JP3083079B2 - Copper electrorefining method - Google Patents
Copper electrorefining methodInfo
- Publication number
- JP3083079B2 JP3083079B2 JP08219999A JP21999996A JP3083079B2 JP 3083079 B2 JP3083079 B2 JP 3083079B2 JP 08219999 A JP08219999 A JP 08219999A JP 21999996 A JP21999996 A JP 21999996A JP 3083079 B2 JP3083079 B2 JP 3083079B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic
- copper
- anode
- refining
- electrolytic refining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010949 copper Substances 0.000 title claims description 47
- 229910052802 copper Inorganic materials 0.000 title claims description 37
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 36
- 238000000034 method Methods 0.000 title claims description 28
- 238000007670 refining Methods 0.000 claims description 41
- 238000005363 electrowinning Methods 0.000 claims description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 239000008151 electrolyte solution Substances 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 10
- 238000005868 electrolysis reaction Methods 0.000 claims description 9
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 6
- 239000005751 Copper oxide Substances 0.000 claims description 5
- 229910000431 copper oxide Inorganic materials 0.000 claims description 5
- 239000002699 waste material Substances 0.000 claims description 3
- 239000012141 concentrate Substances 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 description 23
- 229910052787 antimony Inorganic materials 0.000 description 22
- 238000010828 elution Methods 0.000 description 8
- 238000000746 purification Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Electrolytic Production Of Metals (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、銅電解精製に関
し、具体的には不純物が電解液へ溶出するのを防止しつ
つ銅電解する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to copper electrorefining, and more particularly, to a method for copper electrolysis while preventing impurities from being eluted into an electrolytic solution.
【0002】[0002]
【従来の技術】銅電解では、電解精製中に電解液中に粗
銅から溶出した不純物、特にSb、Biは陰極で析出せ
ず電解液中にとどまる。そして、これの濃度が上昇する
と析出して、配管等にスケールとして付着したり、配管
の閉塞をきたしたり、電気銅に付着・巻き込まれて製品
に悪影響を及ぼす。そこで、Sb、Biを電解液より系
外に除去するために、図2に示すように、一度電解液を
濃縮し、電解液中の銅を丹礬として回収した後、電解液
中のCu、Sb、Biを電解採取する方法(電解採取
法)が採用されている。2. Description of the Related Art In copper electrolysis, impurities eluted from crude copper in an electrolytic solution during electrolytic refining, particularly Sb and Bi, remain in the electrolytic solution without being precipitated at the cathode. When the concentration increases, it precipitates and adheres to the pipes or the like as scale, blocks the pipes, or adheres to and gets caught in electrolytic copper, adversely affecting the product. Therefore, in order to remove Sb and Bi from the electrolytic solution out of the system, as shown in FIG. 2, the electrolytic solution is once concentrated, and the copper in the electrolytic solution is recovered as alum, and then Cu, A method of electrolytically extracting Sb and Bi (electrolytic extraction method) is employed.
【0003】電解採取法では、電解の進行に伴うCu濃
度の低下により、As、Sb、Bi等の銅電解液中の不
純物も電析し、その結果としてこれら不純物がカソード
に析出して除去される。しかし、この方法ではアルシン
等の有害なガス発生のおそれがあり、また、電流効率が
極端に低い為、操業上多くの課題を残している。さら
に、上記電解採取法では、銅の種板をカソードとして使
用するため、得られたカソードはCuを回収するためS
b、Biを電着したまま溶錬工程へ繰り返すが、この結
果、Sb、Biは系外に排出できないばかりか、Cuの
仕掛かり量を減少させることができない等の問題があ
る。In the electrowinning method, impurities in a copper electrolyte such as As, Sb, Bi and the like are also deposited due to a decrease in the Cu concentration as the electrolysis proceeds, and as a result, these impurities are deposited on the cathode and removed. You. However, this method may generate harmful gases such as arsine and the current efficiency is extremely low, so that many problems remain in operation. Furthermore, in the above-mentioned electrowinning method, since a copper seed plate is used as a cathode, the obtained cathode is used to recover Cu.
The process is repeated to the smelting process while b and Bi are electrodeposited. However, as a result, there are problems that not only Sb and Bi cannot be discharged out of the system but also the amount of Cu in-process cannot be reduced.
【0004】この欠点を解消できる方法としてキレート
樹脂を用いる方法などがある。この方法に従えば、系外
にSb、Biを直接払い出すことが可能である。しか
し、この方法では大きな設備が必要となり、また溶離し
た液の処理にコストと手間がかかる。また、酸化剤を用
いて、これらのSb、Biを酸化させ、酸化物として取
り除くことも考えられるが、酸化剤のコストが高く、ま
た酸化剤として低価格のエアーを用いる場合は効率が低
い。したがって、いずれも実用的でない。[0004] As a method for solving this drawback, there is a method using a chelate resin and the like. According to this method, Sb and Bi can be directly paid out of the system. However, this method requires a large facility, and the treatment of the eluted liquid requires cost and labor. It is also conceivable to oxidize these Sb and Bi using an oxidizing agent and remove them as oxides. However, the cost of the oxidizing agent is high, and the efficiency is low when low-cost air is used as the oxidizing agent. Therefore, neither is practical.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記状況を
解決すべくなされたものであり、銅の電解精製におい
て、電解槽装置や電気銅へのSb、Biの析出を防止
し、電解採取で得られた電気銅を高品質の製品とし、精
製工程におけるCu、Sb、Bi、の繰り返しを減少し
うる方法の提供を課題とする。DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned situation, and it is intended to prevent the precipitation of Sb and Bi on an electrolytic cell device and electrolytic copper in the electrolytic refining of copper, and to perform electrowinning. It is an object of the present invention to provide a method that can reduce the repetition of Cu, Sb, Bi in the purification process by using the electrolytic copper obtained in the above as a high-quality product.
【0006】[0006]
【課題を解決するための手段】すなわち、上記課題を解
決する本発明の方法は、電解精製と電解採取の組合わせ
にあり、電解精製工程で生成する電解スライム中にS
b、Biを濃縮させるために、該電解精製工程より排出
される電解排液を電解採取工程の給液として脱銅電解を
行い、該電解採取工程より排出される電解排液を該電解
精製工程への給液とする。In other words, the method of the present invention for solving the above-mentioned problems lies in a combination of electrolytic refining and electrowinning , and comprises S in the electrolytic slime produced in the electrolytic refining step.
b, and in order to concentrate the Bi, the electrolytic refining process is discharged from performed decoppered electrolysis an electrolyte drainage as liquid supply electrowinning step, the electrolytic refining step the waste electrolytic solution discharged from the electrowinning step To the liquid.
【0007】具体的には、酸化銅の量を多くしたアノー
ドを用いる電解精製工程の電解槽より排出される電解排
液を電解採取工程の電解槽に給液し、不溶性アノードを
用いる電解採取工程の電解槽より排出される溶存酸素に
富んだ電解排液を電解精製工程の電解槽へ給液する。Specifically, an electrolytic wastewater discharged from an electrolytic cell in an electrolytic refining process using an anode having an increased amount of copper oxide is supplied to an electrolytic cell in an electrolytic sampling process, and an electrolytic sampling process using an insoluble anode is performed. The electrolytic effluent rich in dissolved oxygen discharged from the electrolytic cell is supplied to the electrolytic cell in the electrolytic refining step.
【0008】また、本発明の方法を採用するに際して
は、電解精製のアノードの酸素濃度を管理することによ
り、電解採取工程でカソードに電着させる銅量を一定に
維持することが好ましい。When employing the method of the present invention, it is preferable to maintain a constant amount of copper electrodeposited on the cathode in the electrowinning step by controlling the oxygen concentration of the anode for electrolytic refining.
【0009】[0009]
【発明の実施の形態】本発明の実施例のフローチャート
を図1に示す。電解精製槽では、従来技術と同様に、ア
ノードを粗銅、カソードをCu種板として電解を行う。
また、電解採取槽では、アノードにPb等の不溶性電極
を用い、且つカソードにCu種板を用いて脱銅電解を行
う。銅の電解精製では通常、アノードの電流効率とカソ
ードの電流効率は等しくなく、一般にアノード側の電流
効率が高い。したがって、カソードで電着する銅量より
もアノードから溶出する銅量が多く、余分に溶出したC
uは硫酸銅の形で電解排液と共に流出し、電解採取槽の
脱銅電解でカソードに析出される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a flowchart of an embodiment of the present invention. In the electrolytic refining tank, electrolysis is performed using the blister copper as the anode and the Cu seed plate as the cathode, as in the prior art.
In the electrowinning tank, copper removal electrolysis is performed using an insoluble electrode such as Pb as the anode and a Cu seed plate as the cathode. In copper electrorefining, the current efficiency of the anode and the current efficiency of the cathode are usually not equal, and the current efficiency on the anode side is generally high. Therefore, the amount of copper eluted from the anode is larger than the amount of copper electrodeposited at the cathode, and the extra eluted C
u flows out together with the electrolytic effluent in the form of copper sulfate, and is deposited on the cathode by copper removal electrolysis in the electrolytic collection tank.
【0010】本実施例では、銅の電解精製において、電
解精製工程と電解採取工程と組み合わせ、溶存酸素に富
んだ電解採取排液を電解精製工程に供給し、電解精製中
のアノードから電解液中にSb、Biが溶出するのを抑
えることで、電解採取電解液中のSb、Bi濃度の上昇
を防いで、カソード(電気銅)へのSb、Biの析出を
防止する。さらに、電解採取で得られた電気銅が高品質
の製品となり、精製工程におけるCu、Sb、Biの繰
り返しを減少させうる。In this embodiment, in the electrolytic refining of copper, the electrolytic refining step and the electrolytic retrieving step are combined with each other, and the electrolytic retrieving effluent rich in dissolved oxygen is supplied to the electrolytic refining step. By suppressing the elution of Sb and Bi, the concentration of Sb and Bi in the electrowinning electrolyte is prevented from increasing, and the precipitation of Sb and Bi on the cathode (electrolytic copper) is prevented. Furthermore, the electrolytic copper obtained by the electrowinning becomes a high-quality product, and the repetition of Cu, Sb, and Bi in the refining process can be reduced.
【0011】すなわち、電解精製工程の電解槽の排液に
通常の添加剤のみを添加して直接に電解採取槽へ給液
し、さらに電解採取工程の電解槽からの排液を再び電解
精製工程の電解槽に給液する一連のサイクルを実施する
ことにより、電解精製のアノードからSb、Biが電解
液中に溶出するのが効果的に防止され、Sb、Biは電
解スライムとして濃縮する。この結果、電解採取工程で
カソード側に電析するCuが高品質の電気銅となる。That is, only the usual additives are added to the drainage of the electrolytic cell in the electrolytic refining step, and the solution is directly supplied to the electrolytic collecting tank. By performing a series of cycles of supplying liquid to the electrolytic cell, Sb and Bi are effectively prevented from being eluted from the anode for electrolytic refining into the electrolytic solution, and Sb and Bi are concentrated as electrolytic slime. As a result, Cu deposited on the cathode side in the electrowinning step becomes high quality electrolytic copper.
【0012】この原理については不明な点もあるが、電
解液中に存在していたSb、Biの濃度も低下すること
から、電解採取のアノードで発生した溶存酸素が電解精
製槽に入るので、電解精製のアノードから一度溶出した
SbO+、BiO+が当該溶存酸素により酸化され、Sb
2O5、Bi2O5等の酸化物を生成し、スライムとして電
解精製槽に沈澱すると考えられた。 2SbO++3H2O→Sb2O5+6H++6e 6H++3O2+6e→3H2O Cu+++2e→CuAlthough there is some unclear point about this principle, since the concentration of Sb and Bi existing in the electrolytic solution also decreases, the dissolved oxygen generated at the anode for electrolytic collection enters the electrolytic purification tank. SbO + and BiO + once eluted from the anode for electrolytic purification are oxidized by the dissolved oxygen,
It was considered that oxides such as 2 O 5 and Bi 2 O 5 were formed and precipitated as slime in the electrolytic purification tank. 2SbO + + 3H 2 O → Sb 2 O 5 + 6H + + 6e 6H + + 3O 2 + 6e → 3H 2 O Cu ++ + 2e → Cu
【0013】一方、電解採取槽ではアノード側の反応は
Pb等の不溶性アノードを使用するため酸素発生が主体
で、銅は溶出しない。従って、カソード側で電析する銅
量を何らかの方法で供給する必要がある。この銅量は、
電解精製におけるアノード中の酸素品位を上昇させるこ
とにより達成される。すなわち、電解精製槽のアノード
中の酸素は通常酸化銅の形で固定されると考えられてお
り、この酸化銅は電解精製槽の中でも電気エネルギーを
必要とせず、電解液中の硫酸または硫酸と溶存酸素によ
り化学溶解する。 CuO+H2SO4→CuSO4+H2O Cu2O+2H2SO4+1/2O2→2CuSO4+2H2OOn the other hand, in the electrowinning tank, the reaction on the anode side mainly uses oxygen generation because an insoluble anode such as Pb is used, and copper does not elute. Therefore, it is necessary to supply the amount of copper deposited on the cathode side by some method. This amount of copper
This is achieved by increasing the oxygen quality in the anode in electrorefining. In other words, it is considered that oxygen in the anode of the electrolytic refining tank is usually fixed in the form of copper oxide, and this copper oxide does not require electric energy even in the electrolytic refining tank, and is replaced with sulfuric acid or sulfuric acid in the electrolytic solution. Chemically dissolved by dissolved oxygen. CuO + H 2 SO 4 → CuSO 4 + H 2 O Cu 2 O + 2H 2 SO 4 + 1 / 2O 2 → 2CuSO 4 + 2H 2 O
【0014】従って、電解精製槽のアノード中の酸素品
位を上昇させ、すなわち酸化銅の量を増加させれば、電
解精製工程からの電解排液中の銅量が増大し、電解採取
工程でカソードに析出される電気銅の銅量を供給するこ
とができる。例えば、特開平7−0106216に示さ
れるように電解精製におけるアノードからの銅の溶出と
カソードでの銅の電着との差すなわちCu溶出率増加分
Cは次式で定義される。 C={(アノード溶出量)/(カソード電着量)−1}
×100Therefore, if the oxygen quality in the anode of the electrolytic refining tank is increased, that is, if the amount of copper oxide is increased, the amount of copper in the electrolytic drainage from the electrolytic refining step increases, and the cathode in the electrolytic sampling step increases. Can be supplied with the copper amount of electrolytic copper deposited on the substrate. For example, as shown in JP-A-7-0106216, the difference between the elution of copper from the anode and the electrodeposition of copper at the cathode in electrolytic refining, that is, the increase C of the Cu elution rate, is defined by the following equation. C = {(anode elution amount) / (cathode electrodeposition amount) -1}
× 100
【0015】また、アノードの酸素品位0.22〜0.
06%の間では、酸素品位Bに対して以下のような回帰
式が得られている。 C=4.91B+0.166The anode has an oxygen grade of 0.22-0.
In the range of 06%, the following regression equation is obtained for oxygen quality B. C = 4.91B + 0.166
【0016】上式を用いて、電解採取工程で電着する銅
を補償するように電解精製槽のアノード中の酸素品位B
を設定すればよい。例えば電解採取工程での電気量が電
解精製工程の電気量の2%程度必要であれば 上式Cに
2%を代入し、アノード酸素品位を0.37%に調整す
れば良いことになる。Using the above equation, the oxygen grade B in the anode of the electrolytic refining tank is adjusted so as to compensate for the copper electrodeposited in the electrolytic sampling step.
Should be set. For example, if the amount of electricity in the electrowinning step is about 2% of the amount of electricity in the electrolytic refining step, 2% is substituted into the above equation C, and the anode oxygen quality may be adjusted to 0.37%.
【0017】[0017]
【実施例】次に実施例を用いて本発明をさらに説明す
る。Next, the present invention will be further described with reference to examples.
【0018】[実施例]電解精製槽と電解採取槽を用意
した。電解精製槽は、縦500mm横200mm高さ2
00mmの大きさとし、Sb;0.03%、Bi;0.
02%の品位で1枚の厚さが30mm、重量5Kgのア
ノードを4枚装入した。カソードは銅で厚さ0.7mm
の板を面間20mm間隔で5枚装入した。アノード、カ
ソードの電着面積は、140mm×140mmとした。
電解液は電解精製槽の上入れとし、排液は底抜きとし
た。底抜きから排出した液はポンプ槽に入り、ポンプ槽
よりポンプにて電解採取槽に送り電解採取した。そして
電解採取槽からオーバーした液を電解精製槽に給液し
た。[Example] An electrolytic refining tank and an electrolytic collection tank were prepared. The electrolytic refining tank has a height of 500 mm, a width of 200 mm and a height of 2
Sm: 0.03%, Bi: 0.
Four anodes each having a quality of 02%, a thickness of 30 mm, and a weight of 5 kg were loaded. 0.7mm thick cathode
Were placed at intervals of 20 mm. The electrodeposited areas of the anode and the cathode were 140 mm × 140 mm.
The electrolyte was placed in the top of the electrolytic refining tank, and the drain was drained. The liquid discharged from the bottom was put into a pump tank, and sent from the pump tank to an electrolytic collecting tank by a pump to perform electrolytic sampling. Then, the excess liquid from the electrolytic collection tank was supplied to the electrolytic purification tank.
【0019】電解採取槽には、アノードとして電極面積
80mm×95mmで厚さ5mmのPb板を片面をマス
キングしたものを使用し、カソードには厚さ0.7mm
の銅板を装入した。As the anode, a Pb plate having an electrode area of 80 mm × 95 mm and a thickness of 5 mm was masked on one side as an anode, and the cathode was 0.7 mm thick.
Was charged.
【0020】電解液は、硫酸;190g/l、Cu;5
0g/l、Sb;0.60g/l、Bi;0.67g/
lの組成とし、液量は10リットル、液温60℃とし
た。流量は40ml/minとした。電解精製の電流密
度は250A/m2 とし、10日間通電した。電解採取
の電流密度60A/m2 として、電解精製と同時に通電
した。なお、試験に使用した電解精製槽のアノードの酸
素品位は0.20%であったので、電流量は電解精製槽
10300A・Hrであり、電解採取量を1.16%に
設定した。電解採取槽での電流量は120A・Hrとな
り、通電10日間におけるCu濃度の変化は殆ど見られ
なかった。The electrolytic solution is sulfuric acid: 190 g / l, Cu: 5
0 g / l, Sb; 0.60 g / l, Bi; 0.67 g /
The composition was 1 l, the liquid volume was 10 liters, and the liquid temperature was 60 ° C. The flow rate was 40 ml / min. The current density in the electrolytic refining was 250 A / m 2, and electricity was supplied for 10 days. The current was supplied at the same time as the electrolytic refining at a current density of 60 A / m 2 for the electrolytic sampling. In addition, since the oxygen grade of the anode of the electrolytic refining tank used for the test was 0.20%, the amount of current was 10300 A · Hr in the electrolytic refining tank, and the amount of electrowinning was set to 1.16%. The amount of current in the electrolytic collection tank was 120 A · Hr, and there was almost no change in the Cu concentration during 10 days of energization.
【0021】[比較例]比較例では、電解精製槽がない
以外は実施例と同じ条件で実施した。[Comparative Example] The comparative example was carried out under the same conditions as in the example except that there was no electrolytic refining tank.
【0022】表1に、電解槽における始液と終液のB
i、Sbの濃度を示し、表2に、電解槽に発生するスラ
イム中のSb、Bi品位を示す。表1に示すように本実
施例による方法では、比較例に比べて、Sb、Biを効
果的に溶出を防止できることがわかる。表2のスライム
中のSb、Biの分析値からもスライムにSb、Biが
濃縮していることがわかる。また溶出率も実施例ではマ
イナスの値となっており、電解液中からも沈殿している
ことが確認できた。また、電解採取槽と電解精製槽のカ
ソードを分析したところ表3に示すように不純物的に問
題とはならず、高品位の電気銅製品となることを確かめ
た。Table 1 shows B of the initial solution and the final solution in the electrolytic cell.
The concentrations of i and Sb are shown, and Table 2 shows the Sb and Bi quality in the slime generated in the electrolytic cell. As shown in Table 1, it can be seen that the method according to the present example can prevent elution of Sb and Bi more effectively than the comparative example. The analysis values of Sb and Bi in the slime of Table 2 also show that Sb and Bi are concentrated in the slime. Further, the elution rate was a negative value in the example, and it was confirmed that the elution rate was also precipitated from the electrolytic solution. Further, when the cathodes of the electrolytic collection tank and the electrolytic refining tank were analyzed, as shown in Table 3, no problem was caused in terms of impurities, and it was confirmed that the product was a high-grade electrolytic copper product.
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【表2】 [Table 2]
【0025】[0025]
【表3】 [Table 3]
【0026】[0026]
【発明の効果】本発明は以上のように構成されているの
で、電解精製槽の、電解液中へのSb、Biの溶出を抑
え、浄液工程を大幅に簡略できる。According to the present invention, the elution of Sb and Bi into the electrolytic solution in the electrolytic refining tank can be suppressed, and the purification step can be greatly simplified.
【図1】本発明の実施例を示すフローチャート。FIG. 1 is a flowchart showing an embodiment of the present invention.
【図2】従来技術の1例を示すフローチャート。FIG. 2 is a flowchart showing an example of the related art.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−104687(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25C 1/00 - 7/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-104687 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25C 1/00-7/08
Claims (3)
にSb、Biを濃縮させるために、該電解精製工程より
排出される電解排液を電解採取工程の給液とし、該電解
採取工程より排出される電解排液を該電解精製工程への
給液とすることを特徴とする銅電解精製法。1. In an electrolytic slime produced in an electrolytic refining step.
To concentrate Sb, the Bi in the waste electrolytic solution to be discharged from the electrolytic refining process and the liquid supply of the electrowinning step, liquid feed of the waste electrolytic solution discharged from the electrowinning step to said electrolytic refining step And a copper electrolytic refining method.
電解精製工程の電解槽より排出される電解排液を電解採
取工程の電解槽に給液し、不溶性アノードを用いる電解
採取工程の電解槽より排出される電解排液を電解精製工
程の電解槽へ給液することを特徴とする銅電解精製法。2. An electrolytic cell in an electrowinning step using an insoluble anode, wherein an electrolytic drainage discharged from an electrolysis cell in an electrorefining step using an anode having an increased amount of copper oxide is supplied to an electrolysis tank in an electrowinning step. A copper electrolytic refining method characterized by supplying an electrolytic drainage discharged from the electrolytic refining process to an electrolytic cell in an electrolytic refining step.
ることにより、電解採取工程でカソードに電着させる銅
量を一定に維持する請求項1または2記載の方法。3. The method according to claim 1, wherein the amount of copper electrodeposited on the cathode in the electrowinning step is kept constant by controlling the oxygen concentration of the anode for electrolytic refining.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08219999A JP3083079B2 (en) | 1996-08-21 | 1996-08-21 | Copper electrorefining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08219999A JP3083079B2 (en) | 1996-08-21 | 1996-08-21 | Copper electrorefining method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1060678A JPH1060678A (en) | 1998-03-03 |
JP3083079B2 true JP3083079B2 (en) | 2000-09-04 |
Family
ID=16744353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08219999A Expired - Lifetime JP3083079B2 (en) | 1996-08-21 | 1996-08-21 | Copper electrorefining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3083079B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4952203B2 (en) * | 2006-11-13 | 2012-06-13 | 住友金属鉱山株式会社 | Method for preventing formation of floating slime in electrolytic copper refining |
-
1996
- 1996-08-21 JP JP08219999A patent/JP3083079B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1060678A (en) | 1998-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014501850A (en) | Electrical recovery of gold and silver from thiosulfate solutions | |
CN1038950C (en) | Methods of handling etchant | |
JPS61223140A (en) | Recovery of copper from arsenic and antimony-containing solution | |
US4083761A (en) | Arsenic removal from electrolytes with application of periodic reverse current | |
JP3083079B2 (en) | Copper electrorefining method | |
JP3882608B2 (en) | Method and apparatus for electrolytic purification of high purity tin | |
JP3243929B2 (en) | Adjustment method of copper ion concentration of copper removal electrolytic solution | |
JP2005054249A (en) | Method for removing copper from anode slime after copper electrolysis | |
JP2777955B2 (en) | Desilvering or silver recovery method | |
JP3875548B2 (en) | Electrolyte purification method | |
CA2161308C (en) | Selective bismuth and antimony removal from copper electrolyte | |
JP3552512B2 (en) | Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper | |
CN112210790B (en) | A kind of treatment method of copper anode slime copper separation liquid | |
JP2570076B2 (en) | Manufacturing method of high purity nickel | |
JP2965442B2 (en) | Regeneration method of iron chloride waste liquid containing nickel | |
JP2005281827A (en) | Method for electrolytic purification of silver | |
US1380711A (en) | Arthur e | |
JPH05117879A (en) | Etching liquid treatment method | |
JPH07243081A (en) | Method for recovering rhodium from copper sulfate solution | |
JP2022524364A (en) | Copper electrowinning method | |
JP3428607B2 (en) | Copper electrorefining method | |
JPH07138773A (en) | Recycling method for iron chloride waste liquid containing copper | |
JPS6315357B2 (en) | ||
CN118957291A (en) | Anode copper in silver-existing state and preparation method and application thereof | |
US830639A (en) | Process for the electrolytic production of copper. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080630 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090630 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140630 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |