[go: up one dir, main page]

JP3075540B2 - Real image finder optical system - Google Patents

Real image finder optical system

Info

Publication number
JP3075540B2
JP3075540B2 JP03017081A JP1708191A JP3075540B2 JP 3075540 B2 JP3075540 B2 JP 3075540B2 JP 03017081 A JP03017081 A JP 03017081A JP 1708191 A JP1708191 A JP 1708191A JP 3075540 B2 JP3075540 B2 JP 3075540B2
Authority
JP
Japan
Prior art keywords
prism
objective lens
lens system
refractive power
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03017081A
Other languages
Japanese (ja)
Other versions
JPH05164964A (en
Inventor
茂 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP03017081A priority Critical patent/JP3075540B2/en
Priority to US07/821,922 priority patent/US5231534A/en
Publication of JPH05164964A publication Critical patent/JPH05164964A/en
Application granted granted Critical
Publication of JP3075540B2 publication Critical patent/JP3075540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Viewfinders (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、写真用カメラやビデオ
カメラ等に用いられる実像式ファインダー光学系に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a real image type finder optical system used for a photographic camera or a video camera.

【0002】[0002]

【従来の技術】実像式ファインダー光学系では観察像を
正立像にするために、例えば特開平1−131510号
公報に記載されているように、ポロプリズムが用いられ
ることが多い。ポロプリズムは、イメージローテーター
やリレー光学系などの他の上下左右を反転させる光学系
より小型にできるためよく用いられているが、一般に一
体となったポロプリズムの入射面近傍に対物レンズ系に
よる中間像を結像させる場合が多く、そのため対物レン
ズ系のバックフォーカス即ち対物レンズ系最終面から中
間結像位置までの距離が比較的長いものでは、対物レン
ズ系の入射面から接眼レンズ系の射出面までのファイン
ダー構成長が長くなってしまうという問題があった。
2. Description of the Related Art In a real image type finder optical system, a Porro prism is often used, for example, as described in JP-A-1-131510 in order to make an observed image an erect image. Porro prisms are often used because they can be made smaller than other optical systems that invert up, down, left and right, such as image rotators and relay optics. In many cases, an image is formed. Therefore, when the back focus of the objective lens system, that is, the distance from the final surface of the objective lens system to the intermediate imaging position is relatively long, the entrance surface of the objective lens system to the exit surface of the eyepiece lens system. However, there is a problem that the finder configuration length up to this point becomes long.

【0003】そこで、対物レンズ系による中間結像位置
をポロプリズムの内部に入れ、対物レンズ系をポロプリ
ズム系に近づけることでファインダー構成長を短くする
構成が従来より採用されている。
Therefore, a configuration has been conventionally adopted in which an intermediate image forming position by the objective lens system is placed inside the Porro prism, and the objective lens system is made closer to the Porro prism system to shorten the finder configuration length.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、中間結
像位置には視野範囲を決めるための視野枠を設置する必
要があるため、中間結像位置をポロプリズムの内部に入
れる場合は、ポロプリズムを複数のプリズムに分割し、
分割によって生じた空間内に中間結像位置を定めてそこ
に視野枠を設置するのが一般的である。そのため、対物
レンズ系のバックフォーカス長はプリズムの分割の仕方
に合わせた丁度良い長さにしておかないと、中間結像位
置がプリズム内に入ってしまって視野枠が設置できなか
ったり、ファインダー光学系が大型化してしまう。よっ
て、対物レンズ系のバックフォーカス長の最適範囲は狭
く、これが対物レンズ系設計時の制約条件となり、光学
性能を悪化させる一因となるという問題がある。
However, since it is necessary to provide a field frame for determining the field of view at the intermediate image forming position, when the intermediate image forming position is to be placed inside the Porro prism, the Porro prism must be provided. Split into multiple prisms,
Generally, an intermediate imaging position is determined in a space generated by the division, and a field frame is set there. Therefore, if the back focus length of the objective lens system is not set to a length that is appropriate for the way the prism is divided, the intermediate imaging position will enter the prism and the field frame cannot be installed, or the viewfinder optical system will not be installed. The system becomes large. Therefore, the optimal range of the back focus length of the objective lens system is narrow, and this is a constraint condition when designing the objective lens system, which causes a problem that the optical performance is deteriorated.

【0005】本発明は、上記問題点に鑑み、複数の反射
部材から構成されるポロプリズム系によって正立像を得
る実像式ファインダー光学系でありながら、ファインダ
ー構成長が短く且つ良好な光学的性能を有すると共にコ
ンパクトな実像式ファインダー光学系を提供せんとする
ものである。
In view of the above problems, the present invention is a real image type finder optical system that obtains an erect image by a Porro prism system composed of a plurality of reflecting members, but has a short finder configuration length and good optical performance. It is an object of the present invention to provide a real image type finder optical system which is compact while having the same.

【0006】[0006]

【課題を解決するための手段】本発明による実像式ファ
インダー光学系は、正の屈折力を有する対物レンズ系
と、該対物レンズ系による中間像を正立像にするための
複数の反射部材からなる像正立系と、正の屈折力を有す
る接眼レンズ系とを順に配置してなる実像式ファインダ
ー光学系において、前記像正立系の第1反射部材が、負
の屈折力を有する入射面と一面以上の反射面とを有し且
常に次の条件 Bf/fw<0.8 を満たすプリズムであり、更に前記対物レンズ系による
中間結像位置の近傍に正の屈折力を有する面を設けたこ
とを特徴としている。但し、Bfは第1反射部材の射出
面から中間結像位置までの軸上距離、fwは第1反射部
材を含む対物レンズ系の焦点距離である。
A real image type finder optical system according to the present invention comprises an objective lens system having a positive refractive power and a plurality of reflecting members for converting an intermediate image formed by the objective lens system into an erect image. In a real image type finder optical system in which an image erecting system and an eyepiece lens system having a positive refractive power are sequentially arranged, the first reflecting member of the image erecting system has an incident surface having a negative refractive power. A prism having at least one reflecting surface and always satisfying the following condition: B f / f w <0.8, and further having a surface having a positive refractive power near an intermediate image forming position by the objective lens system. It is characterized by having been provided. Here, Bf is the axial distance from the exit surface of the first reflecting member to the intermediate image forming position, and fw is the focal length of the objective lens system including the first reflecting member.

【0007】[0007]

【作用】本発明によるファインダー光学系では、分割し
て成るポロプリズムの第1プリズムの入射面が負の屈折
力を有するため、対物レンズ系によって収束しつつある
光線に第1プリズムの入射面によって発散作用が働き、
中間結像位置が接眼レンズ系側へ移動せしめられる。よ
って、対物レンズ系の最終面から中間結像位置までのバ
ックフォーカス長が短くてバックフォーカス部にポロプ
リズムの第1プリズムを挿入するのに必要な光路長が取
れない場合でも、第1プリズムの入射面に負の屈折力を
持たせることでバックフォーカス長を必要な光路長以上
にすることができ、その結果第1プリズムをバックフォ
ーカス部に挿入できる。しかし、必要以上に第1プリズ
ムの入射面の負の屈折力を強くしてバックフォーカス長
を長くすると、対物レンズ系の最終面から第1プリズム
の入射面までの間隔が広がり、対物レンズ系の入射面か
ら接眼レンズ系の射出面までのファインダー構成長が長
くなってしまう。又、逆にファインダー構成長を短くす
るため、第1プリズムの射出面と中間結像位置を離す
と、ポロプリズム系の体積が増えてしまってポロプリズ
ム系の高さ又は幅が大きくなり、ファインダー光学系を
小型化できなくなる。従って、第1プリズムの入射面の
屈折力を条件式Bf /fw <0.8を満たすように設定
した時、中間像が第1プリズムの射出面近傍に結像さ
れ、最も効果的に小型化できる。
In the finder optical system according to the present invention, since the entrance surface of the first prism of the divided Porro prism has a negative refractive power, the light converging by the objective lens system is reflected by the entrance surface of the first prism. The divergent action works,
The intermediate imaging position is moved to the eyepiece system side. Therefore, even when the back focus length from the final surface of the objective lens system to the intermediate image forming position is short and the optical path length necessary for inserting the first prism of the Porro prism into the back focus portion cannot be obtained, By providing the incident surface with a negative refractive power, the back focus length can be made longer than the required optical path length, and as a result, the first prism can be inserted into the back focus portion. However, if the back focus length is increased by increasing the negative refractive power of the entrance surface of the first prism more than necessary, the distance from the final surface of the objective lens system to the entrance surface of the first prism increases, and The configuration length of the finder from the entrance surface to the exit surface of the eyepiece system becomes long. Conversely, if the exit surface of the first prism is separated from the intermediate imaging position in order to shorten the finder configuration length, the volume of the Porro prism system increases, and the height or width of the Porro prism system increases, and the viewfinder The optical system cannot be miniaturized. Therefore, when the refractive power of the entrance surface of the first prism is set so as to satisfy the conditional expression Bf / fw <0.8, an intermediate image is formed near the exit surface of the first prism, which is most effective. Can be downsized.

【0008】又、中間結像位置に正の屈折力を有する面
を設定すれば、対物レンズ系から発散してくる軸外光束
に収束作用を働かせて平行光に近づけることができ、こ
の正の屈折力を有する面が以後の第2プリズム及び接眼
レンズ系を小型化するフィールドレンズの役目を果たし
ている。この正の屈折力を有する面は第2プリズムの入
射面に設定してもよく、これも第1プリズムの射出面と
同様に中間結像面の近傍であるので、上述の如く対物レ
ンズ系のバックフォーカス長を長くする効果を損なうこ
となく、フィールドレンズとしての役割を果たす。尚、
第2プリズムの代わりにフィールドレンズとミラーを組
み合わせた光学系を用いてもよい。
If a surface having a positive refracting power is set at the intermediate image forming position, a converging effect is exerted on the off-axis light beam diverging from the objective lens system to make it closer to parallel light. The surface having the refracting power serves as a field lens for miniaturizing the subsequent second prism and the eyepiece system. The surface having the positive refractive power may be set as the entrance surface of the second prism, which is also near the intermediate image forming surface as in the exit surface of the first prism. It plays the role of a field lens without impairing the effect of increasing the back focus length. still,
An optical system combining a field lens and a mirror may be used instead of the second prism.

【0009】本発明の第1プリズムは対物レンズ系のタ
イプにより2又は3回反射の反射面を有するプリズムに
も成り得るが、一般に反射面数が増え光路長が長くなる
につれ入射面から射出面即ち中間像までの距離が長くな
り、該入射面での光束の広がりが大きくなるため、収差
が大きくなる恐れがある。このような場合には、上記入
射面を非球面とすることで有効に収差を補正することが
できる。
The first prism of the present invention can be a prism having a reflecting surface that reflects twice or three times depending on the type of the objective lens system. However, in general, as the number of reflecting surfaces increases and the optical path length increases, the first prism moves from the incident surface to the exit surface. That is, the distance to the intermediate image is increased, and the spread of the light beam on the incident surface is increased, which may increase the aberration. In such a case, aberration can be effectively corrected by making the incident surface aspherical.

【0010】又、上述の如く接眼レンズ系に対して対物
レンズ系による中間結像位置(接眼レンズ系の前側焦点
位置と一致する)が近づくことによって接眼レンズ系の
焦点距離を短くすることができるので、ファインダー倍
率βを大きくすることができる。尚、ファインダー倍率
βとは、対物レンズ系の焦点距離fT と接眼レンズ系の
焦点距離fR の比β=fT /fR によって決まる値であ
る。
Further, as described above, the focal length of the eyepiece lens system can be shortened by approaching the intermediate imaging position (coincident with the front focal position of the eyepiece lens system) by the objective lens system with respect to the eyepiece lens system. Therefore, the finder magnification β can be increased. The finder magnification β is a value determined by the ratio β = f T / f R of the focal length f T of the objective lens system to the focal length f R of the eyepiece lens system.

【0011】[0011]

【実施例】次に、本発明の実像式ファインダー光学系の
実施例を示す。実施例1 図1は実施例1の斜視図、図2は実施例1の低倍端,中
間,高倍端における展開図である。図に示した如く、対
物レンズ系1は、負レンズの第1群2と、正レンズと負
レンズとから成り全体として正の屈折力をもつ第2群3
と、正レンズの第3群4とから成っている。図2から明
らかなように、対物レンズ系1の中の第2群3と第3群
4とが相対間隔を変えつつ物体側に移動することにより
ファインダー倍率が低倍→中間→高倍へと変化させられ
るようになっている。
Next, an embodiment of a real image type finder optical system according to the present invention will be described. Embodiment 1 FIG. 1 is a perspective view of Embodiment 1, and FIG. As shown in the figure, the objective lens system 1 includes a first group 2 of negative lenses, and a second group 3 composed of a positive lens and a negative lens and having a positive refractive power as a whole.
And a third group 4 of positive lenses. As is apparent from FIG. 2, the finder magnification changes from low to middle to high by moving the second group 3 and the third group 4 in the objective lens system 1 toward the object side while changing the relative distance. It is made to be made.

【0012】像正立系5は、二つの第1プリズム6と第
2プリズム7とから成っており、この二つのプリズム
6,7でポロプリズムと等価の像正立作用を有してい
る。図1から明らかなように、第1プリズム6は入射面
が凹面で負の屈折力を有し且つ射出面が平面である直角
プリズムであって、一つの反射面を有している。第2プ
リズム7は、第1プリズム6の射出面と対向する入射面
が凸面で正の屈折力を有し且つ射出面が平面であると共
に、三つの反射面を有している。そして、第1プリズム
6と第2プリズム7との間に視野枠8が設けられ、この
位置が対物レンズ系1による中間結像位置となってい
る。従って、第2プリズム7の入射面がフィールドレン
ズの作用をもつことになる。又、第1プリズム6の一つ
の反射面と第2プリズム7の三つの反射面とによる合計
4回の反射により対物レンズ系1の作る像を正立させる
ようになっている。
The image erecting system 5 comprises two first prisms 6 and a second prism 7, and these two prisms 6, 7 have an image erecting function equivalent to a Porro prism. As is clear from FIG. 1, the first prism 6 is a right-angle prism having a concave entrance surface, a negative refractive power, and a flat exit surface, and has one reflection surface. The second prism 7 has a convex incident surface facing the exit surface of the first prism 6, has a positive refractive power, has a flat exit surface, and has three reflecting surfaces. A field frame 8 is provided between the first prism 6 and the second prism 7, and this position is an intermediate image forming position by the objective lens system 1. Therefore, the incident surface of the second prism 7 has the function of a field lens. Further, an image formed by the objective lens system 1 is erected by a total of four reflections by one reflection surface of the first prism 6 and three reflection surfaces of the second prism 7.

【0013】対物レンズ系1による中間像は正の単レン
ズから成る接眼レンズ系9により拡大して観察される。
尚、図示しないが、これをカメラに用いる場合は、この
ファインダー光学系に並列して撮影レンズ系が設けら
れ、撮影レンズ系の変倍とファインダー光学系の変倍が
連動して行なわれることになる。
The intermediate image obtained by the objective lens system 1 is magnified and observed by an eyepiece system 9 composed of a positive single lens.
Although not shown, when this is used in a camera, a photographic lens system is provided in parallel with the finder optical system, and the magnification of the photographic lens system and the magnification of the finder optical system are interlocked. Become.

【0014】本実施例のデータは次の通りであり、図
3,図4,図5に夫々本実施例の低倍端,中間,高倍端
での収差曲線を示す。 倍率 0.45〜1.14 , 視野角(2ω)=5
2.4゜〜19.8゜ r1 =−13.1360 d1 =1.0000 n1 =1.58362 ν1
=30.37 r2 =13.7360(非球面) d2 (可変) r3 =5.6100(非球面) d3 =4.1750 n2 =1.49230 ν2
=57.71 r4 =−43.8590 d4 =1.0220 r5 =9.8180 d5 =1.2930 n3 =1.58362 ν3
=30.37 r6 =4.9250 d6 (可変) r7 =6.9330(非球面) d7 =1.7970 n4 =1.49230 ν4
=57.71 r8 =−75.4320 d8 (可変) r9 =−10.8400 d9 =11.4120 n5 =1.49230 ν5
=57.71 r10=−79.7800 d10=1.9200 r11=10.4590 d11=29.7810 n6 =1.49230 ν6
=57.71 r12=∞ d12=0.7000 r13=12.6840(非球面) d13=2.0780 n7 =1.49230 ν7
=57.71 r14=−54.8790 d14=15.0000 r15(アイポイント)
The data of the present embodiment is as follows. FIGS. 3, 4 and 5 show aberration curves of the present embodiment at the low magnification end, the middle and the high magnification end, respectively. Magnification 0.45 to 1.14, viewing angle (2ω) = 5
2.4 ° to 19.8 ° r 1 = 13.1360 d 1 = 1.0000 n 1 = 1.58362 ν 1
= 30.37 r 2 = 13.7360 (aspherical surface) d 2 (variable) r 3 = 5.6100 (aspherical surface) d 3 = 4.1750 n 2 = 1.49230 ν 2
= 57.71 r 4 = -43.8590 d 4 = 1.0220 r 5 = 9.8180 d 5 = 1.2930 n 3 = 1.58362 ν 3
= 30.37 r 6 = 4.9250 d 6 (variable) r 7 = 6.9330 (aspherical surface) d 7 = 1.7970 n 4 = 1.49230 ν 4
= 57.71 r 8 = −75.4320 d 8 (variable) r 9 = −10.8400 d 9 = 11.4120 n 5 = 1.49230 v 5
= 57.71 r 10 = -79.7800 d 10 = 1.9200 r 11 = 10.4590 d 11 = 29.7810 n 6 = 1.49230 ν 6
= 57.71 r 12 = ∞ d 12 = 0.7000 r 13 = 12.6840 (aspherical surface) d 13 = 2.0780 n 7 = 1.49230 ν 7
= 57.71 r 14 = -54.8790 d 14 = 15.0000 r 15 (eye point)

【0015】非球面係数 第2面 E=−0.1448×10-3 , F=−0.8142
0×10-5, G=0.5918×10-6 第3面 E=−0.77814×10-3 , F=−0.556
77×10-5, G=−0.53661×10-6 第7面 E=−0.29784×10-3 , F=0.2074
0×10-5, G=−0.21629×10-6 第13面 E=−0.71782×10-4 , F=−0.146
30×10-5, G=0.31012×10-7
Aspherical surface coefficient Second surface E = -0.1448 × 10 -3 , F = -0.8142
0 × 10 −5 , G = 0.5918 × 10 −6 third surface E = −0.77814 × 10 −3 , F = −0.556
77 × 10 −5 , G = −0.53661 × 10 −6 7th surface E = −0.29784 × 10 −3 , F = 0.2074
0 × 10 −5 , G = −0.21629 × 10 −6 th surface 13 E = −0.71782 × 10 −4 , F = −0.146
30 × 10 −5 , G = 0.31012 × 10 −7

【0016】 低 倍 中 間 高 倍 d2 12.296 5.823 1.851 d6 1.782 4.643 2.961 d8 1.957 5.569 11.223 Bf/fw=0.20(低倍時) Low magnification Medium middle High magnification d 2 12.296 5.823 1.851 d 6 1.782 4.663 2.961 d 8 1.957 5.569 11.223 B f / f w = 0. 20 (at low magnification)

【0017】実施例2 図6は実施例2の斜視図、図7は実施例2の低倍端,中
間,高倍端における展開図である。図に示した如く、基
本的構成は実施例1と同じである。対物レンズ系1は第
1群2〜第3群4で構成されているが、第2群3が正の
単レンズである点で実施例1と異なっている。又、像正
立系5は、第1プリズム6と第2プリズム7とに分かれ
ており、夫々が二つの反射面を有している。
Second Embodiment FIG. 6 is a perspective view of the second embodiment, and FIG. 7 is a developed view of the second embodiment at the low magnification end, the middle, and the high magnification end. As shown in the figure, the basic configuration is the same as that of the first embodiment. The objective lens system 1 includes a first group 2 to a third group 4, but differs from the first embodiment in that the second group 3 is a positive single lens. The image erecting system 5 is divided into a first prism 6 and a second prism 7, each of which has two reflecting surfaces.

【0018】本実施例のデータは次の通りであり、図
8,図9,図10に夫々本実施例の低倍端,中間,高倍
端での収差曲線を示す。 倍率 0.42〜0.76 , 視野角(2ω)=5
2.8゜〜28.2゜ r1 =−10.1420 d1 =1.0000 n1 =1.58362 ν1
=30.37 r2 =6.7010(非球面) d2 (可変) r3 =6.1200(非球面) d3 =1.4730 n2 =1.49230 ν2
=57.71 r4 =−83.9140 d4 (可変) r5 =16.1990(非球面) d5 =4.1210 n3 =1.49230 ν3
=57.71 r6 =−7.1150 d6 (可変) r7 =−18.5620 d7 =18.4000 n4 =1.49230 ν4
=57.71 r8 =∞ d8 =1.0000 r9 =10.4460 d9 =29.2570 n5 =1.49230 ν5
=57.71 r10=∞ d10=1.5000 r11=10.6420(非球面) d11=4.7960 n6 =1.49230 ν6
=57.71 r12=301.7560 d12=15.0000 r13(アイポイント)
The data of the present embodiment are as follows. FIGS. 8, 9 and 10 show aberration curves of the present embodiment at the low magnification end, the middle and the high magnification end, respectively. Magnification 0.42 to 0.76, viewing angle (2ω) = 5
2.8 ° ~28.2 ° r 1 = -10.1420 d 1 = 1.0000 n 1 = 1.58362 ν 1
= 30.37 r 2 = 6.7010 (aspherical surface) d 2 (variable) r 3 = 6.11200 (aspherical surface) d 3 = 1.4730 n 2 = 1.49230 ν 2
= 57.71 r 4 = -83.9140 d 4 ( variable) r 5 = 16.1990 (aspherical) d 5 = 4.1210 n 3 = 1.49230 ν 3
= 57.71 r 6 = -7.1150 d 6 ( variable) r 7 = -18.5620 d 7 = 18.4000 n 4 = 1.49230 ν 4
= 57.71 r 8 = ∞d 8 = 1.0000 r 9 = 10.4460 d 9 = 29.2570 n 5 = 1.49230 ν 5
= 57.71 r 10 = ∞ d 10 = 1.5000 r 11 = 10.6420 (aspherical surface) d 11 = 4.7960 n 6 = 1.49230 ν 6
= 57.71 r 12 = 301.7560 d 12 = 15.0000 r 13 (eye point)

【0019】非球面係数 第2面 E=−0.11968×10-2 , F=−0.119
31×10-4, G=−0.73834×10-5 第3面 E=−0.11077×10-2 , F=0.5575
2×10-4, G=−0.15633×10-4 第5面 E=−0.11892×10-2 , F=−0.302
48×10-4, G=0.52155×10-5 第11面 E=−0.12684×10-3 , F=−0.100
63×10-5, G=0.57479×10-8
Aspheric surface second surface E = −0.11968 × 10-2 , F = −0.119
31 × 10-Four, G = −0.73834 × 10-Five Third surface E = −0.11077 × 10-2 , F = 0.5575
2 × 10-Four, G = −0.15633 × 10-Four Fifth surface E = -0.11892 × 10-2 , F = −0.302
48 × 10-Four, G = 0.52155 × 10-Five  Eleventh surface E = -0.12684 × 10-3 , F = −0.100
63 × 10-Five, G = 0.57479 × 10-8

【0020】 低 倍 中 間 高 倍 d2 3.989 1.916 0.933 d4 3.417 2.717 1.000 d6 1.000 3.773 6.473 Bf /fw =0[0020] During low magnification in high magnification d 2 3.989 1.916 0.933 d 4 3.417 2.717 1.000 d 6 1.000 3.773 6.473 B f / f w = 0

【0021】実施例3 図11は実施例3の斜視図、図12は実施例3の低倍
端,中間,高倍端における展開図である。本実施例で
は、対物レンズ系1は負レンズ群の第1群2と2枚の正
レンズから成る第2群3とで構成されており、各群が移
動することによりファインダー倍率が低倍→中間→高倍
へと変化させられるようになっている。
Third Embodiment FIG. 11 is a perspective view of the third embodiment, and FIG. 12 is a developed view of the third embodiment at a low magnification end, an intermediate position, and a high magnification end. In the present embodiment, the objective lens system 1 is composed of a first group 2 of negative lens groups and a second group 3 of two positive lenses. It can be changed from middle to high magnification.

【0022】像正立系5は、第1プリズム6とフィール
ドレンズ10とミラー11とから成っている。そして、
第1プリズム6は三つの反射面を有しており、その射出
面の真上にフィールドレンズ10があり、更にその上に
ミラー11があって、全体としてポロプリズムと同じ作
用をもっている。又、視野枠8は第1プリズム6の射出
面とフィールドレンズ10との間にある。
The image erecting system 5 includes a first prism 6, a field lens 10, and a mirror 11. And
The first prism 6 has three reflecting surfaces, and a field lens 10 is provided immediately above the exit surface, and a mirror 11 is provided thereon, and has the same operation as the Porro prism as a whole. The field frame 8 is located between the exit surface of the first prism 6 and the field lens 10.

【0023】本実施例のデータは次の通りであり、図1
3,図14,図15に夫々本実施例の低倍端,中間,高
倍端での収差曲線を示す。 倍率 0.45〜1.15 , 視野角(2ω)=5
2.0゜〜20.0゜ r1 =−14.9140 d1 =1.0000 n1 =1.58362 ν1
=30.37 r2 =16.6510(非球面) d2 (可変) r3 =−9.0540 d3 =2.8110 n2 =1.49230 ν2
=57.71 r4 =−7.6940 d4 =0.1000 r5 =10.8890 d5 =2.3350 n3 =1.49230 ν3
=57.71 r6 =−20.7890(非球面) d6 (可変) r7 =−49.1540 d7 =30.0000 n4 =1.49230 ν4
=57.71 r8 =∞ d8 =1.0000 r9 =14.3780 d9 =2.0000 n5 =1.49230 ν5
=57.71 r10=∞ d10=18.0904 r11=64.6310 d11=2.1470 n6 =1.49230 ν6
=57.71 r12=−12.8090(非球面) d12=15.0000 r13(アイポイント)
The data of this embodiment is as follows.
3, 14 and 15 show aberration curves of the present embodiment at the low magnification end, the middle, and the high magnification end, respectively. Magnification 0.45 to 1.15, viewing angle (2ω) = 5
2.0 ° to 20.0 ° r 1 = −14.9140 d 1 = 1.0000 n 1 = 1.58362 ν 1
= 30.37 r 2 = 16.6510 (aspherical surface) d 2 (variable) r 3 = −9.0540 d 3 = 2.8110 n 2 = 1.49230 ν 2
= 57.71 r 4 = −7.6940 d 4 = 0.1000 r 5 = 10.8890 d 5 = 2.3350 n 3 = 1.49230 v 3
= 57.71 r 6 = -20.7890 (aspherical surface) d 6 (variable) r 7 = -49.1540 d 7 = 30.0000 n 4 = 1.492230 ν 4
= 57.71 r 8 = ∞d 8 = 1.0000 r 9 = 14.3780 d 9 = 2.0000 n 5 = 1.429230 ν 5
= 57.71 r 10 = ∞ d 10 = 18.0904 r 11 = 64.6310 d 11 = 2.1470 n 6 = 1.49230 ν 6
= 57.71 r 12 = -12.8090 (aspherical surface) d 12 = 15.0000 r 13 (eye point)

【0024】非球面係数 第2面 E=−0.33284×10-3 , F=0.2127
3×10-4, G=−0.16750×10-5 第6面 E=0.25866×10-3 , F=−0.1963
9×10-5, G=0.63589×10-7 第12面 E=0.11251×10-3 , F=0.31703
×10-6, G=0.62827×10-8
Aspheric surface second surface E = −0.33284 × 10 −3 , F = 0.2127
6th surface E = 0.25866 × 10 −3 , F = −0.1963, 3 × 10 −4 , G = −0.16750 × 10 −5
9 × 10 -5 , G = 0.63589 × 10 -7 twelfth surface E = 0.12551 × 10 -3 , F = 0.31703
× 10 -6 , G = 0.62827 × 10 -8

【0025】 低 倍 中 間 高 倍 d2 13.228 5.976 1.720 d4 1.000 5.101 11.252 Bf /fw =0Low magnification Medium middle High magnification d 2 13.228 5.976 1.720 d 4 1.000 5.101 11.252 B f / f w = 0

【0026】但し、上記各実施例においてr1 ,r2
…は各レンズ面の曲率半径、d1 ,d2 ,…は各レンズ
の肉厚及びレンズ間隔、n1 ,n2 ,…は各レンズの屈
折率、ν1 ,ν2 ,…は各レンズのアッベ数である。
However, in each of the above embodiments, r 1 , r 2 ,
... curvature radius of each lens surface, d 1, d 2, ... is the thickness and lens distance of each lens, n 1, n 2, ... is the refractive index of each lens, ν 1, ν 2, ... each lens Is the Abbe number of

【0027】又、上記各実施例中の非球面形状は、上記
非球面係数を用いて以下の式で表わされる。但し、光軸
方向の座標はX、光軸と垂直な方向の座標はYとする。
The aspheric shape in each of the above embodiments is represented by the following equation using the aspheric coefficient. Here, the coordinates in the optical axis direction are X, and the coordinates in the direction perpendicular to the optical axis are Y.

【0028】 [0028]

【0029】ここで、rは近軸曲率半径である。又、上
記各実施例中の対物レンズの光学要素はプラスチックを
材料としているが、コスト的に見合うならガラスを材料
としてもよい。
Here, r is a paraxial radius of curvature. Although the optical element of the objective lens in each of the above embodiments is made of plastic, glass may be used if cost is appropriate.

【0030】[0030]

【発明の効果】上述の如く、本発明による実像式ファイ
ンダー光学系は、複数の反射部材から構成されるポロプ
リズム系によって正立像を得る実像式ファインダー光学
系でありながら、ファインダー構成長が短く且つ良好な
光学的性能を有すると共にコンパクトでファインダー倍
率も高いという実用上重要な利点を有している。
As described above, the real image type finder optical system according to the present invention is a real image type finder optical system for obtaining an erect image by a Porro prism system composed of a plurality of reflecting members, but has a short finder configuration length. It has practically important advantages that it has good optical performance, is compact, and has a high finder magnification.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による実像式ファインダー光学系の実施
例1の斜視図である。
FIG. 1 is a perspective view of a first embodiment of a real image type viewfinder optical system according to the present invention.

【図2】実施例1の低倍端,中間,高倍端における展開
図である。
FIG. 2 is a development view at a low magnification end, a middle, and a high magnification end of the first embodiment.

【図3】実施例1の低倍端における収差曲線図である。FIG. 3 is an aberration curve diagram of Example 1 at a low magnification end.

【図4】実施例1の中間における収差曲線図である。FIG. 4 is an aberration curve diagram in the middle of Example 1.

【図5】実施例1の高倍端における収差曲線図である。FIG. 5 is an aberration curve diagram at the high magnification end of the first embodiment.

【図6】実施例2の斜視図である。FIG. 6 is a perspective view of a second embodiment.

【図7】実施例2の低倍端,中間,高倍端における展開
図である。
FIG. 7 is a development view at a low magnification end, a middle magnification, and a high magnification end of the second embodiment.

【図8】実施例2の低倍端における収差曲線図である。FIG. 8 is an aberration curve diagram at the low magnification end of the second embodiment.

【図9】実施例2の中間における収差曲線図である。FIG. 9 is an aberration curve diagram in the middle of Example 2.

【図10】実施例2の高倍端における収差曲線図であ
る。
FIG. 10 is an aberration curve diagram at the high magnification end of the second embodiment.

【図11】実施例3の斜視図である。FIG. 11 is a perspective view of a third embodiment.

【図12】実施例3の低倍端,中間,高倍端における展
開図である。
FIG. 12 is a development view at a low magnification end, a middle, and a high magnification end of the third embodiment.

【図13】実施例3の低倍端における収差曲線図であ
る。
FIG. 13 is an aberration curve diagram at the low magnification end of the third embodiment.

【図14】実施例3の中間における収差曲線図である。14 is an aberration curve diagram in the middle of Example 3. FIG.

【図15】実施例3の高倍端における収差曲線図であ
る。
FIG. 15 is an aberration curve diagram at the high magnification end of the third embodiment.

【符号の説明】[Explanation of symbols]

1 対物レンズ系 2 第1群 3 第2群 4 第3群 5 像正立系 6 第1プリズム 7 第2プリズム 8 視野枠 9 接眼レンズ系 10 フィールドレンズ 11 ミラー DESCRIPTION OF SYMBOLS 1 Objective lens system 2 1st group 3 2nd group 4 3rd group 5 Image erecting system 6 1st prism 7 2nd prism 8 Field frame 9 Eyepiece system 10 Field lens 11 Mirror

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 G03B 13/00 - 13/28 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04 G03B 13 / 00-13/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正の屈折力を有する対物レンズ系と、該
対物レンズ系による中間像を正立像にするための複数の
反射部材からなる像正立系と、正の屈折力を有する接眼
レンズ系とを順に配置してなる実像式ファインダー光学
系において、前記像正立系の第1反射部材が、負の屈折
力を有する入射面と一面以上の反射面とを有し且つ常に
次の条件 Bf/fw<0.8 を満たすプリズムであり、更に前記対物レンズ系による
中間結像位置の近傍に正の屈折力を有する面を設けたこ
とを特徴とする実像式ファインダー光学系。但し、Bf
は第1反射部材の射出面から中間結像位置までの軸上距
離、fwは第1反射部材を含む対物レンズ系の焦点距離
である。
An objective lens system having a positive refractive power, an image erecting system including a plurality of reflecting members for converting an intermediate image formed by the objective lens system into an erect image, and an eyepiece having a positive refractive power And a real image type viewfinder optical system in which a first reflecting member of the image erecting system has an incident surface having a negative refractive power and one or more reflecting surfaces, and is always <br / A real image finder, wherein the prism satisfies the following condition: B f / f w <0.8, and a surface having a positive refractive power is provided in the vicinity of an intermediate image forming position by the objective lens system. Optical system. However, B f
Is the axial distance from the exit surface of the first reflecting member to the intermediate imaging position, and fw is the focal length of the objective lens system including the first reflecting member.
JP03017081A 1991-01-17 1991-01-17 Real image finder optical system Expired - Fee Related JP3075540B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03017081A JP3075540B2 (en) 1991-01-17 1991-01-17 Real image finder optical system
US07/821,922 US5231534A (en) 1991-01-17 1992-01-16 Real image mode variable magnification finder optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03017081A JP3075540B2 (en) 1991-01-17 1991-01-17 Real image finder optical system

Publications (2)

Publication Number Publication Date
JPH05164964A JPH05164964A (en) 1993-06-29
JP3075540B2 true JP3075540B2 (en) 2000-08-14

Family

ID=11934028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03017081A Expired - Fee Related JP3075540B2 (en) 1991-01-17 1991-01-17 Real image finder optical system

Country Status (1)

Country Link
JP (1) JP3075540B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084720A (en) * 1997-10-28 2000-07-04 Olympus Optical Co., Ltd. Small-sized real image mode zoom finder

Also Published As

Publication number Publication date
JPH05164964A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
US5231534A (en) Real image mode variable magnification finder optical system
JP3076122B2 (en) camera
US5640632A (en) Viewfinder device
JP3365780B2 (en) Real image type zoom finder optical system
US6496310B2 (en) Optical system and optical apparatus provided with the same
KR100211155B1 (en) Viewfinder optical system
JP3064337B2 (en) Real image type variable magnification finder optical system
JPS6217202B2 (en)
JP3346604B2 (en) Real image type zoom finder
JP3650270B2 (en) Real-image viewfinder
JP3805390B2 (en) Real-image variable magnification viewfinder optical system
JPH052139A (en) Erect finder device
JP3181636B2 (en) Switchable zoom finder
JP3288436B2 (en) Real image type zoom finder
JP3075540B2 (en) Real image finder optical system
US6493150B2 (en) Real image mode variable magnification finder
JPH0784184A (en) Real image type variable power finder optical system
JP2958124B2 (en) Real image type variable magnification finder optical system
JPH0829870A (en) Camera having short entire length
JP3313180B2 (en) Real image finder optical system
JP3171458B2 (en) Real image type zoom finder optical system
JP3190382B2 (en) Real image type zoom finder optical system
JP3587687B2 (en) Real-image zoom finder
JP3708340B2 (en) Compact real-image zoom finder
JPH0644098B2 (en) Zoom lens with movable light splitting member

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000523

LAPS Cancellation because of no payment of annual fees