JP3079962B2 - Manufacturing method of welded steel pipe - Google Patents
Manufacturing method of welded steel pipeInfo
- Publication number
- JP3079962B2 JP3079962B2 JP07199238A JP19923895A JP3079962B2 JP 3079962 B2 JP3079962 B2 JP 3079962B2 JP 07199238 A JP07199238 A JP 07199238A JP 19923895 A JP19923895 A JP 19923895A JP 3079962 B2 JP3079962 B2 JP 3079962B2
- Authority
- JP
- Japan
- Prior art keywords
- welded
- butt end
- energy beam
- density energy
- tubular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 title description 28
- 239000010959 steel Substances 0.000 title description 28
- 238000004519 manufacturing process Methods 0.000 title description 8
- 238000000034 method Methods 0.000 description 14
- 238000003466 welding Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 239000002184 metal Substances 0.000 description 8
- 238000009863 impact test Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000010953 base metal Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/60—Preliminary treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/24—Seam welding
- B23K26/26—Seam welding of rectilinear seams
- B23K26/262—Seam welding of rectilinear seams of longitudinal seams of tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、熱源として高密
度エネルギービームを使用し、溶接部に欠陥のない品質
の優れた溶接鋼管を製造するための方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high quality welded steel pipe using a high-density energy beam as a heat source and having no defects in a weld.
【0002】[0002]
【従来の技術】溶接鋼管の一つとして、電縫溶接法(E
RW)により製造される電縫鋼管が知られている。電縫
鋼管は、炭素鋼鋼帯を連続的に管状に成形しながら、そ
の両側端部を突き合わせ、突き合わせ端部を、電気抵抗
加熱または高周波誘導加熱により加熱しそして圧接する
ことにより製造される。2. Description of the Related Art As one of welded steel pipes, an electric resistance welding method (E
RW) is known. The ERW pipe is manufactured by abutting both ends of the carbon steel strip while continuously forming the carbon steel strip into a tubular shape, and heating and pressing the butted ends by electric resistance heating or high frequency induction heating.
【0003】しかしながら、上述のようにして製造され
る電縫鋼管には、加熱時に生成する酸化物中の高融点物
質が排出されずに電縫溶接部の接合面に残留して生ずる
ペネトレータと呼ばれる面状酸化物が発生し、また、両
側端部の突き合わせ圧接により、メタルフローの立ち上
がり部が電縫溶接部の表面に露出して、靭性および加工
性の劣化を招く問題がある。[0003] However, in the ERW steel pipe manufactured as described above, a high melting point substance in the oxide generated at the time of heating is not discharged and is called a penetrator which remains on the joint surface of the ERW weld. There is a problem that a planar oxide is generated, and a rising portion of the metal flow is exposed on the surface of the ERW welded portion due to abutting pressure welding of both end portions, thereby deteriorating toughness and workability.
【0004】上述した問題を解決する手段が従来から種
々研究されており、例えば、特開昭58-100982 号公報、
特開平1-309792号公報には、下記からなる高密度エネル
ギービーム溶接による溶接鋼管の製造方法(レーザER
W複合溶接法)が開示されている。鋼帯を連続的に管状
に成形し、その管状成形体の突き合わせ端部を、電気抵
抗加熱または高周波誘導加熱によって予熱し、次いで、
前記突き合わせ端部が予熱された管状成形体をスクイズ
ロールにより加圧して、その突き合わせ端部を衝合し、
衝合によって形成された突き合わせ端部の開先線に沿っ
て、高密度エネルギービームを照射し、前記開先線を前
記高密度エネルギービームにより加熱しそして溶融する
ことにより溶接する(以下、先行技術という)。Various means for solving the above-mentioned problems have been studied in the past, for example, Japanese Patent Application Laid-Open No. 58-100982,
JP-A-1-309792 discloses a method for manufacturing a welded steel pipe by high-density energy beam welding (Laser ER) comprising:
W composite welding method). The steel strip is continuously formed into a tube, and the butt end of the formed tube is preheated by electric resistance heating or high frequency induction heating, and then
The butt end is pressurized by a squeeze roll on the preheated tubular molded body, butting the butt end,
A high-density energy beam is irradiated along the groove at the butt end formed by the abutment, and the groove is heated by the high-density energy beam and welded by melting (hereinafter, the prior art). ).
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記先
行技術には、次のような問題がある。即ち、管状成形体
の突き合わせ端部に対する、電気抵抗加熱または高周波
誘導加熱による予熱温度が、約600〜1200℃であ
って高いために、溶接部の溶接金属中における酸素含有
量が300ppmを超える。その結果、溶接部に多量の
酸化介在物が存在することになり、溶接部の靭性が劣化
する。However, the above prior art has the following problems. That is, since the preheating temperature by electric resistance heating or high-frequency induction heating with respect to the butt end of the tubular molded body is as high as about 600 to 1200 ° C., the oxygen content in the weld metal of the weld exceeds 300 ppm. As a result, a large amount of oxidized inclusions is present in the weld, and the toughness of the weld deteriorates.
【0006】従って、この発明の目的は、上述した問題
を解決し、高密度エネルギービーム溶接により溶接鋼管
を製造するに際し、溶接継手部の靭性が優れた溶接鋼管
を製造するための方法を提供することにある。Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a welded steel pipe having excellent toughness of a weld joint when manufacturing a welded steel pipe by high-density energy beam welding. It is in.
【0007】[0007]
【課題を解決するための手段】本発明者等は、上述した
観点から、高密度エネルギービーム溶接により溶接鋼管
を製造するに際し、溶接継手部の靭性が優れた溶接鋼管
を製造するための方法を開発すべく鋭意研究を重ねた。
その結果、管状成形体の突き合わせ端部を、肉厚方向に
所定角度の傾斜状に形成し、このような突き合わせ端部
を衝合し、形成された傾斜状の突き合わせ端部に対し、
その傾斜した開先線に沿って高密度エネルギービームを
照射し溶接すれば、溶接部の靭性値は、母材とほぼ同じ
になることを知見した。In view of the above, the present inventors have developed a method for manufacturing a welded steel pipe having excellent toughness in a weld joint when manufacturing a welded steel pipe by high-density energy beam welding. We worked diligently to develop it.
As a result, the butt end of the tubular molded body is formed to be inclined at a predetermined angle in the thickness direction, and such butt ends are abutted against the formed inclined butt end.
It has been found that if a high-density energy beam is irradiated and welded along the inclined groove line, the toughness value of the welded portion becomes almost the same as that of the base metal.
【0008】この発明は、上述した知見に基づいてなさ
れたものであって、この出願の請求項1に記載の発明
は、鋼帯を連続的に管状に成形し、その管状成形体の突
き合わせ端部を、電気抵抗加熱または高周波誘導加熱に
よって予熱し、次いで、前記突き合わせ端部が予熱され
た管状成形体をスクイズロールにより加圧して、その突
き合わせ端部を衝合し、衝合によって形成された突き合
わせ端部の開先線に沿って、高密度エネルギービームを
照射し、前記突き合わせ端部を前記高密度エネルギービ
ームにより加熱しそして溶融することにより溶接する、
溶接鋼管の製造方法において、予め、前記鋼帯の幅方向
両側端面を、肉厚方向に互いに平行な所定角度の傾斜状
に形成し、前記両側端面が傾斜状に形成された鋼帯を前
記管状成形体に成形し、前記管状成形体の肉厚方向に傾
斜した突き合わせ端部を予熱し次いで衝合し、衝合によ
って形成された前記突き合わせ端部の傾斜した開先線に
沿って、これと同じ傾斜角度で、前記高密度エネルギー
ビームを照射し、前記突き合わせ端部を溶接することに
特徴を有するものである。[0008] The present invention has been made based on the above-mentioned findings, and the invention according to claim 1 of the present application is to continuously form a steel strip into a tubular shape and to form a butt end of the tubular formed body. The part was preheated by electric resistance heating or high-frequency induction heating, and then the tubular body whose butt end was preheated was pressed by a squeeze roll to abut the butt end and form the butt. Irradiating a high-density energy beam along a groove at the butt end, heating the butt end with the high-density energy beam and welding by melting;
In the method for manufacturing a welded steel pipe, in advance, the width direction both end faces of the steel strip are formed in a slope at a predetermined angle parallel to each other in the thickness direction, and the steel strip in which the both end faces are formed in the slope is formed into the tubular shape. Molded into a compact, preheated butted abutting ends in the thickness direction of the tubular compact and then butted, along an inclined bevel line of the butted ends formed by the butting, The method is characterized in that the high-density energy beam is irradiated at the same inclination angle and the butt ends are welded.
【0009】請求項2に記載の発明は、前記管状成形体
の前記突き合わせ端部の傾斜角度、および、前記高密度
エネルギービームの照射角度を、5〜30度の範囲内と
することに特徴を有するものであり、そして、請求項3
に記載の発明は、前記高密度エネルギービームの照射に
より溶接した溶接部における、溶接金属中の酸素量
(O)と、前記溶接部の傾斜角度(θ)とが、式、
〔O〕=≦6×〔θ〕+300(ppm) の関係を満たすこ
とに特徴を有するものである。[0009] The invention according to claim 2 is characterized in that the inclination angle of the abutting end of the tubular molded body and the irradiation angle of the high-density energy beam are within a range of 5 to 30 degrees. Claim 3.
In the invention described in the above, the oxygen amount (O) in the weld metal and the inclination angle (θ) of the welded portion in the welded portion welded by the irradiation of the high-density energy beam are represented by the following formula:
It is characterized by satisfying the relationship of [O] = ≦ 6 × [θ] +300 (ppm).
【0010】[0010]
【発明の実施の形態】次に、この発明を図面を参照しな
がら説明する。図1は、この発明の溶接方法の一実施態
様を示す概略斜視図、図2は図1のA−A線部分拡大断
面図、図3は図1のB−B線部分拡大断面図、図4は、
成形前の鋼帯の幅方向拡大断面図である。図4に示すよ
うに、鋼帯1は、予め、その幅方向両側端面2, 2が、
その肉厚方向に互いに平行な所定角度の傾斜状に形成さ
れている。このように、鋼帯1の幅方向両側端面2, 2
を、肉厚方向に傾斜状に形成することは、サイドトリミ
ングによって容易に行うことができる。Next, the present invention will be described with reference to the drawings. 1 is a schematic perspective view showing one embodiment of the welding method of the present invention, FIG. 2 is an enlarged sectional view taken along line AA of FIG. 1, FIG. 3 is an enlarged sectional view taken along line BB of FIG. 4 is
It is a width direction expanded sectional view of the steel strip before shaping | molding. As shown in FIG. 4, the steel strip 1 has both end faces 2, 2 in the width direction in advance.
It is formed in an inclined shape at a predetermined angle parallel to the thickness direction. As described above, both end faces 2, 2 in the width direction of the steel strip 1 are formed.
Can be easily formed by side trimming.
【0011】図1において、1aは、鋼帯1の管状成形
体、3は、鋼帯1を管状成形体1aに成形し且つその突き
合わせ端部2a,2b を衝合させるための1対のスクイズロ
ール、4は、管状成形体1aの突き合わせ端部2a,2b を電
気抵抗加熱により予熱するための給電装置、6はトップ
ロールである。鋼帯1は矢印方向に連続的に移動しなが
ら管状成形体1aに成形され、管状成形体1aの傾斜した突
き合わせ端部2a,2b は、給電装置4による電気抵抗加熱
によって予熱され、次いで、1対のスクイズロール3に
より加圧されて、突き合わせ端部2a,2b が衝合される。In FIG. 1, 1a is a tubular formed body of a steel strip 1, and 3 is a pair of squeezes for forming the steel strip 1 into a tubular formed body 1a and abutting its butted ends 2a, 2b. The roll 4 is a power feeding device for preheating the butted ends 2a and 2b of the tubular molded body 1a by electric resistance heating, and 6 is a top roll. The steel strip 1 is formed into a tubular molded body 1a while moving continuously in the direction of the arrow, and the inclined butted ends 2a, 2b of the tubular molded body 1a are preheated by electric resistance heating by the power supply device 4, and Pressed by the pair of squeeze rolls 3, the butted ends 2a, 2b are abutted.
【0012】その結果、図2に示すように、管状成形体
1aの突き合わせ端部2a,2b は衝合され、肉厚方向に角度
θの傾斜した突き合わせ開先線が形成される。この傾斜
した突き合わせ開先線に沿い、高密度エネルギービーム
としてレーザービーム5が、同じ傾斜角度θで照射さ
れ、開先線をレーザービーム5により加熱する。かくし
て、図3に示すように、管状成形体1aの衝合された突き
合わせ端部2a,2b は溶接されて、肉厚方向に角度θの傾
斜した溶接部7が形成される。As a result, as shown in FIG.
The butt ends 2a and 2b of 1a are abutted to form a butt groove inclined at an angle θ in the thickness direction. Along the inclined butting groove, a laser beam 5 is irradiated as a high-density energy beam at the same inclination angle θ, and the groove is heated by the laser beam 5. Thus, as shown in FIG. 3, the butted butted ends 2a and 2b of the tubular molded body 1a are welded to form a welded portion 7 inclined at an angle θ in the thickness direction.
【0013】この発明によれば、上述したように、管状
成形体1aの衝合された突き合わせ端部2a,2b は、レーザ
ービーム5により溶接されて、肉厚方向に角度θの傾斜
した溶接部7が形成される。その結果、溶接部7の靭性
値は、次の理由により母材とほぼ同等になる。According to the present invention, as described above, the butted butted ends 2a and 2b of the tubular molded body 1a are welded by the laser beam 5 to form a welded portion inclined at an angle θ in the thickness direction. 7 is formed. As a result, the toughness value of the welded portion 7 becomes substantially equal to that of the base metal for the following reason.
【0014】即ち、靭性の一つの判断基準は、シャルピ
ー衝撃試験における衝撃値にあり、溶接部に衝撃を加え
た場合に、クラックがどのように伝播するかによって、
靭性が左右される。従来の方法により、図6に示すよう
に、管状成形体1aの肉厚方向に垂直な突き合わせ端部2
a',2b' をレーザービーム5’により溶接し、肉厚方向
に垂直な溶接部7’を形成した場合には、衝撃により生
じたクラックは、すべて溶接部7’に伝播する。従っ
て、溶接部7’の靭性値は、その材質によって左右さ
れ、母材に比べて劣化することが避けられない。That is, one criterion of toughness is an impact value in a Charpy impact test, and it depends on how a crack propagates when an impact is applied to a weld.
Toughness is affected. According to a conventional method, as shown in FIG. 6, a butt end portion 2 perpendicular to the thickness direction of the tubular molded body 1a.
When a 'and 2b' are welded by the laser beam 5 'to form a weld 7' perpendicular to the thickness direction, all cracks generated by the impact propagate to the weld 7 '. Therefore, the toughness value of the welded portion 7 'depends on its material, and it is inevitable that the welded portion 7' deteriorates compared to the base material.
【0015】これに対して、本発明の方法により、図3
に示すように、管状成形体1aの衝合された突き合わせ端
部2a,2b をレーザービーム5により溶接し、肉厚方向に
角度θの傾斜した溶接部7を形成した場合には、衝撃に
より生じたクラックは、溶接部7を通過して母材に伝播
する。従って、溶接部7の靭性値は、母材部とほぼ同じ
になり、劣化することがない。On the other hand, according to the method of the present invention, FIG.
As shown in FIG. 5, when the butted butted ends 2a and 2b of the tubular molded body 1a are welded by the laser beam 5 to form a welded portion 7 inclined at an angle θ in the thickness direction, the impact is caused by impact. The crack propagates through the weld 7 to the base material. Therefore, the toughness value of the welded portion 7 becomes almost the same as that of the base material portion and does not deteriorate.
【0016】管状成形体1aの突き合わせ端部2a,2b 即ち
溶接部7の傾斜角度および高密度エネルギービーム5の
照射角度は、5〜30度の範囲内とすることが望まし
い。上記角度が5度未満では、シャルピー衝撃試験にお
いて、衝撃により生じたクラックを十分に母材に伝播さ
せることができず、従って、溶接部の靭性向上効果が低
くなる。一方、上記角度が30度を超えると、溶接距離
が長くなり過ぎ且つ多量の溶接入熱が必要になるため、
生産性が低下する問題が生ずる。It is desirable that the abutting ends 2a and 2b of the tubular molded body 1a, that is, the inclination angle of the welded portion 7 and the irradiation angle of the high-density energy beam 5 be in the range of 5 to 30 degrees. If the angle is less than 5 degrees, in the Charpy impact test, cracks generated by the impact cannot be sufficiently propagated to the base metal, and therefore, the effect of improving the toughness of the welded portion decreases. On the other hand, if the angle exceeds 30 degrees, the welding distance becomes too long and a large amount of welding heat input is required,
The problem that productivity falls occurs.
【0017】高密度エネルギービームの照射により溶接
した溶接部における、溶接金属中の酸素量(O)と溶接
部の傾斜角度(θ)とは、下記式、 〔O〕=≦6×〔θ〕+300(ppm) の関係を満たしていることが望ましい。The oxygen content (O) in the weld metal and the inclination angle (θ) of the welded portion in the welded portion welded by the irradiation of the high-density energy beam are represented by the following formula: [O] = ≦ 6 × [θ] It is desirable to satisfy the relationship of +300 (ppm).
【0018】図5は、本発明の方法により溶接鋼管を製
造した場合の、溶接部の傾斜角度と溶接金属中の酸素含
有量との関係における、溶接部の靭性を表したグラフで
ある。なお、図中の○印および●印は靭性値であって、
QT処理( 950℃×30min 保持後水冷+ 650℃×30min
保持後空冷)後の溶接部のシャルピー衝撃試験の破面遷
移温度(vTs) に基づき、下記によって評価した。 ○:溶接部のシャルピー衝撃試験の破面遷移温度(vTs)
がー60℃以下であって靭性が優れている場合 ●:溶接部のシャルピー衝撃試験の破面遷移温度(vTs)
がー60℃超であって靭性が劣る場合FIG. 5 is a graph showing the toughness of the welded portion in relation to the angle of inclination of the welded portion and the oxygen content in the weld metal when a welded steel pipe is manufactured by the method of the present invention. The circles and ● in the figure are toughness values,
QT treatment (950 ℃ × 30min, water cooling after holding + 650 ℃ × 30min
Based on the fracture surface transition temperature (vTs) in the Charpy impact test of the weld after holding and air cooling), the following evaluation was made. :: Fracture transition temperature (vTs) in the Charpy impact test of the weld
When the temperature is below -60 ° C and the toughness is excellent ●: Fracture transition temperature (vTs) in the Charpy impact test of the weld
Is higher than -60 ° C and the toughness is poor
【0019】図5から、破面遷移温度(vTs) がー60℃
以下であって優れた靭性を示す領域は、溶接金属中の酸
素量(O)が、溶接部の傾斜角度(θ)との関係におい
て、(O)=≦6×(θ)+300(ppm) の関係を満た
していることの望ましいことがわかる。FIG. 5 shows that the fracture surface transition temperature (vTs) is -60 ° C.
In the following region showing excellent toughness, the oxygen amount (O) in the weld metal is (O) = ≦ 6 × (θ) +300 (ppm) in relation to the inclination angle (θ) of the welded portion. It is understood that it is desirable to satisfy the relationship.
【0020】[0020]
【実施例】次に、この発明の方法を、実施例により比較
例と対比しながら更に説明する。表1に示す化学成分組
成を有する、肉厚12mm、外径406mm の3種類の管状成形
体A,B,Cを使用し、図1に示した本発明方法により
溶接鋼管の供試体(以下、本発明供試体という)No. 1
〜19を調製した。また、比較のために、従来方法によ
り溶接鋼管の供試体(比較用供試体という)No. 1〜6
を調製した。EXAMPLES Next, the method of the present invention will be further described with reference to Examples and Comparative Examples. Using three types of tubular molded bodies A, B, and C having a chemical composition shown in Table 1 and having a thickness of 12 mm and an outer diameter of 406 mm, a specimen of a welded steel pipe (hereinafter, referred to as a specimen) was prepared by the method of the present invention shown in FIG. No. 1)
~ 19 were prepared. For comparison, specimens of welded steel pipes (referred to as comparative specimens) Nos.
Was prepared.
【0021】[0021]
【表1】 [Table 1]
【0022】本発明供試体および比較用供試体の各々に
ついて、溶接部の酸素量を調べ、且つ、QT処理( 950
℃×30min 保持後水冷+ 650℃×30min 保持後空冷)を
施した後に溶接部のシャルピー衝撃試験を行い、その破
面遷移温度(vTs) を調べた。表2に、溶接速度、溶接部
の傾斜角度、溶接部の酸素量、破面遷移温度(vTs) およ
びvTs による靭性の評価を示す。なお、靭性の評価は下
記により行った。 ◎:vTs が(ー80)℃以下であって靭性が極めて良好 ○:vTs が(ー60)〜(ー80)℃未満であって靭性
が良好 ×:vTs が(ー60)℃未満であって靭性が不良With respect to each of the specimen of the present invention and the comparative specimen, the oxygen content of the welded portion was examined, and the QT treatment (950)
After holding at ℃ × 30min for water cooling and holding at 650 ° C × 30min for air cooling), the Charpy impact test of the welded part was performed and the fracture surface transition temperature (vTs) was examined. Table 2 shows the evaluation of toughness by the welding speed, the inclination angle of the weld, the oxygen content of the weld, the fracture surface transition temperature (vTs), and vTs. The toughness was evaluated as follows. :: vTs is (−80) ° C. or less and very good toughness ○: vTs is (−60) to less than (−80) ° C. and good toughness ×: vTs is less than (−60) ° C. Poor toughness
【0023】[0023]
【表2】 [Table 2]
【0024】表2から明らかなように、本発明供試体N
o. 1〜19は、比較用供試体No. 1〜6に比べて、溶
接部の酸素量が少なく、溶接部の靭性に優れており、特
に、溶接金属中の酸素量(O)と溶接部の傾斜角度
(θ)とが、〔O〕=≦6×〔θ〕+300(ppm) の関
係を満たす、本発明供試体No. 1〜3、No. 6〜8、N
o.11〜14、および、No.17 〜18は、極めて良好な靭性を
示した。これに対して、比較用供試体No. 1〜6の靭性
は不良であった。As is clear from Table 2, the test sample N of the present invention
o. 1 to 19 have a smaller amount of oxygen in the welded part and are superior in the toughness of the welded part as compared with the comparative specimens Nos. 1 to 6, and in particular, the oxygen amount (O) in the weld metal and the welding Specimens Nos. 1 to 3 and Nos. 6 to 8 of the present invention, in which the inclination angle (θ) of the portion satisfies the relationship of [O] = ≦ 6 × [θ] +300 (ppm)
o.11-14 and No.17-18 showed extremely good toughness. On the other hand, the toughness of the comparative specimens Nos. 1 to 6 were poor.
【0025】[0025]
【発明の効果】以上述べたように、この発明によれば、
高密度エネルギービーム溶接により溶接鋼管を製造する
に際し、溶接部の靭性に優れた溶接鋼管を製造すること
ができる工業上有用な効果がもたらされる。As described above, according to the present invention,
When a welded steel pipe is manufactured by high-density energy beam welding, an industrially useful effect that a welded steel pipe excellent in toughness of a weld portion can be manufactured is provided.
【図1】この発明の溶接方法の一実施態様を示す概略斜
視図である。FIG. 1 is a schematic perspective view showing one embodiment of a welding method of the present invention.
【図2】図1のA−A線部分拡大断面図である。FIG. 2 is an enlarged sectional view taken along the line AA of FIG. 1;
【図3】図1のB−B線部分拡大断面図である。FIG. 3 is an enlarged sectional view taken along the line BB of FIG. 1;
【図4】成形前の鋼帯の幅方向拡大断面図である。FIG. 4 is an enlarged cross-sectional view in the width direction of a steel strip before forming.
【図5】本発明の方法により溶接鋼管を製造した場合
の、溶接部の傾斜角度と溶接金属中の酸素含有量との関
係における、溶接部の靭性を表したグラフである。FIG. 5 is a graph showing the toughness of a welded portion in the relationship between the inclination angle of the welded portion and the oxygen content in the weld metal when a welded steel pipe is manufactured by the method of the present invention.
【図6】従来法における管状成形体の突き合わせ端部を
示す拡大断面図である。FIG. 6 is an enlarged sectional view showing a butt end portion of a tubular molded body in a conventional method.
1 鋼帯 1a 管状成形体 2 両側端面 2a 突き合わせ端部 2b 突き合わせ端部 3 スクイズロール 4 給電装置 5 レーザービーム 6 トップロール 7 溶接部 DESCRIPTION OF SYMBOLS 1 Steel strip 1a Tubular molded object 2 Both end surfaces 2a Butt end 2b Butt end 3 Squeeze roll 4 Power supply device 5 Laser beam 6 Top roll 7 Welded part
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−202385(JP,A) 特開 平2−147187(JP,A) 特開 平5−23867(JP,A) 特開 平8−252682(JP,A) 実開 昭62−155980(JP,U) 特公 昭61−29830(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B23K 26/26 B23K 31/00 B23K 33/00 B21C 37/083 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-202385 (JP, A) JP-A-2-147187 (JP, A) JP-A-5-23867 (JP, A) JP-A 8- 252682 (JP, A) Jpn. Sho 62-155980 (JP, U) JP-B 61-29830 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) B23K 26/26 B23K 31 / 00 B23K 33/00 B21C 37/083
Claims (3)
成形体の突き合わせ端部を、電気抵抗加熱または高周波
誘導加熱によって予熱し、次いで、前記突き合わせ端部
が予熱された管状成形体をスクイズロールにより加圧し
て、その突き合わせ端部を衝合し、衝合によって形成さ
れた突き合わせ端部の開先線に沿って、高密度エネルギ
ービームを照射し、前記突き合わせ端部を前記高密度エ
ネルギービームにより加熱しそして溶融することにより
溶接する、溶接鋼管の製造方法において、 予め、前記鋼帯の幅方向両側端面を、肉厚方向に互いに
平行な所定角度の傾斜状に形成し、前記両側端面が傾斜
状に形成された鋼帯を前記管状成形体に成形し、前記管
状成形体の肉厚方向に傾斜した突き合わせ端部を予熱し
次いで衝合し、衝合によって形成された前記突き合わせ
端部の傾斜した開先線に沿って、これと同じ傾斜角度で
前記高密度エネルギービームを照射し、前記突き合わせ
端部を溶接することを特徴とする溶接鋼管の製造方法。1. A steel strip which is continuously formed into a tubular shape, and a butt end of the tubular body is preheated by electric resistance heating or high-frequency induction heating, and then the butt end is preheated. Is pressed by a squeeze roll to abut the butted ends, and irradiate a high-density energy beam along a groove line of the butted ends formed by the abutting, thereby bringing the butted ends to the high-density energy. In a method for manufacturing a welded steel pipe, which is heated and melted by an energy beam and welded by melting, in advance, the width direction both end surfaces of the steel strip are formed in a slant shape at a predetermined angle parallel to each other in a thickness direction, A steel strip having an inclined end surface is formed into the tubular molded body, and a butt end inclined in a thickness direction of the tubular molded body is preheated, then abutted, and shaped by the abutment. Has been along the inclined groove lines of the butt end, irradiating the high density energy beam at the same angle of inclination as this method of manufacturing a welded steel pipe, characterized in that welding the butt end.
傾斜角度、および、前記高密度エネルギービームの照射
角度を、5〜30度の範囲内とする、請求項1記載の方
法。2. The method according to claim 1, wherein an inclination angle of the butt end of the tubular molded body and an irradiation angle of the high-density energy beam are in a range of 5 to 30 degrees.
り溶接した溶接部における、溶接金属中の酸素量(O)
と、前記溶接部の傾斜角度(θ)とが、下記式、 〔O〕=≦6×〔θ〕+300(ppm) の関係を満たす、請求項1または2記載の方法。3. The amount of oxygen (O) in a weld metal in a weld portion welded by irradiation with the high-density energy beam.
3. The method according to claim 1, wherein the inclination angle (θ) of the welded portion satisfies the following equation: [O] = ≦ 6 × [θ] +300 (ppm).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07199238A JP3079962B2 (en) | 1995-07-12 | 1995-07-12 | Manufacturing method of welded steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07199238A JP3079962B2 (en) | 1995-07-12 | 1995-07-12 | Manufacturing method of welded steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0924480A JPH0924480A (en) | 1997-01-28 |
JP3079962B2 true JP3079962B2 (en) | 2000-08-21 |
Family
ID=16404467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07199238A Expired - Fee Related JP3079962B2 (en) | 1995-07-12 | 1995-07-12 | Manufacturing method of welded steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3079962B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4998633B1 (en) * | 2011-03-29 | 2012-08-15 | Jfeスチール株式会社 | Laser welding method |
JP4998634B1 (en) * | 2011-03-29 | 2012-08-15 | Jfeスチール株式会社 | Laser welding method |
WO2012132024A1 (en) * | 2011-03-29 | 2012-10-04 | Jfeスチール株式会社 | Laser welding method |
EP2692476B1 (en) | 2011-03-30 | 2018-11-21 | JFE Steel Corporation | Method for producing laser-welded steel tube |
RU2563067C2 (en) * | 2011-04-28 | 2015-09-20 | ДжФЕ СТИЛ КОРПОРЕЙШН | Production of steel pipes with help of laser welding |
-
1995
- 1995-07-12 JP JP07199238A patent/JP3079962B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0924480A (en) | 1997-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100228252B1 (en) | Method for manufacturing steel pipe by using high density energy beam | |
US9677692B2 (en) | Welded steel pipe joined with high-energy-density beam and method for producing the same | |
JP3079962B2 (en) | Manufacturing method of welded steel pipe | |
JP3702216B2 (en) | Manufacturing method for inner and outer surface submerged arc welded steel pipes with excellent seam weld toughness | |
JPH09220682A (en) | Production of duplex stainless steel welded tube | |
JPH09168878A (en) | Manufacture of duplex stainless steel welded tube | |
JP3149754B2 (en) | Method for producing carbon steel pipe excellent in toughness by high energy density beam welding | |
JP2650558B2 (en) | Manufacturing method of high workability welded steel pipe | |
JP5803160B2 (en) | Laser welded steel pipe manufacturing method | |
CA2170055A1 (en) | Method of manufacturing laser welded pipes and apparatus for manufacturing the same | |
JPH08174249A (en) | Manufacture of welded steel pipe | |
JP3319358B2 (en) | Method for producing welded steel pipe for line pipe with excellent hydrogen-induced cracking resistance, sulfide stress cracking resistance and low-temperature toughness | |
JPS59101293A (en) | Manufacturing method of welded pipe | |
JP2778287B2 (en) | Laser pipe welding method | |
JPH08252681A (en) | Manufacture of carbon steel tube with superior toughness by high energy density beam welding | |
JPH06170569A (en) | Composite heat source welding method for tube making | |
JPH08276214A (en) | Manufacture of welded steel tube | |
JPH04258390A (en) | Manufacturing method of ferritic stainless steel welded pipe | |
JPS6030585A (en) | Production of stainless clad steel pipe | |
JP3166643B2 (en) | Laser welded pipe manufacturing apparatus and laser welded pipe manufacturing method | |
JPH0971837A (en) | Electric resistance welded tube excellent in carbon dioxide resistance and its production | |
JP2870433B2 (en) | Manufacturing method of welded pipe | |
JPH0523869A (en) | Welded pipe manufacturing method | |
JPS63277722A (en) | Manufacture of resistance welded tube excellent in corrosion resistance in weld zone | |
JP3596394B2 (en) | Method for producing martensitic stainless laser welded steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080623 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140623 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |