JP3084256B2 - Material for negative electrode of Li-ion secondary battery - Google Patents
Material for negative electrode of Li-ion secondary batteryInfo
- Publication number
- JP3084256B2 JP3084256B2 JP09193051A JP19305197A JP3084256B2 JP 3084256 B2 JP3084256 B2 JP 3084256B2 JP 09193051 A JP09193051 A JP 09193051A JP 19305197 A JP19305197 A JP 19305197A JP 3084256 B2 JP3084256 B2 JP 3084256B2
- Authority
- JP
- Japan
- Prior art keywords
- graphite powder
- negative electrode
- diameter
- graphite
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 29
- 239000000463 material Substances 0.000 title claims description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 113
- 239000002245 particle Substances 0.000 claims description 113
- 239000007773 negative electrode material Substances 0.000 claims description 36
- 238000009826 distribution Methods 0.000 claims description 13
- 238000013329 compounding Methods 0.000 claims description 10
- 238000010298 pulverizing process Methods 0.000 claims description 8
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 7
- 238000011049 filling Methods 0.000 description 32
- 239000003575 carbonaceous material Substances 0.000 description 31
- 239000000843 powder Substances 0.000 description 19
- 229910002804 graphite Inorganic materials 0.000 description 18
- 239000010439 graphite Substances 0.000 description 18
- 239000013078 crystal Substances 0.000 description 15
- 239000007770 graphite material Substances 0.000 description 14
- 239000000571 coke Substances 0.000 description 9
- 239000011148 porous material Substances 0.000 description 9
- 238000002156 mixing Methods 0.000 description 8
- 238000005087 graphitization Methods 0.000 description 7
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 238000004438 BET method Methods 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000003446 memory effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002006 petroleum coke Substances 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011305 binder pitch Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はLiイオン二次電池の負
極用材に係り、詳しくは、コ−クスなどの炭素材を更に
高温で熱処理して黒鉛化した黒鉛粉のうちで、平均粒子
径の異なる少なくとも2種の黒鉛粉を配合して充填し、
電池としての放電容量を高めたLiイオン二次電池の負
極用材に係る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for a negative electrode of a Li-ion secondary battery, and more particularly, to an average particle size of graphite powder obtained by heat-treating a carbon material such as coke at a higher temperature to graphitize. At least two kinds of graphite powders different from each other are blended and filled,
The present invention relates to a material for a negative electrode of a Li-ion secondary battery having an increased discharge capacity as a battery.
【0002】[0002]
【従来の技術】一般に、電池は、一次電池と二次電池と
に分かれる。一次電池は一口にいってイオン化傾向の異
なる金属を液体中に浸漬することによっておこる化学作
用を直接電気エネルギ−として利用するものであって、
この一次電池は従来から通常用いられている電池であ
る。一次電池は使用されると再使用できず、そのまま廃
棄される、要するに、使い捨て電池である。2. Description of the Related Art Generally, batteries are divided into primary batteries and secondary batteries. A primary battery utilizes the chemical action caused by immersing a metal having a different ionization tendency in a liquid in a liquid as electric energy directly,
This primary battery is a battery that has been conventionally ordinarily used. The primary battery cannot be reused when used, and is discarded as it is. In other words, it is a disposable battery.
【0003】これに対し、最近は、ビデオカメラ、ラジ
カセ、携帯電話、ヘッドホンステレオなどのポ−タブル
機器の発達にともなって、これらには二次電池が使用さ
れている。二次電池は、一次電池と相違して、放電と充
電とをくり返して再使用できる電池である。これら機器
に使用されている小型二次電池は30年以上の歴史を持
つニッケルカドミウム電池が主流である。On the other hand, recently, with the development of portable devices such as video cameras, boomboxes, portable telephones, and headphone stereos, secondary batteries have been used for these devices. A secondary battery is a battery that can be reused by repeatedly discharging and charging, unlike a primary battery. As the small secondary batteries used in these devices, nickel cadmium batteries having a history of more than 30 years are mainly used.
【0004】 しかし、ニッケルカドミウム電池は起電
力が1.2ボルト程度と低く、電気容量も小さく、これ
によって電気エネルギ−の密度を向上させることが非常
にむづかしい。更に、ニッケルカドミウム電池は放電し
きらないで充電を繰返すと容量が低下するという、メモ
リ−効果があったり、有害金属であるカドミウムを含ん
でいるという欠点もある。最近は、ニッケルカドミウム
電池に代わって負極用材としてリチウム金属を非水溶媒
の電解液で用いて、起電力を3.0ボルト以上としたL
iイオン電池が開発されている。However, nickel cadmium batteries have a low electromotive force of about 1.2 volts and a small electric capacity, and it is very difficult to improve the density of electric energy. Further, the nickel cadmium battery has a drawback that the capacity is reduced when the battery is repeatedly charged without being completely discharged, has a memory effect, and contains a harmful metal, cadmium. Recently, lithium metal was used as a negative electrode material in place of a nickel cadmium battery in a non-aqueous solvent electrolyte to raise the electromotive force to 3.0 volts or more.
i-ion batteries have been developed.
【0005】Liイオン電池は、ニッケルカドミウム電
池に較べると、起電力が3倍若しくはそれ以上であり電
圧が安定し、電気容量も大きく、自己放電も少なく、貯
蔵性も良く、コンピュ−タ機器やポ−タブル機器にはき
わめて有効である。[0005] Compared to nickel cadmium batteries, Li-ion batteries have an electromotive force that is three times or more, have a stable voltage, a large electric capacity, a small self-discharge, a good storability, and have a good storage capacity. It is very effective for portable equipment.
【0006】しかしながら、負極用材としてアルカリ金
属のリチウムを用いる場合、充放電をくり返すと、この
充放電の間に、負極用材のリチウムに、リチウムがデン
ドライト状、つまり樹枝状に析出し、この樹枝状物が成
長すると、負極用材のリチウムと正極用材とが短絡する
ため、充放電サイクル寿命が短く、またこの短絡が原因
で発火、爆発事故に継がるという欠点がある。However, when lithium of an alkali metal is used as a negative electrode material, when charge and discharge are repeated, during the charge and discharge, lithium precipitates in a dendrite shape, that is, a dendritic shape in the lithium of the negative electrode material, and the dendrites are formed. When the material grows, the lithium for the negative electrode and the material for the positive electrode are short-circuited, so that the charge / discharge cycle life is short, and the short-circuit causes ignition and explosion.
【0007】一方、ここ数年携帯電話などの急速な普及
に伴い、より小型で高性能な二次電池への要求が高ま
り、電気容量の大きいニッケル水素電池が開発され19
90年から生産が本格的になり、1995年では3億個
を越える生産量になっている。ニッケル水素電池は起電
力が1.2ボルト粒度とニッケルカドミウム電池と同等
であるものの、有害金属を含まない利点はあるが、メモ
リ−効果があり、容量が市場の要求に追いつかないなど
の問題もある。On the other hand, with the rapid spread of mobile phones and the like in recent years, demands for smaller and higher performance secondary batteries have increased, and nickel-metal hydride batteries having a large electric capacity have been developed.
Production began in earnest in 1990, and in 1995 the production volume exceeded 300 million. Nickel-metal hydride batteries have an electromotive force of 1.2 volts and are equivalent to nickel-cadmium batteries, but have the advantage of not containing harmful metals, but also have a memory effect and have problems such as capacity not keeping up with market requirements. is there.
【0008】 Liイオン電池のデントライト析出によ
る障害を回避するために、正極材料にコバルト酸リチウ
ム(LiCoO2)等のリチウム酸化物を用いる一方、
負極用材としてリチウムやリチウム合金のみを用いる代
りに、炭素材料をLiイオン吸蔵材料として用いてい
る。このLiイオン電池では、従来型の化学反応でな
く、黒鉛粒子の構造的隙間にLiイオンが挿入・脱離を
くり返すインタ−カレ−ション反応(トポケミカル反
応)が起こる。[0008] In order to avoid obstacles due to dentite precipitation in Li-ion batteries, lithium oxide such as lithium cobalt oxide (LiCoO 2 ) is used as a positive electrode material,
Instead of using only lithium or a lithium alloy as a negative electrode material, a carbon material is used as a Li ion storage material. In this Li-ion battery, not the conventional chemical reaction, but an intercalation reaction (topochemical reaction) in which Li ions repeat insertion and desorption in the structural gaps of the graphite particles occurs.
【0009】 このLiイオン二次電池は、先行して開
発された二次電池と比べ起電力3.7ボルトを大きく、
大容量で軽量であり、メモリ−効果も無い。このことか
ら1991年に提案されて以来、急速に生産量が増えて
いる。しかし、このような負極用材を用いる二次電池で
あっても、容量は負極材のLiイオンの吸蔵能力で決ま
ると言われ、負極用材の一部を成す炭素材料そのものが
改善されないと、必ずしも、電池容量を大きくすること
ができない。This Li-ion secondary battery has an electromotive force of 3.7 volts larger than the secondary battery developed in advance,
Large capacity and light weight, no memory effect. This has led to a rapid increase in production since it was proposed in 1991. However, even in a secondary battery using such a negative electrode material, it is said that the capacity is determined by the Li ion storage capacity of the negative electrode material, and unless the carbon material itself forming a part of the negative electrode material is improved, it is not necessarily required. The battery capacity cannot be increased.
【0010】すなわち、特開平1−204361号に記
載される二次電池は、負極用材を成す炭素材料は平均粒
径20〜100μmである粒状コ−クスが充電されて構
成されている。しかしながら、この二次電池は、負極用
材の炭素材料が炭素質の粒状コ−クスから成ることもあ
って、電池の容量をそれほど高めることができない。That is, the secondary battery described in Japanese Patent Application Laid-Open No. 1-204361 is configured by charging a granular coke having an average particle size of 20 to 100 μm in a carbon material constituting a negative electrode material. However, in this secondary battery, the capacity of the battery cannot be increased so much because the carbon material of the negative electrode material is made of carbonaceous granular coke.
【0011】また、特開平4−332465号に記載さ
れる二次電池では、その負極用材の炭素材料を、黒鉛化
材100重量部と算術平均粒径70nm以下でかつ連鎖
構造径が100〜500nmである非黒鉛化炭素材料2
〜15重量部とから構成する。In the secondary battery described in Japanese Patent Application Laid-Open No. 4-332465, the carbon material for the negative electrode is composed of 100 parts by weight of a graphitized material, an arithmetic average particle diameter of 70 nm or less, and a chain structure diameter of 100 to 500 nm. Non-graphitizable carbon material 2
-15 parts by weight.
【0012】 しかしながら、この二次電池では、負極
用材の炭素材料の一部が非黒鉛化炭素材から成っている
ため、電池の容量を高めることができないほか、つぎの
とおりの問題がある。However, in this secondary battery, since a part of the carbon material of the negative electrode material is made of a non-graphitized carbon material, the capacity of the battery cannot be increased, and there are the following problems.
【0013】 すなわち、この二次電池は、黒鉛化材や
炭素材の粒径はnmオ−ダ(nは10-9の接頭語)であ
って、きわめて細かい。このため、このような二次電池
では負極材の比表面積が大きくなり、電解液との接触面
積が大きいと充放電の繰返しにより、電解液の分解が起
り易く、ガス発生、電池の内部圧力が上昇し、安全性に
問題がある。That is, in this secondary battery, the particle size of the graphitized material or the carbon material is on the order of nm (n is a prefix of 10 -9 ) and is extremely fine. For this reason, in such a secondary battery, the specific surface area of the negative electrode material is large, and if the contact area with the electrolyte is large, the electrolyte is likely to be decomposed due to repeated charge and discharge, and gas generation and internal pressure of the battery are reduced. Rise and have safety issues.
【0014】[0014]
【発明が解決しようとする課題】 本発明は上記欠点の
解決を目的とし、なかでも、2500℃〜3000℃の
きわめて高い温度で黒鉛化した黒鉛粉のうちで平均粒子
径の小さい黒鉛粉と大きい黒鉛粉とを配合し、この配合
した黒鉛粉を充填して成る負極用材であって、この負極
用材の黒鉛粉について、粒度分布、充填率、配合比、粒
径などを調整して電池容量を大巾に高めたLiイオン二
次電池の負極用材を提案する。SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned drawbacks, and among the graphite powders which have been graphitized at an extremely high temperature of 2500 to 3000 ° C., the graphite powder having a small average particle size and the graphite powder having a large average particle size are particularly preferred. A negative electrode material obtained by compounding graphite powder and filling the compounded graphite powder, and adjusting the particle size distribution, filling ratio, compounding ratio, particle size, etc. of the graphite powder of the negative electrode material to improve the battery capacity. We propose a material for the negative electrode of a Li-ion secondary battery that has been greatly increased.
【0015】[0015]
【課題を解決するための手段】 すなわち、本発明に係
る負極用材はLiイオン二次電池に用いられる負極用材
であって、2500℃〜3000℃で黒鉛化された人造
黒鉛を粉砕した黒鉛粉のうちで、平均粒子径の小さい小
径黒鉛粉と大きい大径黒鉛粉を配合し、この配合した黒
鉛粉を充填して成される負極用材である。この負極用材
はこのように構成され、つぎのとおりの特徴を具える。That is, the material for a negative electrode according to the present invention is a material for a negative electrode used in a Li-ion secondary battery, and is a graphite powder obtained by pulverizing artificial graphite graphitized at 2500 to 3000 ° C. Among them, a negative electrode material formed by blending small-diameter graphite powder having a small average particle diameter and large-diameter graphite powder and filling the blended graphite powder. This negative electrode material is configured as described above and has the following features.
【0016】 この負極用材における黒鉛粉では、黒鉛
粉の充填率は嵩密度(ρB)と真密度(ρT)の比で表わ
され、この充填率(ρB/ρT)は0.40〜0.7の範囲
内に調整されている。In the graphite powder in the negative electrode material, the filling rate of the graphite powder is represented by the ratio of the bulk density (ρ B ) to the true density (ρ T ), and the filling rate (ρ B / ρ T ) is 0.1. It is adjusted within the range of 40 to 0.7.
【0017】 この負極用材における黒鉛粉において小
径黒鉛粉の重量(WA)と大径黒鉛粉の重量(WB)との
配合比(WA/WB)は0.40〜0.45に調整されてい
る。The compounding ratio of the weight of the small-diameter weight of graphite powder (W A) and the large径黒lead powder in graphite powder in the negative electrode material (W B) (W A / W B) to 0.40-0.45 Has been adjusted.
【0018】 小径黒鉛粉と大径黒鉛粉とが配合された
黒鉛粉の粒度分布は、粒径3μm以下が5容量%以下、
平均粒子径が5μm以上になるように調整され、さら
に、小径黒鉛粉の平均粒子径と大径黒鉛粉の平均粒子径
との比を0.3以下に調整される。The particle size distribution of the graphite powder in which the small-diameter graphite powder and the large-diameter graphite powder are blended is as follows: a particle size of 3 μm or less is 5% by volume or less;
The average particle diameter is adjusted to be 5 μm or more, and the ratio of the average particle diameter of the small-diameter graphite powder to the average particle diameter of the large-diameter graphite powder is adjusted to 0.3 or less.
【0019】 本発明に係る負極用材はLiイオン二次
電池に用いられるものであって、この負極用材は、石油
ピッチ、石炭などの出発原料を通常のとおり700℃〜
1400℃で熱処理し、この炭素材をさらに高温の25
00℃〜3000℃で熱処理して黒鉛化した人造黒鉛で
ある。このように得られる人造黒鉛は粉砕され、この粉
砕の結果生じる黒鉛粉が充填され、負極用材は構成され
る。The material for a negative electrode according to the present invention is used for a Li-ion secondary battery. The material for a negative electrode is prepared by using a starting material such as petroleum pitch or coal at 700 ° C.
The carbon material is heat-treated at 1400 ° C.
This is artificial graphite which has been heat-treated at 00 ° C to 3000 ° C to be graphitized. The artificial graphite thus obtained is pulverized and filled with the graphite powder resulting from the pulverization to constitute a negative electrode material.
【0020】すなわち、黒鉛粉はコ−クスなどの炭素材
と相違して更に黒鉛化をはかったものであり、黒鉛結晶
は成長している。したがって、負極用材を成す黒鉛粉
は、結晶の成長が未発達な炭素材料に較べると、黒鉛化
により黒鉛粉そのものは軟質化しており、真比重が高く
なる。このために、充填率は高められ、さらに、放電時
に溶出するLiイオンは各黒鉛質粒子の表面および表面
に連通する内部の多数の層間や微細な孔隙内に吸蔵保持
され、所謂吸蔵能力が大巾に向上し、電池としての容量
は向上する。That is, unlike the carbon material such as coke, the graphite powder is further graphitized, and the graphite crystal is growing. Therefore, the graphite powder constituting the negative electrode material is softer due to graphitization and has a higher true specific gravity than the carbon material whose crystal growth has not yet been developed. For this reason, the filling rate is increased, and the Li ions eluted at the time of discharge are occluded and retained in the surface of each graphitic particle and in a number of internal layers and fine pores communicating with the surface, so-called occlusion capacity is large. And the capacity as a battery is improved.
【0021】 炭素材料といわれるものは結晶構造の上
からみると黒鉛系に属し、炭素材も黒鉛材も同じ結晶構
造に属する。このため、一般的には両者を厳格に区別し
ていない。しかし、この結晶構造の発達の程度による
と、炭素材と黒鉛材とは区別できる。The carbon material belongs to the graphite system when viewed from the top of the crystal structure, and both the carbon material and the graphite material belong to the same crystal structure. For this reason, in general, the two are not strictly distinguished. However, according to the degree of development of the crystal structure, the carbon material and the graphite material can be distinguished.
【0022】 このように区別できるのにも拘らず、そ
の後の研究においても、炭素材と黒鉛材との間には、明
確な変態点が検出されることがないところをとり上げ
て、結晶構造において両者が本質的に異なることがない
と考えられ、現在にいたっている。[0022] Despite being distinguishable in this way, in the subsequent research, it was pointed out that a clear transformation point was not detected between the carbon material and the graphite material. It is believed that they are not essentially different, and they are now.
【0023】 したがって、炭素材は黒鉛材に較べると
結晶の発達の程度が低いものを指すのにも拘らず、従来
例では、負極用材としてコ−クスなどの炭素材が用いら
れている二次電池も提案されている。Therefore, although the carbon material indicates a material having a lower degree of crystal development than the graphite material, in the conventional example, a secondary material in which carbon material such as coke is used as the material for the negative electrode is used. Batteries have also been proposed.
【0024】 一方、炭素材は2500℃〜3000℃
でさらに黒鉛化された黒鉛材に達するまでの間には結晶
構造の発達の程度に応じて、結晶の大小、その配向度
合、層面の積み重なりの規則性の違いなどによって、い
ろいろな中間物がある。これらのものを総称して炭素材
とも云われている。要するに、炭素材と云うと、工業的
に大量に得られる石炭、石油ピッチなどを700〜14
00℃で熱処理したコ−クスなどの炭素材を示し、この
ような炭素材を細粒化してこれを充填して、従来例の負
極用材は構成されている。On the other hand, the carbon material is 2500 ° C. to 3000 ° C.
Before reaching the graphitized graphite material, there are various intermediates depending on the size of the crystal structure, the degree of its orientation, the difference in the regularity of layer stacking, etc. depending on the degree of crystal structure development . These materials are collectively called carbon materials. In short, the term “carbon material” means that coal, petroleum pitch, etc., which are industrially obtained in large quantities, are 700 to 14
A carbon material such as coke heat-treated at 00 ° C. is shown, and such a carbon material is finely divided and filled to form a conventional negative electrode material.
【0025】 これに対し、本発明に係る負極用材は、
結晶を十分に発達させた人造黒鉛の粉末、つまり、黒鉛
粉を充填して構成する。黒鉛粉は、結晶構造を発達させ
て黒鉛質に移行させることによって生成され、この移行
は2500℃〜3000℃の熱処理によって達成でき
る。On the other hand, the negative electrode material according to the present invention
It is constituted by filling artificial graphite powder with sufficiently developed crystals, that is, graphite powder. Graphite powder is produced by developing a crystal structure and transferring it to graphite, and this transfer can be achieved by a heat treatment at 2500 to 3000 ° C.
【0026】すなわち、この熱処理によると、温度によ
って炭素質若しくは黒鉛質の性質はいろいろにコントロ
−ルでき、黒鉛粉の各粒子は、通常、黒鉛化と云われる
2500℃、なかでも、3000℃前後の高温処理によ
って結晶構造を十分に発達させ、所謂黒鉛化材料と云わ
れる程度まで黒鉛化する。したがって、本発明に用いる
黒鉛粉は、人造黒鉛とも云われる程度まで黒鉛化した材
料を粉砕として調製することができる。That is, according to this heat treatment, the properties of carbonaceous or graphitic materials can be controlled in various ways depending on the temperature, and each particle of the graphite powder is usually 2500 ° C., which is called graphitization, and especially 3000 ° C. The crystal structure is sufficiently developed by the high temperature treatment described above, and is graphitized to the extent that it is a so-called graphitized material. Therefore, the graphite powder used in the present invention can be prepared by pulverizing a material that has been graphitized to an extent that is also referred to as artificial graphite.
【0027】更に、黒鉛粉は、このように熱処理の程度
によって黒鉛化への移行が達成できることから、出発原
料によっても、黒鉛化の程度は相違する。一般には、石
油コ−クスのような炭素材は黒鉛化がし易い。このよう
な易黒鉛化材は、3000℃程度まで高温にしなくて
も、2500℃程度又はそれ以上の熱処理において十分
に黒鉛化が達成できる。Furthermore, the transition to graphitization of graphite powder can be achieved depending on the degree of heat treatment as described above. Therefore, the degree of graphitization differs depending on the starting materials. Generally, carbon materials such as petroleum coke are easily graphitized. Such a graphitizable material can sufficiently achieve graphitization by heat treatment at about 2500 ° C. or higher without raising the temperature to about 3000 ° C.
【0028】 以上のように、炭素粉と黒鉛粉とは同じ
結晶構造を持っているが、結晶の成長度合によって性質
が異なってくる。このところから、本発明では、平均粒
子径の小さい小径黒鉛粉と大きい大径黒鉛粉を配合し、
この配合した黒鉛粉を充填して負極用材を構成するこ
と、この配合された黒鉛粉を充填率0.4〜0.7の範囲
内で充填すること、2種の粒径の異なった黒鉛粉の配合
比を0.4〜0.45の範囲に保つこと、2種の黒鉛粉の
径は一定の関係に調整することなどによって、黒鉛材と
しての性質を有効に利用したすぐれた負極用材を構成す
る。As described above, the carbon powder and the graphite powder have the same crystal structure, but have different properties depending on the degree of crystal growth. From this point, in the present invention, a small-diameter graphite powder having a small average particle diameter and a large-diameter graphite powder are compounded,
Filling the compounded graphite powder to form a material for a negative electrode; filling the compounded graphite powder within a filling ratio of 0.4 to 0.7; two types of graphite powders having different particle diameters; By keeping the compounding ratio of 0.4 to 0.45 in the range of 0.4 to 0.45, the diameter of the two types of graphite powder is adjusted to a fixed relationship, and the like, to obtain an excellent negative electrode material that effectively utilizes the properties as a graphite material. Constitute.
【0029】すなわち、黒鉛材若しくは黒鉛粉は、炭素
材若しくは炭素粉に較べるときわめて軟らかく、粉砕に
より微粒子にする場合にも、粒度分布が狭いシャ−プな
黒鉛粒子が得られる。これに対し、炭素材は硬く、粉砕
により微粒子としても粒度分布が広いブロ−ドな炭素粒
子が得られる。そのため炭素材の粉砕では、所定の粒度
を得る収率が低く抑えられる。That is, the graphite material or the graphite powder is extremely soft as compared with the carbon material or the carbon powder, and sharp graphite particles having a narrow particle size distribution can be obtained even when finely divided by pulverization. On the other hand, the carbon material is hard and broad carbon particles having a wide particle size distribution can be obtained as fine particles by pulverization. Therefore, in the pulverization of the carbon material, the yield of obtaining a predetermined particle size can be suppressed low.
【0030】次に、充填率を高めるのには、Furna
sらによると、粒径の異なる二種類の粉体を混合する場
合に次の2つのことが報告されている。 1)粗粒と微粒の粉体を混ぜる場合、粒径比(=微粒子
径/粗粒子径)が小さいものほど空隙率が低くなる。 2)粒径比によらず粗粒70%、微粒30%付近で充填
率が最大になる。 C.C. Furnas, Ind. Eng. Che
m., 23.1052 (1931), Furna
s, C.C., Bur.Mines Rep. Inv
est. 7. 2894 (1928);Bur. Mi
nes Bull., 74, 307 (1929).D
insdale. and Wilkinson, Tr
ans.Brit. Ceram. Soc., 65,
391 (1966).Next, in order to increase the filling rate, Furna
According to s et al., the following two are reported when two types of powders having different particle sizes are mixed. 1) When mixing coarse and fine powders, the smaller the particle size ratio (= fine particle size / coarse particle size), the lower the porosity. 2) Regardless of the particle size ratio, the packing ratio becomes maximum around 70% of coarse particles and 30% of fine particles. C. C. Furnas, Ind. Eng. Che
m. , 23.1052 (1931), Furna.
s, C.I. C. , Bur. Mines Rep. Inv
est. 7. 2894 (1928); Bur. Mi
nes Bull. , 74, 307 (1929). D
insdale. and Wilkinson, Tr
ans. Brit. Ceram. Soc. , 65,
391 (1966).
【0031】このことから、本発明者らはLiイオン電
池負極材用黒鉛粉についてFurnasらの報告にもと
ずいて粒径比の大小の検討、混合比を検討し、その結果
として、充填率の高い負極用材を得た。Based on this, the present inventors examined the size and mixing ratio of the particle size ratio and the mixing ratio of the graphite powder for the negative electrode material of a Li-ion battery based on the report of Furnas et al. A negative electrode material having a high N was obtained.
【0032】 電池を製造する場合、限られた容積内に
なるべく多くの電極材料をいかに積め込めるかが、電池
容量増加の一つの名題である。このためには、黒鉛粉を
高い充填率で充填する必要がある。When manufacturing batteries, how to load as many electrode materials as possible in a limited volume is one of the titles of increasing battery capacity. For this purpose, it is necessary to fill graphite powder at a high filling rate.
【0033】 しかし、Liイオン二次電池の負極用材
では、ただ単に充填率を上げれば良いということではな
い。電解液が負極用材全体に回り込み、Liイオンの吸
蔵放出を行なえるだけの必要最低の空隙は必要となる。
このために、充填率を後にのべるように嵩密度(ρB)
と真密度(ρT)の比で表わし、この比が0.40〜0.
7になるように、黒鉛粉を充填する。このような範囲内
であると、必要な空隙が確保でき、実施例にも示すとお
り、放電容量を高めることができる。However, in the case of a material for a negative electrode of a Li-ion secondary battery, it does not mean that the filling rate is simply increased. The minimum gap required for the electrolyte to flow around the entire negative electrode material and to store and release Li ions is required.
For this purpose, the bulk density (ρ B ) will be described later,
And the true density (ρ T ), and this ratio is 0.40 to 0.40.
The graphite powder is filled so as to obtain a graphite powder. Within such a range, necessary voids can be secured, and as shown in the examples, the discharge capacity can be increased.
【0034】 また、放電容量などは負極用材の黒鉛粉
粒子の比表面積によっても左右され、比表面積は黒鉛粒
子の粒径によって調整できる。比表面積はBET法で測
定でき、BET法によると、粒子の表面のほかに微細孔
隙などの壁面に吸着するN2ガスの吸着量から比表面積
を算出でき、このようにBET法によって算出すると、
粒子内部の孔隙も測定できる。The discharge capacity and the like also depend on the specific surface area of the graphite powder particles for the negative electrode, and the specific surface area can be adjusted by the particle size of the graphite particles. The specific surface area can be measured by the BET method, according to the BET method, can calculate the specific surface area from the adsorption amount of the N 2 gas adsorbed on the wall surface, such as in addition to the fine pore of the surface of the particles, in this way is calculated by the BET method,
The pores inside the particles can also be measured.
【0035】 Liイオン二次電池の場合、負極材用の
比表面積が大きいと、微細孔隙の増加によって電池の容
量が増加するが、これにより電解液との接触面積が多く
なる。充放電を繰り返すと、負極材表面での電解液の分
解する量が多くなり、発生ガス量が増え、電池の内圧を
高めたりするので、安全上好ましくない。In the case of a Li-ion secondary battery, if the specific surface area for the negative electrode material is large, the capacity of the battery increases due to the increase in the fine pores, but this increases the contact area with the electrolyte. When charge and discharge are repeated, the amount of decomposition of the electrolytic solution on the surface of the negative electrode material increases, the amount of generated gas increases, and the internal pressure of the battery is increased.
【0036】 一般にいって、同じ銘柄の粉末では粒径
が小さいほど比表面積が大きくなる。一方、黒鉛粉末の
サイズは、安全上の問題から下限は先にのべたとおり制
約される。このため、本発明に係る負極用材に供せられ
る黒鉛粉には粒径3μm以下の粒子をなるべく含ませな
い方が好ましい。実用上では、平均粒子径が5μm以上
であって、この中に含まれる3μm以下の粒子の含有率
が5vol%以下であることが必要である。In general, for powders of the same brand, the smaller the particle size, the larger the specific surface area. On the other hand, the lower limit of the size of the graphite powder is restricted as described above due to safety problems. For this reason, it is preferable that the graphite powder used for the negative electrode material according to the present invention contains as few particles as possible having a particle size of 3 μm or less. In practical use, it is necessary that the average particle size is 5 μm or more, and the content of particles having a size of 3 μm or less contained therein is 5 vol% or less.
【0037】 このように調整された黒鉛粉であると、
電気抵抗の面からみても比抵抗がきわめて小さく、ちな
みに、100×10-5Ωcm以下である。これに対し、
炭素材の比抵抗は、ちなみに、500×10-5Ωcm程
度であって、きわめて高い。このため、負極用材として
用いる場合には、比抵抗が低く安定していることが好ま
しく、このところから云って、黒鉛材の粒子から成る負
極用材であると、電圧が安定し、エネルギ−ロスがきわ
めて少ない二次電池が得られる。With the graphite powder thus adjusted,
From the viewpoint of electric resistance, the specific resistance is extremely small. Incidentally, the specific resistance is 100 × 10 −5 Ωcm or less. In contrast,
The specific resistance of the carbon material is, by the way, about 500 × 10 −5 Ωcm, which is extremely high. For this reason, when used as a negative electrode material, it is preferable that the specific resistance is low and stable. From this point of view, if the negative electrode material is made of graphite material particles, the voltage is stable and the energy loss is low. Very few secondary batteries can be obtained.
【0038】 先にのべた比表面積が黒鉛粉の粒径によ
って調整できる理由を示すと、つぎのとおりである。黒
鉛材は、結晶が高度に発達した黒鉛質である。この黒鉛
質の黒鉛材を粉砕すると、黒鉛粉末の粒子そのものの内
部には微細な多数の孔隙が無限に形成され、Liイオン
の吸蔵・放出に関与する比表面積は大巾に増加する。The reason why the above specific surface area can be adjusted by the particle size of the graphite powder is as follows. The graphite material is a graphite material in which crystals are highly developed. When this graphitic graphite material is pulverized, numerous fine pores are formed infinitely inside the graphite powder particles themselves, and the specific surface area involved in the occlusion and release of Li ions is greatly increased.
【0039】この比表面積の増加はコ−クスなどの炭素
材と較べると、顕著であり、これによって負極用材の一
部として黒鉛粉を用いるときに、きわめて有効になる。This increase in the specific surface area is remarkable as compared with a carbon material such as coke, and this is extremely effective when graphite powder is used as a part of the negative electrode material.
【0040】ちなみに、後で示す実施例に示すとおり、
石油コ−クスなどの炭素材を出発原料としさらに約30
00℃で焼成した黒鉛粉の各粒子についてその比表面積
をBET法によって測定したところ、比表面積はきわめ
て大きく、2.95〜5.24m2/g程度となってい
る。なかでも、平均粒子径5.1μm程度の微粒子にす
ると、比表面積は5.24m2/gに達し、黒鉛粉の粒
子の持つ微細な孔隙はことごとく粒子表面に連通し、L
iイオンの吸蔵・放出能力は大巾に高められる。By the way, as shown in the embodiment described later,
Starting from a carbon material such as petroleum coke as a starting material, an additional 30
When the specific surface area of each particle of the graphite powder calcined at 00 ° C. was measured by the BET method, the specific surface area was extremely large, being about 2.95 to 5.24 m 2 / g. In particular, when the fine particles have an average particle diameter of about 5.1 μm, the specific surface area reaches 5.24 m 2 / g, and all the fine pores of the graphite powder particles communicate with the particle surface.
The ability to occlude and release i-ions is greatly enhanced.
【0041】すなわち、BET法は、周知の通り、粒子
の表面のほかに微細孔隙などの壁面に吸着する試料の吸
着量から、比表面積を測定する方法であって、表面積の
ほかに微細孔なども含めて測定される。このようなBE
T法によって測定される比表面積がきわめて大きいとい
うことはそれだけ微細孔隙がきわめて多い。That is, as is well known, the BET method is a method of measuring the specific surface area from the amount of sample adsorbed on the wall surface such as micropores in addition to the particle surface. Is also measured. BE like this
The fact that the specific surface area measured by the T method is extremely large means that the number of micropores is extremely large.
【0042】したがって、平均粒子径5.1μm程度ま
で微細すると、比表面積は5.24m2/g程度まで上
昇し、多数の微細孔隙がある。このように多数の微細孔
隙があると、溶出するLiイオンが吸着され、黒鉛化に
より結晶が十分に発達した黒鉛材の微細孔隙の径は、こ
のLiイオンの吸着に適合する径を持つことから、溶出
Liイオンはほとんど黒鉛材の粒子内に吸着保持され
る。このようなところから、黒鉛材を微細化した黒鉛粉
を二次電池の負極用材として用いると、負極用電池の容
量を大幅にアップすることができる可能性がある。Therefore, when the average particle diameter is reduced to about 5.1 μm, the specific surface area is increased to about 5.24 m 2 / g, and there are many fine pores. When there are a large number of such fine pores, the eluted Li ions are adsorbed, and the diameter of the fine pores of the graphite material in which the crystal is sufficiently developed by the graphitization has a diameter suitable for the adsorption of the Li ions. Most of the eluted Li ions are adsorbed and held in the graphite particles. From such a point, when graphite powder obtained by reducing graphite material is used as a negative electrode material of a secondary battery, the capacity of the negative electrode battery may be significantly increased.
【0043】しかしながら、黒鉛粉の粒子径をあまり小
さくすると、粒子径が小さくなることにともなって充填
しにくくなり、二次電池としての性能が低下する。However, if the particle size of the graphite powder is too small, it becomes difficult to fill the powder as the particle size becomes small, and the performance as a secondary battery is reduced.
【0044】このところから、本発明は、負極用材とし
て黒鉛粉の粒子のこのような特徴を利用してLiイオン
二次電池としての性能の向上をはかり、併せて、黒鉛粉
の粒子の粒径ならびにその配合比率を適正に調製して一
層の向上をはかる。From the above, the present invention aims to improve the performance as a Li-ion secondary battery by utilizing such characteristics of graphite powder particles as a material for a negative electrode, and also to improve the particle size of graphite powder particles. In addition, the compounding ratio is appropriately adjusted to further improve the composition.
【0045】 先にのべたとおり2500℃〜3000
℃で黒鉛化した黒鉛材を粉砕して黒鉛粉を上記のとおり
調整して充填するが、更に充填率を高めるために、Fu
rnasらの教えるところのとおり(段落0030参
照)、この黒鉛粉の各粒子のうちで、平均粒子径の異な
る少なくとも2種の黒鉛粉を配合する。この場合、平均
粒子径の小さい小径黒鉛粉の重量WAと平均粒子径の大
きい大径黒鉛粉の重量WBとの配合比を重量比WA/WB
とすると、この比を0.40〜0.45とする。2500 ° C. to 3000 as described above
The graphite material which has been graphitized at ℃ is crushed and the graphite powder is adjusted and filled as described above.
As taught by rnas et al. (see paragraph 0030), at least two types of graphite powder having different average particle diameters are blended among the particles of the graphite powder. In this case, the average of the average particle size and the weight W A particle size smaller diameter graphite powder greater atmospheric径黒lead powder weight W B weight ratio W A / W B the mixing ratio of
Then, this ratio is set to 0.40 to 0.45.
【0046】電池の容量を向上させるためには、黒鉛粉
の充填率を高くしなければならない。すなわち、充填率
を高くし空間率を低くすると、黒鉛粉の粒子の占める割
合が多くなるから、電池としての容量は必然的に高めら
れる。また、不規則な形状の粒子の充填では、充填率を
高めるのには黒鉛粉の粒子の配合比に左右され、黒鉛粉
の粒子の形状、すなわち、丸味や球形度(粒子と同体積
の表面積/粒子の表面積)に左右される。In order to improve the capacity of the battery, the filling rate of the graphite powder must be increased. That is, when the filling rate is increased and the void ratio is decreased, the proportion of the graphite powder particles increases, so that the capacity of the battery is inevitably increased. In the case of filling irregularly shaped particles, increasing the filling rate depends on the compounding ratio of the graphite powder particles, and the shape of the graphite powder particles, that is, roundness and sphericity (surface area of the same volume as the particles) / Surface area of the particles).
【0047】 この点、2500℃〜3000℃の熱処
理により黒鉛化した黒鉛粉は、コ−クス等の炭素質のも
のに比べると、真比重が高く軟質化している。このた
め、例えば、粉砕して微細化するときに、粒子にエッジ
部が生じる割合が少なく、丸味をおび、球形度が高めら
れている。このため、充填時の空間率は小さくなり、充
填率は高められる。In this regard, graphite powder graphitized by heat treatment at 2500 ° C. to 3000 ° C. has a higher true specific gravity and is softer than carbonaceous ones such as coke. For this reason, for example, when the particles are pulverized and refined, the proportion of edges generated in the particles is small, the particles are rounded, and the sphericity is increased. For this reason, the space ratio at the time of filling is reduced, and the filling ratio is increased.
【0048】 また、粒子径の異なる少なくとも2種類
の黒鉛粉を配合して充填率を高める際に、小径黒鉛粉と
大径黒鉛粉とを重量比で0.4〜0.45の割合で配合す
ると、充填率が一層高められるのはつぎの理由による。Further, when increasing the filling rate by blending at least two types of graphite powders having different particle diameters, the small-diameter graphite powder and the large-diameter graphite powder are blended in a weight ratio of 0.4 to 0.45. Then, the filling rate is further increased for the following reason.
【0049】すなわち、充填すべき黒鉛粉の粒子が微細
粉のみから成る場合は、粒子形状が同等で粒子径も等し
いこともあって、空間率も大きくなり、後の実施例に示
す通り、それほど充填率が高めることができないし、と
くに、粒子径が小さくなるほど充填率が低下する。That is, when the graphite powder particles to be filled are composed of only fine powder, the porosity is also increased due to the same particle shape and the same particle diameter, and as shown in the later examples, the porosity is not so large. The filling rate cannot be increased, and in particular, the filling rate decreases as the particle size decreases.
【0050】これに反し、粒子径の小さい粒子の黒鉛粉
であっても、それより大きい粒子径の黒鉛粉を配合し、
この配合比率を適正な比率にすると、充填率は高められ
る。On the other hand, even if the graphite powder has a small particle diameter, the graphite powder having a larger particle diameter is blended.
When the mixing ratio is set to an appropriate ratio, the filling rate is increased.
【0051】 この比率は、重量比で0.40〜0.45
程度である。すなわち、小径黒鉛粉の配合比が0.40
以下に低下すると、これにともなって充填率そのものが
低下する。一方、小径黒鉛粉の配合比が0.45をこえ
ると、小径黒鉛粉が多くなって、充填率が低下し、電池
としての容量の向上がそれほど望めない。This ratio is 0.40 to 0.45 by weight.
It is about. That is, the compounding ratio of the small-diameter graphite powder is 0.40.
When it falls below, the filling rate itself falls accordingly. On the other hand, when the compounding ratio of the small-diameter graphite powder exceeds 0.45, the small-diameter graphite powder increases, the filling rate decreases, and the improvement of the capacity as a battery cannot be expected much.
【0052】 このように大径と小径の黒鉛粉を配合す
るが、この際の黒鉛粉の粒径は平均粒子径にもとずいて
定める。As described above, the graphite powder having a large diameter and a small diameter are mixed, and the particle size of the graphite powder at this time is determined based on the average particle size.
【0053】黒鉛粉の各粒子について粒子径を求める場
合に、相当径、有効径などとして求めることができる
が、平均粒径として求めれば十分である。When the particle diameter is determined for each particle of the graphite powder, it can be determined as an equivalent diameter, an effective diameter, or the like, but it is sufficient to determine the average particle diameter.
【0054】この平均粒径は、一つの粒径範囲の分布を
もった粒子群について平均の粒子の大きさを表わす。し
たがって、一定の粒度分布との関連から、種々の平均粒
径、例えば、算術平均径、平均表面積径、平均体積径、
メディアン径、粒径分布において最大頻度を示す粒径な
どがある。しかし、この中でいずれの値もとることもで
きるし、いずれの値をとっても同等の効果が達成できる
が、通常は算術平均径をとれば十分である。This average particle size represents the average particle size of a group of particles having a distribution in one particle size range. Therefore, from the relationship with a certain particle size distribution, various average particle size, for example, arithmetic average diameter, average surface area diameter, average volume diameter,
There are a median diameter, a particle diameter showing the maximum frequency in the particle diameter distribution, and the like. However, any of these values can be used, and the same effect can be achieved by using any value, but it is usually sufficient to take the arithmetic mean diameter.
【0055】 このように平均粒子径を定めるのに当っ
て、上記のように、黒鉛粉の各粒子群の粒度分布は粒径
3μm以下のものが5%以下であって、平均粒子径が5
μm以上にするのが好ましい。In determining the average particle size in this manner, as described above, the particle size distribution of each particle group of the graphite powder is 5% or less for those having a particle size of 3 μm or less, and the average particle size is 5% or less.
It is preferable that the thickness be at least μm.
【0056】すなわち、黒鉛粉の粒度分布を定めるのに
当って、一方の負極用材から溶出されるLiイオンの吸
蔵・放出の上から定める必要がある。この点から云う
と、粒度分布が上記の通りの範囲内にあると、吸蔵され
たLiイオンは円滑に放電できる。これに反し、粒度分
布がこれ以下、とくに、粒子径がnmのオ−ダに至る
と、粒子に吸蔵されたLiイオンは円滑に放出できず、
放電効率が劣る。That is, in determining the particle size distribution of the graphite powder, it is necessary to determine from the occlusion and release of Li ions eluted from one negative electrode material. From this point, if the particle size distribution is in the above range, the occluded Li ions can be discharged smoothly. On the other hand, when the particle size distribution is below this, especially when the particle size reaches the order of nm, the Li ions occluded in the particles cannot be released smoothly,
Poor discharge efficiency.
【0057】また、負極用材として充電効率を上げるた
めには、平均粒子径の異なる黒鉛粉を配合するに当っ
て、小径黒鉛粉の平均粒子径(D1)と大径黒鉛粉の平
均粒子径(D2)の比(D1/D2)を0.3以下にする
のが好ましい。Further, in order to increase the charging efficiency as a material for the negative electrode, the average particle diameter (D 1 ) of the small-diameter graphite powder and the average particle diameter of the large-diameter graphite powder must be adjusted when compounding graphite powders having different average particle diameters. (D 2) the ratio of the (D 1 / D 2) preferably 0.3 or less.
【0058】すなわち、比(D1/D2)を小さくする
と、充填効率は高められ、この点から、上限は0.3程
度が好ましい。しかし、あまり小さくすると、小径黒鉛
粉の粒径(D1)が小さくなり、それによってかえって
放電効率が低下し、このところから、比(D1/D2)の
下限は0.1程度が好ましい。That is, when the ratio (D 1 / D 2 ) is reduced, the filling efficiency is increased, and from this point, the upper limit is preferably about 0.3. However, if the particle size is too small, the particle size (D 1 ) of the small-diameter graphite powder becomes small, thereby lowering the discharge efficiency. From this viewpoint, the lower limit of the ratio (D 1 / D 2 ) is preferably about 0.1. .
【0059】更に、黒鉛粉の充填率は、黒鉛粉の嵩密度
(ρB)と真密度(ρT)によって左右され、ρB/ρTと
してあらわされる。この値は0.4〜0.7にするのが
電池の容量の向上の上から好ましい。すなわち、黒鉛化
を相当進行させても、嵩密度(ρB)を1.54g/c
m3以上に上げることはむづかしく、黒鉛の真密度
(ρT)は2.2g/cm3程度であるから、ρB/ρTの
値は0.7以下になり、また、0.4以下になると、L
iイオンなどの吸蔵・放出能力が低下する。Further, the filling rate of the graphite powder depends on the bulk density (ρ B ) and the true density (ρ T ) of the graphite powder, and is expressed as ρ B / ρ T. This value is preferably set to 0.4 to 0.7 from the viewpoint of improving the capacity of the battery. That is, even if the graphitization proceeds considerably, the bulk density (ρ B ) is 1.54 g / c.
It is difficult to increase it to m 3 or more, and since the true density (ρ T ) of graphite is about 2.2 g / cm 3 , the value of ρ B / ρ T becomes 0.7 or less, and 0.4 When it becomes below, L
The ability to occlude and release i-ions etc. decreases.
【0060】[0060]
【実施例】熱膨脹係数が2.5×10-6℃-1のコ−クス
を平均粒径が5μmになるように粉砕した。この粉体1
00重量部に対し、バインダ−ピッチ25重量部を加
え、ニ−ダ−で混練りを行い押し出し、ブロック状成形
体を得た。EXAMPLE Coke having a coefficient of thermal expansion of 2.5.times.10.sup.-6.degree. C.- 1 was pulverized so that the average particle size became 5 .mu.m. This powder 1
25 parts by weight of a binder pitch was added to 00 parts by weight, kneaded with a kneader and extruded to obtain a block-shaped molded body.
【0061】これを非酸化性雰囲気下にて最終的に約3
000℃で黒鉛化し、人造黒鉛のブロックとした。This is finally reduced to about 3 in a non-oxidizing atmosphere.
It was graphitized at 000 ° C to obtain a block of artificial graphite.
【0062】このブロックを粉砕し、分級して平均粒径
(算術平均径)が25.8μm、12.1μm、5.1μ
mの粗、中、微の3種の黒鉛粉を得た。各黒鉛粉の性質
は表1に示すとおりであった。This block was pulverized and classified to have an average particle diameter (arithmetic average diameter) of 25.8 μm, 12.1 μm, 5.1 μm.
m, three types of coarse, medium and fine graphite powders were obtained. The properties of each graphite powder were as shown in Table 1.
【0063】[0063]
【表1】 [Table 1]
【0064】これら各黒鉛粉を単独又は2種配合して充
填して負極用材を作成し、これらの各特性をまとめて示
すと、次のとおりである。Each of these graphite powders, alone or in combination, is filled to prepare a negative electrode material. The characteristics of these materials are summarized below.
【0065】[0065]
【表2】 [Table 2]
【0066】表2から明らかな通り、No.4において
約10%の容量アップ(No.1〜3に対して)が認めら
れ、とくに、放電容量は300mAh/g以上を達成で
きた。As is clear from Table 2, In No. 4, an increase in capacity of about 10% (with respect to Nos. 1 to 3) was recognized, and in particular, a discharge capacity of 300 mAh / g or more was achieved.
【0067】また、No.3ははじめに充填したときの
容量ロスが大きかった。In addition, No. Sample No. 3 had a large capacity loss when initially charged.
【0068】更に、No.5ならびに6は、黒鉛粉の充
填率がNo.1ならびに2ほどに高めないのにも拘ら
ず、放電容量は同等又はそれ以上まで高められた。Further, No. In Nos. 5 and 6, the filling ratio of the graphite powder was No. 5; Despite not increasing as much as 1 and 2, the discharge capacity was increased to the same or better.
【0069】[0069]
【発明の効果】以上詳しく説明した通り、本発明に係る
負極用材は、黒鉛化された黒鉛粉のうち、平均粒子径の
異なる少なくとも2つの黒鉛粉が配合されて充填されて
構成される。As described above in detail, the negative electrode material according to the present invention is constituted by blending and filling at least two graphite powders having different average particle diameters among the graphitized graphite powders.
【0070】したがって、黒鉛粉から成るものであるか
ら抵抗が小さく、軟質であり、このため、粉末の各粒子
は粉砕により丸味をおび、充填率が高められ、放充電時
のエネルギ−のロスも少ない。また、平均粒子径の異な
る黒鉛粉は適切な割合で配合されるため、充填率が高め
られるほか、これにともなって電池としての容量も大き
く、とくに、黒鉛粉の粒度分布は適正範囲内にあるた
め、Liイオンの吸蔵や、放出がきわめて円滑で、優れ
た二次電池が得られる。Therefore, since it is made of graphite powder, its resistance is small and it is soft. Therefore, each particle of the powder is rounded by pulverization, the filling rate is increased, and the energy loss at the time of discharging and charging is also reduced. Few. In addition, since graphite powders having different average particle diameters are blended in an appropriate ratio, the filling rate is increased, and accordingly, the capacity as a battery is large, and particularly, the particle size distribution of the graphite powder is within an appropriate range. Therefore, an excellent secondary battery is obtained in which the absorption and release of Li ions are extremely smooth.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−27314(JP,A) 特開 平9−161778(JP,A) 特開 平9−147860(JP,A) 特開 平9−63586(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 - 4/04 H01M 10/40 C01B 31/00 - 31/36 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-9-27314 (JP, A) JP-A-9-161778 (JP, A) JP-A-9-147860 (JP, A) JP-A-9-127 63586 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02-4/04 H01M 10/40 C01B 31/00-31/36
Claims (1)
人造黒鉛を粉砕した黒鉛粉のうちで平均粒子径の小さい
小径黒鉛粉と大きい大径黒鉛粉とを配合し、この配合し
た黒鉛粉を充填してなるLiイオン二次電池の負極用材
において、 この配合充填した前記黒鉛粉は、粒径3μm以下を5容
量%以下含み平均粒子径5μm以上の粒度分布と真密度
(ρT)に対する嵩密度(ρB)の比(ρB/ρT)0.4
0〜0.7の充填率とを具え、前記大径黒鉛粉の平均粒
子径に対する前記小径黒鉛粉の平均粒子径の比が0.3
以下で、前記大径黒鉛粉の重量(WB)に対する前記小
径黒鉛粉の重量(WA)の配合比(WA/WB)が0.40
〜0.45であることを特徴とするLiイオン二次電池
の負極用材。1. A graphite powder obtained by pulverizing artificial graphite graphitized at 2500 ° C. to 3000 ° C. is blended with a small-diameter graphite powder having a small average particle diameter and a large-diameter graphite powder, and the blended graphite powder is mixed. In the negative electrode material of a Li-ion secondary battery filled, the compounded and filled graphite powder contains 5% by volume or less of a particle size of 3 μm or less and has a particle size distribution of an average particle size of 5 μm or more and a bulk relative to a true density (ρ T ). Density (ρ B ) ratio (ρ B / ρ T ) 0.4
And a ratio of the average particle diameter of the small-diameter graphite powder to the average particle diameter of the large-diameter graphite powder is 0.3.
In the following, the compounding ratio (W A / W B ) of the weight (W A ) of the small-diameter graphite powder to the weight (W B ) of the large-diameter graphite powder is 0.40.
A material for a negative electrode of a Li-ion secondary battery, wherein the thickness is from 0.45 to 0.45.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09193051A JP3084256B2 (en) | 1997-07-03 | 1997-07-03 | Material for negative electrode of Li-ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09193051A JP3084256B2 (en) | 1997-07-03 | 1997-07-03 | Material for negative electrode of Li-ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1125981A JPH1125981A (en) | 1999-01-29 |
JP3084256B2 true JP3084256B2 (en) | 2000-09-04 |
Family
ID=16301371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09193051A Expired - Fee Related JP3084256B2 (en) | 1997-07-03 | 1997-07-03 | Material for negative electrode of Li-ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3084256B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017111542A1 (en) * | 2015-12-23 | 2017-06-29 | 주식회사 엘지화학 | Anode active material for lithium secondary battery and anode for lithium secondary battery including same |
WO2018052234A3 (en) * | 2016-09-13 | 2018-05-03 | 주식회사 엘지화학 | Anode, secondary battery comprising same, battery module, and battery pack |
JP2018523912A (en) * | 2015-12-23 | 2018-08-23 | エルジー・ケム・リミテッド | Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery containing the same |
US10693140B2 (en) | 2016-09-13 | 2020-06-23 | Lg Chem, Ltd. | Negative electrode, and secondary battery, battery module, and battery pack including the same |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3579340B2 (en) * | 2000-09-29 | 2004-10-20 | 株式会社東芝 | Non-aqueous electrolyte secondary battery |
JP2007220451A (en) * | 2006-02-16 | 2007-08-30 | Matsushita Electric Ind Co Ltd | Anode for lithium secondary battery and lithium secondary battery |
JP2009295400A (en) * | 2008-06-04 | 2009-12-17 | Fdk Corp | Nonaqueous power storage element |
JP2014517459A (en) | 2011-05-23 | 2014-07-17 | エルジー ケム. エルティーディ. | High energy density lithium secondary battery with improved energy density characteristics |
CN103518277B (en) | 2011-05-23 | 2016-03-23 | 株式会社Lg化学 | The height with the power density properties of enhancing exports lithium secondary battery |
EP2693537B1 (en) | 2011-05-23 | 2017-12-06 | LG Chem, Ltd. | High energy density lithium secondary battery having enhanced energy density characteristic |
CN103650212B (en) | 2011-07-13 | 2016-03-30 | 株式会社Lg化学 | There is the high-energy lithium secondary battery of the energy density characteristics of enhancing |
JP2014026991A (en) * | 2013-11-05 | 2014-02-06 | Sony Corp | Secondary battery, and graphite material for secondary battery |
US10629909B2 (en) | 2015-12-08 | 2020-04-21 | Gs Yuasa International Ltd. | Energy storage device |
CN111732096B (en) * | 2019-03-25 | 2022-02-22 | 中信国安盟固利动力科技有限公司 | Negative electrode material of high-power lithium ion battery and preparation method thereof |
KR20220057715A (en) * | 2020-10-30 | 2022-05-09 | 주식회사 엘지에너지솔루션 | Negative electrode active material for lithium secondary battery, negative electrode and lithium secondary battery |
WO2022162950A1 (en) * | 2021-02-01 | 2022-08-04 | 昭和電工マテリアルズ株式会社 | Negative electrode material for lithium-ion secondary battery, method for evaluating negative electrode material, method for manufacturing same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery |
KR20230088558A (en) * | 2021-12-10 | 2023-06-20 | (주)포스코퓨처엠 | An anode material for lithium secondary battery, preparing method of thereof, and lithium secondary battery comprising thereof |
CN115959656B (en) * | 2022-12-27 | 2025-03-07 | 矿冶科技集团有限公司 | Method for producing graphite negative electrode material for lithium electronic battery using waste cathode of aluminum electrolysis |
-
1997
- 1997-07-03 JP JP09193051A patent/JP3084256B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017111542A1 (en) * | 2015-12-23 | 2017-06-29 | 주식회사 엘지화학 | Anode active material for lithium secondary battery and anode for lithium secondary battery including same |
JP2018523912A (en) * | 2015-12-23 | 2018-08-23 | エルジー・ケム・リミテッド | Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery containing the same |
US10439221B2 (en) | 2015-12-23 | 2019-10-08 | Lg Chem, Ltd. | Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery including the same |
WO2018052234A3 (en) * | 2016-09-13 | 2018-05-03 | 주식회사 엘지화학 | Anode, secondary battery comprising same, battery module, and battery pack |
US10693140B2 (en) | 2016-09-13 | 2020-06-23 | Lg Chem, Ltd. | Negative electrode, and secondary battery, battery module, and battery pack including the same |
Also Published As
Publication number | Publication date |
---|---|
JPH1125981A (en) | 1999-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3084256B2 (en) | Material for negative electrode of Li-ion secondary battery | |
CN104704660A (en) | Porous Silicon-Based Anode Active Material, And Lithium Secondary Battery Containing Same | |
JP3598153B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2005135925A (en) | Electrode material and its manufacturing method, and nonaqueous secondary battery and its manufacturing method | |
JP4595145B2 (en) | Non-aqueous electrolyte battery | |
KR101786195B1 (en) | Carbon-silicon composite and anode active material for secondar battery comprising the same | |
JPH10189044A (en) | Nonaqueous electrolytic secondary battery | |
JPH06318459A (en) | Lithium secondary battery | |
JP3054379B2 (en) | Graphite powder coated with graphite for negative electrode material of lithium secondary battery and its manufacturing method | |
CN103441250B (en) | Lithium rechargeable battery, for negative material, the preparation method of this secondary cell | |
JP4393712B2 (en) | Carbon material for battery and battery using the carbon material | |
CN115548420A (en) | Lithium secondary battery | |
JPH06111818A (en) | Carbon negative electrode for non-aqueous electrolyte secondary battery | |
JP4201526B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2005142004A (en) | Non-aqueous electrolyte secondary battery | |
JP2020187865A (en) | Negative electrode active material for solid battery, negative electrode arranged by use thereof, and solid battery | |
JP2000040510A (en) | Nonaqueous electrolyte secondary battery | |
JPH09320602A (en) | Negative electrode for lithium secondary battery | |
JP2004095391A (en) | Battery and its manufacturing method | |
JPH07183047A (en) | Nonaqueous electrolyte secondary battery | |
JPH09129232A (en) | Nonaqueous electrolytic secondary battery | |
JP4747392B2 (en) | Nonaqueous electrolyte secondary battery | |
KR101587882B1 (en) | Manufacturing method of carbon-coated NbO₂ as negative electrode active material for lithium ion secondary battery | |
JP3837726B2 (en) | battery | |
JPH1197015A (en) | Nonaqueous electrolyte secondary cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000530 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070630 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080630 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080630 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090630 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090630 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |