family

ID=17322158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03258575A Expired - Fee Related JP3089503B2 (en) 1991-09-09 1991-09-09 Method for producing sweetener containing isopanose

Country Status (1)

Country Link
JP (1) JP3089503B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8292071B2 (en) 2007-08-28 2012-10-23 Dai Nippon Printing Co., Ltd. Packaging structure for roll paper

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120117B (en) * 2013-04-23 2016-09-21 甘肃省商业科技研究所 The preparation of a kind of new pullulanase and separation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8292071B2 (en) 2007-08-28 2012-10-23 Dai Nippon Printing Co., Ltd. Packaging structure for roll paper
US8485354B2 (en) 2007-08-28 2013-07-16 Dai Nippon Printing Co., Ltd. Packaging structure for roll paper
US8607973B2 (en) 2007-08-28 2013-12-17 Dai Nippon Printing Co., Ltd. Packaging structure for roll paper

Also Published As

Publication number Publication date
JPH05316992A (en) 1993-12-03

Similar Documents

Publication Publication Date Title
EP0464095B1 (en) Novel hyperthermostable alpha - amylase
Norman A novel debranching enzyme for application in the glucose syrup industry
Imanaka et al. Pattern of action of Bacillus stearothermophilus neopullulanase on pullulan
Kainuma et al. Action of Pseudomonas isoamylase on various branched oligo-and poly-saccharides
Bergmann et al. Selection of microorganisms which produce raw-starch degrading enzymes
KR101647335B1 (en) Production of isomaltooligosaccharides and uses therefor
WO1992003565A1 (en) Oligosaccharide mixture, and procedure for its manufacturing
BE A novel Bacillus pullulanase. Its properties and application in the glucose syrups industry.
KAINUMA Starch oligosaccharides: linear, branched, and cyclic
JP3089503B2 (en) Method for producing sweetener containing isopanose
Kobayashi Cyclodextrin producing enzyme (CGTase)
Manners et al. Studies on carbohydrate-metabolising enzymes: Part XXIV. The action of malted-rye alpha-amylase on amylopectin
Mase et al. Purification and characterization of a novel glucoamylase from Acremonium sp. YT-78
JP2840944B2 (en) How to make syrup
JP2933960B2 (en) Method for producing branched oligosaccharide
Ueda et al. Polysaccharide Produced by the Genus Pullularia: II. Trans-α-Glucosidation by Acetone Cells of Pullularia
JP3064031B2 (en) New oligosaccharides and their production
JPS6015315B2 (en) Production method of amylase G3
JPH0823990A (en) Production of oligosaccharide
JPH0231685A (en) Novel production of monosaccharide by enzymatic process
JP2868835B2 (en) Isomaltooligosaccharide-containing syrup and method for producing isomaltooligosaccharide
JPH04148693A (en) Production of transfer product of glucose
JPH07191A (en) Production of highly branched oligosaccharide
JPS5937957B2 (en) Method for producing maltotriose using amylase G3
Okada et al. Action of α-Amylases on Oligosaccharides Terminated at the Reducing End by Sucrose

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees