JP3074695B2 - Circulating zero-phase current suppression circuit - Google Patents
Circulating zero-phase current suppression circuitInfo
- Publication number
- JP3074695B2 JP3074695B2 JP02074262A JP7426290A JP3074695B2 JP 3074695 B2 JP3074695 B2 JP 3074695B2 JP 02074262 A JP02074262 A JP 02074262A JP 7426290 A JP7426290 A JP 7426290A JP 3074695 B2 JP3074695 B2 JP 3074695B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- phase
- zero
- current
- bypass circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001629 suppression Effects 0.000 title claims description 9
- 230000007935 neutral effect Effects 0.000 claims description 14
- 230000005611 electricity Effects 0.000 claims description 2
- 230000002159 abnormal effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 102100020714 Fragile X mental retardation 1 neighbor protein Human genes 0.000 description 2
- 101000932499 Homo sapiens Fragile X mental retardation 1 neighbor protein Proteins 0.000 description 2
- 229910001219 R-phase Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000018199 S phase Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
Landscapes
- Stand-By Power Supply Arrangements (AREA)
Description
【発明の詳細な説明】 A.産業上の利用分野 この発明は地絡トリップ機能付き開閉器又は遮断器の
バイパス回路における循環零相電流抑制回路に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circulating zero-phase current suppression circuit in a bypass circuit of a switch or a circuit breaker having a ground fault trip function.
B.発明の概要 この発明は地絡トリップ機能付開閉器又は遮断器のバ
イパス回路における循環零相電流抑制回路において、 交流三相3線式電路からなる常用回路側に設けられた
地絡トリップ機能付開閉器又は遮断器を挟んでバイパス
回路を形成した際に、その常用回路側とバイパス回路と
による循環回路に流れる循環零相電流を抑制する零相抑
制インピーダンス分をバイパス回路に設けたことによ
り、 循環零相電流による地絡トリップ機能付開閉器又は遮
断器が不必要動作しないようにしたものである。B. Summary of the Invention The present invention relates to a circulating zero-phase current suppression circuit in a bypass circuit of a switch or a circuit breaker with a ground fault trip function, and a ground fault trip function provided on a service circuit side including an AC three-phase three-wire circuit. When a bypass circuit is formed with a switch or circuit breaker interposed therebetween, a zero-phase suppression impedance component that suppresses a circulating zero-phase current flowing in a circulation circuit formed by the service circuit and the bypass circuit is provided in the bypass circuit. The switch or circuit breaker with the ground fault trip function due to the circulating zero-phase current is not operated unnecessarily.
C.従来の技術 例えば三相3線式高圧配電線において無停電負荷群に
電力を供給しているとき、高圧配電線の電源側を工事等
のため停電させる必要が生じることがある。このような
とき、高圧配電線と負荷との間に介在されている負荷開
閉器を挟んで、第2図に示すような、例えば無停電送電
形移動電源車11(図示一点鎖線んで囲んだ部分)を高圧
配電線12に活線状態にて並列接続並びに解列させるバイ
パス回路13(図示点線で囲んだ部分)を設けることが行
われる。移動電源車11を高圧配電線12に活線接続するに
は通常、第2図に示すように、移動電源車11に付属され
ている電源ケーブル14を高圧配電線12の負荷開閉器15の
電源側に、また負荷ケーブル16を負荷開閉器15の負荷側
に相を合わせて活線接続部17,18にてそれぞれ接続す
る。図中19は三相交流同期発電機、20は原動機、52Cは
バイパス側遮断器、52Gは発電機側遮断器である。次に
第2図の動作について説明する。第2図のように電源ケ
ーブル14と負荷ケーブル16を図示のように接続した後、
移動電源車11のバイパス側遮断器52Cを投入し、バイパ
ス回路13を形成する。バイパス回路13の形成後、負荷開
閉器15を開放して、無停電負荷群には全てバイパス回路
13を経由して給電させることになる。バイパス回路13内
でこれら電気量を計測することにより、これから発電機
に切替えて送電可能かどうかの確認もできる。確認後、
三相交流同期発電機19を運転させ、バイパス回路13に対
して発電機側遮断器52Gを同期投入する。その後発電機1
9側に負荷移行したのち、バイパス側遮断器52Cを開放さ
せる。これにより無停電負荷群は発電機側遮断器52Gを
介して発電機19から全て給電されたことになる。これに
より常用電源側は停電工事が可能となるととにも、無停
電負荷群側は発電機19により無停電給電される。常用電
源側の停電工事が終了すると、常用電源側は復電され
る。復電後、バイパス側遮断器52Cを負荷運転中の発電
機19に対して同期投入する。投入後、発電機負荷をバイ
パス回路13に移行させて発電機側遮断器52Gを開放さ
せ、発電機19の運転を停止させる。次に負荷開閉器15を
投入し、しかる後バイパス側遮断器52Cを開放させてか
ら、電源ケーブル14、負荷ケーブル16を配電線12から外
すことによって一連の作業が終了する。C. Prior Art For example, when power is supplied to a group of uninterruptible loads in a three-phase three-wire high-voltage distribution line, the power supply side of the high-voltage distribution line may need to be stopped for construction or the like. In such a case, as shown in FIG. 2, for example, an uninterruptible transmission type mobile power supply vehicle 11 (a portion surrounded by a dashed line in FIG. 2) sandwiching a load switch interposed between the high-voltage distribution line and the load. ) Is connected to the high-voltage distribution line 12 in a live state, and a bypass circuit 13 (portion surrounded by a dotted line) is provided. In order to live connect the mobile power supply vehicle 11 to the high voltage distribution line 12, as shown in FIG. 2, the power cable 14 attached to the mobile power supply vehicle 11 is normally connected to the power switch 15 of the high voltage distribution line 12 by the power supply. And the load cable 16 is connected to the load side of the load switch 15 at the live connection parts 17 and 18 in phase. In the figure, 19 is a three-phase AC synchronous generator, 20 is a prime mover, 52C is a bypass circuit breaker, and 52G is a generator circuit breaker. Next, the operation of FIG. 2 will be described. After connecting the power cable 14 and the load cable 16 as shown in FIG.
The bypass circuit breaker 52C of the mobile power supply vehicle 11 is turned on to form the bypass circuit 13. After the bypass circuit 13 is formed, the load switch 15 is opened, and all the uninterruptible load groups are bypassed.
Power will be supplied via 13. By measuring these quantities in the bypass circuit 13, it is also possible to switch to a generator and check whether power transmission is possible. After confirmation,
The three-phase AC synchronous generator 19 is operated, and the generator-side circuit breaker 52G is synchronized with the bypass circuit 13. Then generator 1
After the load is shifted to the ninth side, the bypass circuit breaker 52C is opened. As a result, all the uninterruptible load groups are supplied with power from the generator 19 via the generator-side circuit breaker 52G. As a result, the utility power supply side can perform power outage work, and the uninterruptible load group side is supplied with uninterruptible power by the generator 19. When the power outage on the main power supply is completed, the power on the main power supply is restored. After the power is restored, the bypass circuit breaker 52C is synchronously turned on with respect to the generator 19 during the load operation. After being turned on, the generator load is transferred to the bypass circuit 13, the generator-side circuit breaker 52G is opened, and the operation of the generator 19 is stopped. Next, the load switch 15 is turned on, and after that, the bypass circuit breaker 52C is opened, and then the power cable 14 and the load cable 16 are disconnected from the distribution line 12, thereby completing a series of operations.
D.発明が解決しようとする課題 上述した第2図に示す構成において、負荷開閉器15に
第3図に示すような例えば過電流ロック形地絡トリップ
付高圧気中負荷開閉器(以下GR付きPASと称す)30を使
用した場合には以下に述べるような問題が発生する。な
お、GR付PAS30は地絡事故時には自動的に電路を開放
し、地絡、過電流事故同時発生または過電流事故時には
電力会社配電用変電所の遮断器が作動し、無電圧になっ
たことを条件にGR付PAS30が自動的に開放するもので、
地絡継電器および過電流ロック蓄勢制御などの制御箱31
が付属しているものである。また、第3図において、制
御箱31内の地絡継電器はZCTに接続され、32,33は活線接
続器、34,35は断路器、36は計器用変圧器PT、37は計器
用変流器CTである。D. Problems to be Solved by the Invention In the configuration shown in FIG. 2 described above, the load switch 15 is, for example, a high-pressure air load switch (hereinafter referred to as GR) with an overcurrent lock type ground fault trip as shown in FIG. When the PAS 30 is used, the following problems occur. The PAS30 with GR automatically opened the circuit when a ground fault occurred, and when a ground fault or overcurrent accident occurred simultaneously or when an overcurrent accident occurred, the circuit breaker of the power company distribution substation was activated, and the voltage became zero. The PAS30 with GR automatically opens under the condition
Control box 31 for ground fault relay and overcurrent lock charging control
Is what comes with. In FIG. 3, the ground fault relay in the control box 31 is connected to the ZCT, 32 and 33 are hot-line connectors, 34 and 35 are disconnectors, 36 is an instrument transformer PT, and 37 is an instrument transformer. It is a flower CT.
第3図のように構成されたバイパス回路13をGR付PAS3
0を挟んで接続し、バイパス側遮断器52Cを投入すると、
R相の電流R=R′+R″,S相の電流S=
S′+S″,T相の電流T=T′+T″は図示の
ように分流する。ここで三相3線式の場合地絡事故が生
じていなければ1/3×(R+S+T)=0、すな
わち電源側及び負荷側電流には零相電流は含まれていな
いが、バイパス回路13により生じた各相分流回路に着目
すると、配電線側の活線接続部や、バイパス回路13側の
活線接続器32,33、断路器34,35、遮断器52C,開閉器30等
の接触抵抗や各種CTドロップ分の違い、その他各配線ド
ロップ分や接続条件等の違いにもとずく各相、各枝路イ
ンピーダンスの違いにより、R′とR″,S′と
S″,T′とT″との分担比は一般にはそれぞれ
異なり、 なる循環零相電流が流れることになる。この循環零相電
流はGR付PAS30に流れるため、30内部のZCTがこの循環零
相電流分(3×O)を検出して制御箱31の地絡継電器
が不必要動作し、GR付PAS30がトリップするおそれがあ
る。また、バイパス回路13側を経由して負荷側に給電し
ている状態のとき、GR付PAS30を投入した場合も、30内
部のZCTが前記と同様に循環零相電流を検出して上記地
絡継電器が不必要動作すると、GR付PAS30はトリップ
し、無停電源切替えができなくなってしまう。The bypass circuit 13 configured as shown in FIG.
0 is connected, and when the bypass circuit breaker 52C is turned on,
R-phase current R = R ′ + R ″ , S-phase current S =
S ′ + S ″ and the T-phase current T = T ′ + T ″ are shunted as shown. Here, in the case of the three-phase three-wire system, if a ground fault has not occurred, 1/3 × ( R + S + T ) = 0, that is, the zero-phase current is not included in the power-supply-side and load-side currents. Paying attention to each phase shunt circuit generated by the bypass circuit 13, the hot wire connection part on the distribution line side, the hot wire connectors 32 and 33, the disconnectors 34 and 35 on the bypass circuit 13 side, the circuit breaker 52C, the switch 30 R ' and R " , S' are different due to the difference of each phase and each branch impedance based on the difference of contact resistance and various CT drops, and the difference of each wiring drop and connection condition.
The share ratio between S ″ , T ′ and T ″ is generally different, Circulating zero-phase current will flow. Since this circulating zero-phase current flows through the PAS 30 with GR, the ZCT inside 30 detects this circulating zero-phase current (3 × O 2 ), and the grounding relay of the control box 31 operates unnecessarily. There is a risk of tripping. Also, when power is supplied to the load side via the bypass circuit 13 and the PAS 30 with GR is turned on, the ZCT inside 30 detects the circulating zero-phase current and detects the ground fault as described above. If the relay operates unnecessarily, the PAS 30 with GR trips, making it impossible to switch uninterrupted power.
そこで、従来は常用回路のGR付PAS30を挟んでバイパ
ス回路13を形成または解列する場合は前述の循環零相電
流分による地絡継電器の不必要動作をさけるため、例え
ばGR付PAS30側とバイパス回路13側が同時に形成される
期間中は、前記制御箱31の制御電源を開放して地絡継電
器が動作しないようにする等の対策が必要であった。し
かし、第2図に示した移動電源車11は普通電力会社の所
有物であり、かつ電力会社側配電線路の改修のための工
事であるにもかかわらず、GR付PAS30は自家用需要家の
構内第1柱に設けられている場合が多い。この場合はGR
付PAS30は需要家の財産(あるいは負担金範囲)である
ため、GR付PAS30の地絡動作ロック等の操作に関しては
自家用需要家の許可が必要となり、その連絡、調整に手
間がかかったり緊急の場合には連絡が間に合わない等の
不都合があった。Therefore, conventionally, when forming or disconnecting the bypass circuit 13 across the PAS 30 with the GR as a service circuit, in order to avoid unnecessary operation of the ground fault relay due to the above-mentioned circulating zero-phase current, for example, the bypass with the PA with the GR 30 is bypassed. During the period in which the circuit 13 is simultaneously formed, it is necessary to take measures such as opening the control power supply of the control box 31 to prevent the ground fault relay from operating. However, despite the fact that the mobile power supply vehicle 11 shown in FIG. 2 is a property of the ordinary power company and is a work for repairing the distribution line on the power company side, the PAS 30 with GR is located on the premises of the private customer. It is often provided on the first pillar. In this case GR
Since the attached PAS30 is the property of the consumer (or the range of the contribution), the operation of the ground fault operation lock etc. of the GR-attached PAS30 requires the permission of the private consumer, and it takes time and trouble to communicate and adjust the situation. In such a case, there were inconveniences such as not being able to contact in time.
E.課題を解決するための手段 この発明は、交流三相3線式の常用回路側に設けられ
た地絡トリップ付開閉器又は遮断器(例えばGR付高圧負
荷開閉器や漏電遮断器等)を挟んで電気量検出用の計器
用変流器を有する移動電源車のバイパス回路を接続し、
無停電で前記常用回路側からバイパス回路側へ、あるい
はバイパス回路側から常用回路側へ電路を切替えるよう
に構成したものにおいて、 前記バイパス回路側の電路の各相に設けられた計器用
変流器の二次側の中性点残留回路c−l間に非直線抵抗
素子を設け、且つ、この残留回路の共通側cと大地間に
接地線を設けたものである。E. Means for Solving the Problems The present invention relates to a switch or circuit breaker with a ground fault trip provided on the side of an AC three-phase three-wire service circuit (for example, a high-voltage load switch with GR or a ground fault circuit breaker). Connect the bypass circuit of the mobile power supply vehicle with the current transformer for the meter for detecting the quantity of electricity with the
In a configuration in which an electric circuit is switched from the service circuit side to the bypass circuit side or from the bypass circuit side to the service circuit side without interruption, a current transformer for an instrument provided in each phase of the electric circuit on the bypass circuit side In this example, a non-linear resistance element is provided between the secondary side neutral point residual circuit cl and a ground wire is provided between the common side c of the residual circuit and the ground.
F.作用 バイパス回路側電路各相に計器用変流器を設け、この
変流器の2次側中性点残留回路に非直線抵抗素子を接続
することにより零相電流抑制インピーダンスを形成し、
これにより循環零相電流を抑制する。この抑制作用によ
って常用回路側からバイパス回路側へ、又はバイパス回
路から常用回路側への無停電切替時、循環零相電流によ
り地絡トリップ付開閉器又は遮断器の不必要動作を防止
する。F. Action A current transformer for the instrument is provided in each phase of the bypass circuit side electric circuit, and a zero-phase current suppression impedance is formed by connecting a non-linear resistance element to the secondary neutral point residual circuit of the current transformer,
This suppresses the circulating zero-phase current. By this suppression action, at the time of uninterrupted switching from the service circuit side to the bypass circuit side or from the bypass circuit to the service circuit side, unnecessary operation of the switch or circuit breaker with ground fault trip is prevented by the circulating zero-phase current.
G.実施例 以下、この発明の一実施例を図面に基づいて説明する
に、第2図及び第3図と同一部分は同一符号を付して示
す。G. Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 2, the same parts as those in FIGS. 2 and 3 are designated by the same reference numerals.
第1図において、バイパス回路13の電路の三相分各相
に設けた計器用変流器37の2次側中性点残留回路(C−
l)に非直線抵抗素子2を接続する。なお計器用変流器
37は通常の計測回路用と兼用できるが、説明の都合上計
測回路を省略して示す。ここでGR付PAS30(例えばGR付
高圧負荷開閉器や漏電遮断器等),バイパス側遮断器52
Cとも閉,すなわちGR付PAS30を挟んでバイパス側遮断器
52Cで閉ループが形成されている状態を考える。この場
合、常用電源側が高圧配電系統の場合、一般には三相3
線式のため、負荷側の平衡又は不平衡に拘らず、電路に
地絡事故がない限り各相電流は正相分及び逆相分のみで
構成されるが、図のようにバイパス回路13に分流した場
合は、前述した通り閉ループを構成する各相、各枝路の
インピーダンスのアンバランスにより、閉ループ内を循
環する零相電流が生じる。この場合第1図の計器用変流
器37の1次側、2次側各相に流れる正相,逆相,零相電
流分の関係を第4図に示す。なお第4図には、変流器37
の2次側中性点残留回路に接続する非直線抵抗素子2の
効果を述べるために、非直線抵抗素子2に並列に説明用
のスイッチ2を追加している。また説明の都合上変流器
37の変流比は1:1と仮定する。いま第4図にて前記のス
イッチ3が閉路、すなわち通常の変流器2次側接続の状
態のとき、各相正相分電流をR1′,S1′,T1′,
逆相分電流をR2′,S2′,T2′,零相分電流を
O′とすると、正相分,逆相分電流はそれぞれ三相分の
和が零になるため計器用変流器37の中性点残留回路(C
−l間)に流れず、スイッチ3の開閉に無関係になる。
一方、零相分はスイッチ3を閉じていれば3×O′と
して中性点残留回路を流れるが、スイッチ3を開放する
と非直線抵抗素子2によって循環零相電流分は大幅に限
流されほとんど無視できる程度になる。In FIG. 1, the secondary-side neutral point residual circuit (C−C) of an instrument current transformer 37 provided in each of three phases of the electric circuit of the bypass circuit 13 is provided.
1) The non-linear resistance element 2 is connected. Current transformer for instrument
37 can also be used as a normal measurement circuit, but the measurement circuit is omitted for convenience of explanation. Here, PAS30 with GR (for example, high-voltage load switchgear or earth leakage breaker with GR), bypass circuit breaker 52
C is also closed, that is, bypass circuit breaker with PAS30 with GR interposed
Consider a state in which a closed loop is formed at 52C. In this case, when the service power supply side is a high-voltage distribution system, three-phase three-phase
Because of the wire system, regardless of load side balance or unbalance, each phase current is composed of only positive phase component and reverse phase component unless there is a ground fault in the electric circuit. When the current is divided, a zero-phase current circulating in the closed loop is generated due to the impedance imbalance of each phase and each branch constituting the closed loop as described above. In this case, FIG. 4 shows the relationship between the positive-phase, negative-phase, and zero-phase currents flowing through the primary and secondary phases of the current transformer 37 for the instrument shown in FIG. FIG. 4 shows the current transformer 37
In order to describe the effect of the non-linear resistance element 2 connected to the secondary-side neutral point residual circuit, a switch 2 for explanation is added in parallel with the non-linear resistance element 2. Current transformer for convenience of explanation
The current transformer ratio of 37 is assumed to be 1: 1. Now, in FIG. 4, when the switch 3 is closed, that is, when the secondary side of the normal current transformer is connected, the currents in the positive phase of each phase are R1 ' , S1' , T1 ' ,
R2 ' , S2' , T2 '
If O ′ , the sum of the three-phase currents of the positive phase component and the negative phase component becomes zero, so the neutral point residual circuit (C
-1), which is irrelevant to the opening and closing of the switch 3.
On the other hand, the zero-phase component flows through the neutral point residual circuit as 3 × O ′ when the switch 3 is closed, but when the switch 3 is opened, the circulating zero-phase current component is greatly limited by the non-linear resistance element 2 and almost limited. It will be negligible.
この非直線抵抗素子2による効果を説明するために、
閉ループ内の零相分にのみに着目した等価回路を第5図
(a),(b)に示す。なお、第5図(a)はスイッチ
3が閉路されている場合、第5図(b)はスイッチ3が
開放されている場合を示す。第5図(a),(b)にお
いて、Oは閉ループ内に生じた零相起電力、また、
a,b,cを計器用変流器37の影響を無視した閉ループ
各相インピーダンスとすると、等価零相インピーダンス
はO=1/3×(a+b+c)となる。In order to explain the effect of this nonlinear resistance element 2,
5 (a) and 5 (b) show equivalent circuits focusing only on the zero-phase components in the closed loop. FIG. 5A shows the case where the switch 3 is closed, and FIG. 5B shows the case where the switch 3 is open. 5 (a) and 5 (b), O is a zero-phase electromotive force generated in a closed loop, and
Assuming that a , b , and c are the closed-loop phase impedances ignoring the influence of the current transformer 37, the equivalent zero-phase impedance is O = 1/3 x ( a + b + c ).
ここで第5図(a)図においては、零相分電流に対し
ても計器用変流器2次側が短絡されているため、理想変
流器と仮定すればこの場合計器用変流器37は閉ループ内
の等価零相インピーダンスとして寄与せず1相あたり なる零相電流が流れる。また、第5図(b)において
は、計器用変流器37の中性点残留回路に非直線抵抗素子
2が挿入されるため、変流器2次側の零相電流はO″
(O″≪O′)に大幅に抑制され、ほとんど無視で
きる程度になる。ただし、正相分,逆相分は中性点残留
回路に無関係に流れ得る。従って変流器1次側からみる
と、これは等価零相インピーダンスとして作用し、正相
及び逆相インピーダンスとしては作用しない(ただし、
変流器2次側に接続した計器等による負担を無視した場
合)。よって、第5図(b)の場合、閉ループ内の等価
零相インピーダンスはOより増加するため、変流器の
1次側の零相電流Oは第5図(a)のO′より大
幅に減少する。{なお第5図(b)の場合は変流比が1:
1であっも変流器の1次,2次零相分電流はO≫
O″となる。これは1次零相電流Oのほとんどは変
流器2次側中性点残留電圧(C−l間電圧)にみあう励
磁入力分であり、中性点残留回路に非直線抵抗素子を用
いているためO″は僅小となり、従ってCT2次電流に
よるAT打消し1次電流分は通常はほとんど無視できるほ
ど小さい}第5図(b)の循環零相回路に対しては、変
流器回路は等価零相インピーダンスとして効果が大きい
ため、循環零相電流の抑制効果が著しい。一方、第1図
において、万一接続不良等何らかの異常で三相回路のう
ちの一相分丈全てがバイパスされた場合を仮定して対策
を以下に述べる。この場合一例として、Rのみバイパス
回路が形成された異常の場合を第6図に示す。この場合
R相CTのみ一次側にRの電流が流れるから、2次側に
非直線抵抗素子2を接続したCTの1次側に常用電源側R
相電流Rを流していることになる。従って非直線抵抗
素子2が接続されていなければいわゆるCT2次側オープ
ンで1次電流を流したことになり、CT2次開放異常電圧
によりCT2次側絶縁破壊等の異常を生じるおそれがあ
る。この場合でもCT37の中性点残留回路に非直線抵抗素
子2が接続されていれば、前記のCT2次異常電圧を制限
し、CT2次側絶縁破壊電圧以下におさえることができ
る。またCT2次回路に第6図に示すように、例えば電流
計等の計測器類4をCT2次側各枝路に設けたとき、これ
ら計測器類に前記のCT2次異常電圧が対地間に印加され
ないよう、接地線5を中性点残留回路のC点に設けるこ
とにより、CT37は計測回路用としても兼用することがで
きる。In FIG. 5 (a), the secondary side of the current transformer for the instrument is short-circuited even with respect to the zero-phase current. Does not contribute as equivalent zero-sequence impedance in the closed loop A zero-phase current flows. In FIG. 5 (b), since the non-linear resistance element 2 is inserted into the neutral point residual circuit of the current transformer for instrument 37, the zero-phase current on the secondary side of the current transformer is O ″.
( O ″ ≪O ′ ), which is almost negligible, but the positive-phase component and the negative-phase component can flow irrespective of the neutral point residual circuit. And this acts as an equivalent zero-sequence impedance, not as positive and negative-sequence impedances (however,
When the load imposed by the instrument connected to the secondary side of the current transformer is ignored). Therefore, in the case of FIG. 5 (b), since the equivalent zero-phase impedance in the closed loop is larger than O , the zero-phase current O on the primary side of the current transformer is much larger than O ′ in FIG. 5 (a). Decrease. {In the case of Fig. 5 (b), the current transformer ratio is 1:
Even if the primary and secondary zero-phase currents of the current transformer are O O
O " . Most of the primary zero-sequence current O is the excitation input corresponding to the neutral point residual voltage (voltage between C and I) on the secondary side of the current transformer. Since the linear resistance element is used, O " is very small, so that the primary current for canceling the AT due to the CT secondary current is usually almost negligible. In contrast to the circulating zero-phase circuit of FIG. Since the current transformer circuit has a large effect as an equivalent zero-sequence impedance, the effect of suppressing the circulating zero-sequence current is remarkable. On the other hand, in FIG. 1, a countermeasure will be described below on the assumption that the entire one-phase circuit of the three-phase circuit is bypassed due to some abnormality such as poor connection. As an example of this case, FIG. 6 shows a case in which an R-only bypass circuit is formed. Since this case current R flows in only the primary side R-phase CT, commercial power side to the primary side of the CT connected non-linear resistance element 2 on the secondary side R
This means that the phase current R is flowing. Therefore, if the non-linear resistance element 2 is not connected, it means that the primary current has flowed in the so-called CT secondary side open, and there is a possibility that abnormalities such as CT secondary side insulation breakdown may occur due to the CT secondary open abnormal voltage. In this case as well, if the non-linear resistance element 2 is connected to the neutral point residual circuit of the CT 37, the above-mentioned abnormal CT secondary abnormal voltage can be limited to be lower than the CT secondary breakdown voltage. Also, as shown in FIG. 6, when measuring instruments 4 such as ammeters are provided in each branch of the CT secondary side in the CT secondary circuit, the CT secondary abnormal voltage is applied to these measuring instruments between the ground. By providing the grounding line 5 at the point C of the neutral point residual circuit so that the CT37 is not performed, the CT 37 can also be used for a measurement circuit.
なお、CT37を計測回路用と兼用した場合は、循環回路
が形成されている状態では、CT2次側各相で電流計測し
た場合、実際の一次側電流と零相分が異なる(変流比は
1:1と仮定する)結果となるが、通常循環零相電流は主
回路電流に比べ相対的には無視できる程小さく、かつ本
計測回路の目的は循環回路形成中のバイパス側各相電流
計測することではなく、バイパス側より無停電負荷群に
単独送電中の各相電流計測が主目的であるから通常の使
用にあたっては問題ない。When the CT37 is also used for the measurement circuit, when the current is measured in each phase on the CT secondary side while the circulating circuit is formed, the actual primary current differs from the zero-phase component (the current ratio is
(Assuming 1: 1), but the circulating zero-phase current is usually negligibly small compared to the main circuit current, and the purpose of this measurement circuit is to measure each phase current on the bypass side during the formation of the circulation circuit Rather, the main purpose is to measure each phase current during single power transmission from the bypass side to the uninterruptible load group, so there is no problem in normal use.
この発明はGR付PASのみならずその他の全ての地絡ト
リップ付開閉器、遮断器を挟んだバイパス回路や平行2
回線回路における循環零相電流抑制回路に対しても適用
可能であるとともに、回路電圧も高圧用以外の電圧であ
ってもよく、回路電圧如何に拘わらず適用可能である。This invention is applicable not only to PAS with GR, but also to all other switches with ground fault trip, bypass circuit with circuit breaker,
The present invention is applicable not only to a circulating zero-phase current suppression circuit in a circuit circuit, but also to a circuit voltage other than a high voltage, and is applicable regardless of the circuit voltage.
H.発明の効果 以上述べたように、この発明によれば、地絡トリップ
付負荷開閉器を挟んでバイパス回路を形成するとき、あ
るいはバイパス回路から地絡トリップ付負荷開閉器側へ
無停電で回路を切り替えるとき、循環零相電流による地
絡トリップ付負荷開閉器の不必要動作を抑制することが
できる。また、この発明は上記のように抑制することが
できるため、地絡トリップ付負荷開閉器の制御電源ロッ
ク等の操作を必要としない。H. Effects of the Invention As described above, according to the present invention, when a bypass circuit is formed across a load switch with a ground fault trip, or from the bypass circuit to the load switch with a ground fault trip without interruption. When switching circuits, unnecessary operation of the load switch with a ground fault trip due to the circulating zero-phase current can be suppressed. Further, since the present invention can suppress as described above, an operation such as control power lock of the load switch with a ground fault trip is not required.
さらに、高圧配電線の工事に際して、バイパス回路を
構成する必要がある負荷開閉器が地絡トリップ付か、地
絡トリップ機構が無い負荷開閉器かどうか事前調査を要
しない利点がある。Further, there is an advantage that it is not necessary to check in advance whether a load switch that needs to constitute a bypass circuit has a ground fault trip or a load switch without a ground fault trip mechanism when constructing a high-voltage distribution line.
さらにまた、この発明では零相インピーダンスを循環
零相電流の値に応じて容易に決定できる。ZCTでは1次
側が貫通導体のため零相インピーダンスは鉄心の断面積
を大きくするしかない。このためZCTは極めて大形の特
殊品となる。これに比し3CTを用いるこの発明ではイン
ピーダンスは(CT1次側巻回数)2×(鉄心の断面積)
に比例するため、CT1次側巻回数と鉄心の両方で自由に
決定できる。また、通常の汎用CTでも1次側巻回数は3
〜5巻はあるため、汎用CTで所要の零相インピーダンス
が得られる。ZCTでは1次側巻線回数が1であるため、
鉄心断面積は上記汎用CTの32〜52倍、すなわち10倍以上
のものが必要となり特殊のZCTが必要となる。従って、
この発明による地絡トリップ付負荷開閉器のバイパス回
路のみならず、平行2回線配電線の零相循環電流対策と
しても使用し得ることができる。Furthermore, in the present invention, the zero-sequence impedance can be easily determined according to the value of the circulating zero-sequence current. In ZCT, the primary side is a through conductor, so the zero-phase impedance has to increase the cross-sectional area of the iron core. This makes the ZCT a very large special product. In contrast, in the present invention using 3CT, the impedance is (CT primary winding number) 2 × (Cross-sectional area of iron core)
Because it is proportional to, the number of turns on the primary side of the CT and the iron core can be freely determined. In addition, the number of primary windings is 3 even with a general-purpose CT.
Since there are ~ 5 volumes, the required zero-phase impedance can be obtained with a general-purpose CT. In ZCT, the number of primary windings is 1, so
Core cross-sectional area is 3 2-5 2 times the generic CT, that is, require special ZCT must be more than 10 times. Therefore,
The present invention can be used not only as a bypass circuit for a load switch with a ground fault trip according to the present invention, but also as a countermeasure against zero-phase circulating current in a parallel two-circuit distribution line.
また、この発明回路でCT37の中性点残留回路に非直線
抵抗素子2の代わりに、抵抗等の直線性インピーダンス
を用いた場合は、例えばバイパス回路の一線だけがバイ
パス回路を構成した異常時でもCT2次電圧が異常電圧に
ならないようにインピーダンスを決定する必要があるた
め、通常の目的とする循環零相電流分も、非直線抵抗素
子を用いた場合より流れやすくなるため、その分等価的
な循環零相インピーダンスは小さくなる。さらに、この
発明においては、計器用変流器の二次側中性点残留回路
に非直線抵抗素子を接続するとともに、接地線を設けた
ので、計器類に異常電圧が印加されないため、計器類の
保護を図ることができる。Further, in the case where a linear impedance such as a resistor is used in place of the non-linear resistance element 2 in the neutral point residual circuit of the CT 37 in the circuit of the present invention, for example, even when only one line of the bypass circuit constitutes the bypass circuit, an abnormality occurs. Since it is necessary to determine the impedance so that the CT secondary voltage does not become an abnormal voltage, the normal target circulating zero-phase current also flows more easily than when a non-linear resistance element is used. The circulating zero-sequence impedance becomes smaller. Further, according to the present invention, since the non-linear resistance element is connected to the secondary neutral point residual circuit of the current transformer for the instrument and the ground wire is provided, the abnormal voltage is not applied to the instrument. Can be protected.
この他、回路構成上、変流器は計測回路用と兼用とす
ることができるため、例えばZCT、その他の主回路機器
を特別に用意する必要がない。In addition, because of the circuit configuration, the current transformer can also be used for the measurement circuit, so that, for example, ZCT and other main circuit devices do not need to be specially prepared.
第1図はこの発明の一実施例を示す回路図、第2図は従
来例を示す回路図、第3図は発明が解決しようとする課
題を説明する回路図、第4図は計器用変流器の各相に流
れる電流関係の説明図、第5図(a),(b)は零相抑
制インピーダンスによる限流効果説明用の閉ループ内の
零相分にのみに着目した等価回路図、第6図はこの発明
の他の実施例を示す回路図である。 2……非直線抵抗素子、4……計測器類、5……接地
線、11……無停電送電形高圧移動電源車、13……バイパ
ス回路、30……GR付PAS、31……制御箱、37……計器用
変流器。FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a circuit diagram showing a conventional example, FIG. 3 is a circuit diagram illustrating a problem to be solved by the invention, and FIG. 5 (a) and 5 (b) are equivalent circuit diagrams focusing only on the zero-phase component in a closed loop for explaining the current-limiting effect due to the zero-phase suppression impedance, FIG. 6 is a circuit diagram showing another embodiment of the present invention. 2 ... Non-linear resistance element, 4 ... Measuring instruments, 5 ... Ground line, 11 ... Uninterruptible power transmission type high-voltage mobile power supply vehicle, 13 ... Bypass circuit, 30 ... PAS with GR, 31 ... Control Box, 37 ... Instrument current transformer.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02J 9/00 - 11/00 H02J 3/00 - 5/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02J 9/00-11/00 H02J 3/00-5/00
Claims (1)
地絡トリップ付開閉器又は遮断器(例えばGR付高圧負荷
開閉器や漏電遮断器等)を挟んで電気量検出用の計器用
変流器を有する移動電源車のバイパス回路を接続し、無
停電で前記常用回路側からバイパス回路側へ、あるいは
バイパス回路側から常用回路側へ電路を切替えるように
構成したものにおいて、 前記バイパス回路側の電路の各相に設けられた計器用変
流器の二次側の中性点残留回路c−l間に非直線抵抗素
子を設け、且つ、この残留回路の共通側cと大地間に接
地線を設けたことを特徴とする循環零相電流抑制回路。1. A method for detecting a quantity of electricity across a switch or circuit breaker with a ground fault trip (for example, a high-voltage load switch with GR or earth leakage breaker) provided on the side of an AC three-phase three-wire service circuit. In a configuration in which a bypass circuit of a mobile power supply vehicle having a current transformer for an instrument is connected and an electric circuit is switched from the service circuit side to the bypass circuit side or from the bypass circuit side to the service circuit side without interruption, A non-linear resistance element is provided between the neutral point residual circuit c-1 of the secondary side of the current transformer for the instrument provided in each phase of the electric circuit on the bypass circuit side, and the common side c of this residual circuit is connected to the ground. A circulating zero-phase current suppression circuit, wherein a ground wire is provided between the circuits.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02074262A JP3074695B2 (en) | 1990-03-23 | 1990-03-23 | Circulating zero-phase current suppression circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02074262A JP3074695B2 (en) | 1990-03-23 | 1990-03-23 | Circulating zero-phase current suppression circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03273833A JPH03273833A (en) | 1991-12-05 |
JP3074695B2 true JP3074695B2 (en) | 2000-08-07 |
Family
ID=13542045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02074262A Expired - Lifetime JP3074695B2 (en) | 1990-03-23 | 1990-03-23 | Circulating zero-phase current suppression circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3074695B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100685481B1 (en) * | 2004-10-29 | 2007-02-23 | 한국전력공사 | Flexible power transmission system with enhanced protection of serial inverter |
-
1990
- 1990-03-23 JP JP02074262A patent/JP3074695B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03273833A (en) | 1991-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chilvers et al. | Distance relaying of 11 kV circuits to increase the installed capacity of distributed generation | |
Elmore | Protective relaying: theory and applications | |
KR101320373B1 (en) | Open-phase recovery device equipped with a transformer and its installation method | |
US20150124358A1 (en) | Feeder power source providing open feeder detection for a network protector by shifted neutral | |
US7053503B2 (en) | Cross current compensation control system for a power system | |
Detjen et al. | Grounding transformer applications and associated protection schemes | |
Paul et al. | Low-voltage shore connection power systems: Optional designs and a safety loop circuit | |
JP3074695B2 (en) | Circulating zero-phase current suppression circuit | |
JP2817253B2 (en) | Bypass circuit of load switch with ground fault trip | |
Yun et al. | Analyzing temporary overvoltage by the non-islanding operation of distributed generation in multi-grounded neutral distribution system | |
Paulson | Monitoring neutral-grounding resistors | |
Jogaib et al. | Autotransformer Protection Case Studies, Going Above and Beyond the Traditional Cookbook | |
Uddin et al. | Application considerations for protecting transformers with dual breaker terminals | |
JP2671347B2 (en) | Mobile power car | |
Tziouvaras et al. | 138 kV phase shifting transformer protection: EMTP modeling and model power system testing | |
Dusang | A ground fault protection method for ungrounded systems | |
Kasztenny et al. | Application of current differential protection to tapped transmission lines | |
Hostetler et al. | Useful Applications for Differential Relays With Both KCL and ATB 87 Elements | |
Toledo et al. | Evaluating Single-Phase Reclosing on Distribution Grid Voltage | |
Danninger et al. | Case Studies on Ground-Fault Protection of Microgrid Power Systems With Diverse Power Sources | |
Das | Ground fault protection for bus-connected generators in an interconnected 13.8-kV system | |
Tziouvaras et al. | Protecting a 138 KV phase shifting transformer: EMTP modeling and model power system testing | |
US1969542A (en) | Electrical distribution system | |
JP2705198B2 (en) | Ground fault detector | |
Gouda | Grounding Grid Performance Under Fault Current |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100609 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |