[go: up one dir, main page]

JP3071412B2 - Retort sterilization method with F value control and retort sterilization apparatus - Google Patents

Retort sterilization method with F value control and retort sterilization apparatus

Info

Publication number
JP3071412B2
JP3071412B2 JP10246005A JP24600598A JP3071412B2 JP 3071412 B2 JP3071412 B2 JP 3071412B2 JP 10246005 A JP10246005 A JP 10246005A JP 24600598 A JP24600598 A JP 24600598A JP 3071412 B2 JP3071412 B2 JP 3071412B2
Authority
JP
Japan
Prior art keywords
temperature
product temperature
heat transfer
value
sterilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10246005A
Other languages
Japanese (ja)
Other versions
JP2000070344A (en
Inventor
勇 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP10246005A priority Critical patent/JP3071412B2/en
Publication of JP2000070344A publication Critical patent/JP2000070344A/en
Application granted granted Critical
Publication of JP3071412B2 publication Critical patent/JP3071412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は包装食品や輸液等の
製造におけるF値制御システムとこれを組み込んだレト
ルト殺菌機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an F value control system for producing packaged foods, infusions, and the like, and a retort sterilizer incorporating the same.

【0002】[0002]

【従来の技術】従来の殺菌方法は、殺菌の対象となる品
物に直接温度センサーを差し込んで、品温を実測し、F
値を演算して所定のF値内に納まるよう殺菌工程を制御
していた。通常、計画殺菌条件はレトルト試験機で決定
されている。しかし、これを生産機へ適用するに当たっ
ては試験機のように毎回品温を直接検出してF値を合わ
せるようなことはできないので、ほとんどの場合が殺菌
温度到達後、何分保持という単純な殺菌条件の決め方
で、殺菌作業を行っている。
2. Description of the Related Art In a conventional sterilization method, a temperature sensor is directly inserted into an article to be sterilized, and the temperature of the article is measured.
The value was calculated and the sterilization process was controlled so as to be within a predetermined F value. Usually, the planned sterilization conditions are determined by a retort tester. However, when applying this to a production machine, it is not possible to directly detect the product temperature and adjust the F value every time as in a test machine, so in most cases, a simple operation of holding for several minutes after the sterilization temperature is reached. Sterilization work is performed according to how to determine sterilization conditions.

【0003】このような単純な殺菌条件の場合は、直接
F値を計らないだけに絶対安全な条件を選定しがちで、
いつの場合も殺菌過剰になり、品質劣化が避けられなか
った。
[0003] In the case of such simple sterilization conditions, it is easy to select absolutely safe conditions without directly measuring the F value.
In all cases, sterilization was excessive and quality deterioration was inevitable.

【0004】[0004]

【発明が解決しようとする課題】上記のように直接品温
を測定する方法では、毎バッチごと温度センサーを差し
込む作業が必要であり面倒である。センサーの差し込み
位置も最遅速温度が計れるように所定位置に精度良くセ
ットされなければならず、熟練者でも骨の折れる大変神
経を使う作業である。そして所定の位置にセットされな
かった場合、再現性に乏しいF値制御になることで、安
全性がおろそかになり、信頼性に欠ける難点があった。
In the method of directly measuring the temperature of the product as described above, it is necessary to insert a temperature sensor for each batch, which is troublesome. The sensor insertion position must also be accurately set at a predetermined position so that the slowest temperature can be measured. This is a laborious and laborious operation even for a skilled person. If the F-number control is not set at a predetermined position, the F-number control with poor reproducibility results in negligible safety and lacks reliability.

【0005】また単純な殺菌条件を用いる場合、実際の
運転においては、季節の変化に伴う室温の変化だけで
も、釜の放熱の影響を受けて殺菌温度調節計の制御が、
設定よりもわずかであるが、±0.5 ℃位ずれることがし
ばしば発生する。そして、殺菌温度が高温域であればあ
るほど、実質F値の受ける影響は大きく、ひどい場合は
計画殺菌条件を満たさないことも生じる。
[0005] When simple sterilization conditions are used, in actual operation, the control of the sterilization temperature controller is affected only by the change in the room temperature due to the seasonal change due to the heat radiation of the kettle.
Although slightly less than the setting, a deviation of about ± 0.5 ° C often occurs. Then, the higher the sterilization temperature is, the greater the effect of the substantial F value is, and in the worst case, the planned sterilization conditions may not be satisfied.

【0006】さらに、停電などのユーティリティー上の
不調が生じた場合、何℃×何分の殺菌条件から逸脱する
ために、安全の評価ができなくなって、ほとんどが再
度、はじめから殺菌をやり直すといったことになってし
まう。この場合は品質面からみると最悪の状態になる。
前記のように殺菌温度付近での誤差は、たとえ±0.5 ℃
以内であってもF値において無視できない大きさになる
ので、生産現場では試験機の計画殺菌条件に一定の安全
率を掛けた修正計画殺菌条件で操業している。例えば、
F値4を目標とした120 ℃の殺菌では、F値6〜7(50
〜75%増し)位にもっていっているのが現実である。
[0006] Furthermore, if a malfunction occurs on the utility such as a power failure, the sterilization conditions deviate from what degree of temperature and what number of minutes, making it impossible to evaluate the safety. Become. In this case, it is the worst condition in terms of quality.
As mentioned above, the error near the sterilization temperature is ± 0.5 ° C.
Even if it is within the range, the F value becomes a size that cannot be ignored, and therefore, the production site operates under the modified planned sterilization condition in which the planned sterilization condition of the test machine is multiplied by a certain safety factor. For example,
In sterilization at 120 ° C. with an F value of 4, the F value is 6-7 (50
It is a reality that it is about 75% increase).

【0007】本発明の目的は非接触で品温の経時変化を
リアルタイムに且つ正確に知り、F値制御を行って計画
殺菌条件以上の加熱殺菌を避けるようにし、殺菌時間の
短縮を図り、作業の負担を軽減し、精度アップにより食
品の安全性を高めることのできるF値制御付きレトルト
殺菌方法及び殺菌装置を提供する。さらに、釜、包材、
内容物、及びユーティリティーについて、限界温度近く
まで槽温をコントロールし、加熱殺菌時間の大幅な短縮
を図り品質の向上が図れるF値制御付きレトルト殺菌方
法及び殺菌装置を提供する。
The object of the present invention is to know the time-dependent change of the product temperature in a non-contact manner in real time and accurately, to control the F value to avoid heat sterilization exceeding the planned sterilization conditions, to shorten the sterilization time, The present invention provides a retort sterilizing method with F-value control and a sterilizing apparatus capable of reducing the burden on the user and improving the safety of food by increasing the accuracy. In addition, pots, packaging materials,
Provided is a retort sterilization method and a sterilization apparatus with F-value control that can control the tank temperature of contents and utilities to near a limit temperature, greatly reduce the heat sterilization time, and improve the quality.

【0008】まず、品温モニターシステムで決定した個
別伝熱係数(α)を用いて、槽温から品温をシミュレー
トすることにより、非接触で品温の経時変化をリアルタ
イムに且つ、正確に知り同時的にF値を演算して、殺菌
時間の延長や短縮を瞬時に判断できるようにしてF値制
御を行い、計画殺菌条件以上の加熱殺菌を避けるように
する。その結果、作業の負担を軽減し、殺菌時間の短縮
がはかれるF値制御付きレトルト殺菌方法及び殺菌装置
を提供しようとするものである。
First, the product temperature is simulated from the bath temperature using the individual heat transfer coefficient (α) determined by the product temperature monitoring system.
The F value control is carried out in a non-contact manner so that the change in product temperature with time can be known in real time and accurately, and the F value can be calculated simultaneously and the extension or shortening of the sterilization time can be instantaneously determined. Avoid heat sterilization beyond the planned sterilization conditions. As a result, an object of the present invention is to provide a retort sterilization method with F-value control and a sterilization apparatus capable of reducing the work load and shortening the sterilization time.

【0009】さらに、制御すべき槽温レサイプを品温モ
ニターシステムの逐次計算式を逆展開した式へ目的とす
る品温レサイプを入力して予め求めておき、殺菌工程を
プログラム温度制御して殺菌時間の大幅な短縮を行うF
値制御付きレトルト殺菌方法及び殺菌装置を提供しよう
とするものである。
[0009] Further, the tank temperature resip to be controlled is obtained in advance by inputting the target product temperature resipe into a formula obtained by reversing the sequential calculation formula of the product temperature monitoring system, and the sterilization process is controlled by a programmed temperature to perform the sterilization. F that greatly reduces the time
An object of the present invention is to provide a retort sterilization method and a sterilization apparatus with value control.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、第1発明では、品温モニターシステムを制御部に組
み込んだレトルト殺菌装置を設けた。ここにいう品温モ
ニターシステムは、包装食品又は輸液等を装填したレト
ルト試験機からの信号に基づき、実測槽温(tw)(包装食
品等の伝熱媒体温度)と実測品温(tp)(包装食品等の内
部温度)の各データを蓄積する手段と、殺菌工程終了
後、前記蓄積データから包装食品又は輸液等の加熱側伝
熱係数 (αH) と冷却側個別伝熱係数 (αC) とを演算
する手段と、前記個別伝熱係数 (αH) と (αC) とを
用いてシミュレート品温(tpc) を計算し、シミュレート
品温曲線を描き、前記実測槽温(tw)と実測品温(tp)のデ
ータ曲線上に載せて表示する手段と、からなる。このレ
トルト殺菌装置において、予めレトルト試験機で決定さ
れた包装食品又は輸液等の加熱側個別伝熱係数(αH)
と冷却側個別伝熱係数(αC) とを用いて、前記レトル
ト殺菌装置からの実測槽温(tw)に対してリアルタイムに
シミュレート品温(tpc) を求めてF値(Fc)を演算する手
段を設け、殺菌工程で制御F値(Fs)に達した時、殺菌工
程を終了し冷却工程へ移行するようにしたF値制御付き
レトルト殺菌方法である。
In order to achieve the above object, in the first invention, there is provided a retort sterilizer in which a product temperature monitoring system is incorporated in a control unit. The product temperature monitor system referred to here is based on a signal from a retort tester loaded with packaged food or infusion, etc., and measures the measured tank temperature (tw) (temperature of the heat transfer medium of packaged food, etc.) and the measured product temperature (tp) ( Means for accumulating each data of (packed food etc. internal temperature), and after the sterilization process, from the accumulated data, the heating side heat transfer coefficient (αH) and cooling side individual heat transfer coefficient (αC) of the packaged food or infusion solution etc. Is calculated using the individual heat transfer coefficients (αH) and (αC), and a simulated product temperature (tpc) is calculated .
Means for drawing a product temperature curve and displaying the data on the data curve of the measured bath temperature (tw) and the measured product temperature (tp). In this retort sterilizer, the heating-side individual heat transfer coefficient (αH) of a packaged food or infusion solution determined in advance by a retort tester
And the cooling-side individual heat transfer coefficient (αC), the measured tank temperature (tw) from the retort sterilizer in real time is used.
Means for calculating the simulated product temperature (tpc) and calculating the F value (Fc) is provided, and when the control F value (Fs) is reached in the sterilization process, the sterilization process is terminated and the process shifts to the cooling process. This is a retort sterilization method with value control.

【0011】第2発明では、品温モニターシステムにお
いて、個別伝熱係数 (α) を用いてシミュレート品温(t
pc) を計算し、シミュレート品温曲線を描く手段とし
て、下記の基本式(逐次計算式−MAAの式)を用いた
F値制御付きレトルト殺菌方法とした。 基本式(逐次計算式−MAAの式): tpn =tpn-1 +Δtpn ・・・ (1) Δtpn =α×Δtwn +(1−α)×Δtpn-1 ・・・ (2) 符号説明: tpn :現在の品温 (℃) tpn-1 :逐次計算における前回の品温 (℃) Δtpn :現在の品温へ到達するに寄与した品温変化 (℃) Δtpn-1 :前回の品温へ到達するに寄与した品温変化 (℃) α :所定時間当たりの個別伝熱係数 (無次元数) twn :現在の槽温 (℃) Δtwn :現在の槽温へ到達するに寄与した槽温変化 (℃)
[0011]In the second invention, the product temperature monitoring system
Simulated product temperature (t) using the individual heat transfer coefficient (α).
pc) as a means to draw a simulated temperature curve
Then, the following basic formula (sequential calculation formula-MAA formula) was used.
A retort sterilization method with F value control was adopted. Basic formula (Sequential calculation formula-MAA formula): tpn = tpn-1 + Δtpn (1) Δtpn = α × Δtwn + (1−α) × Δtpn-1 (2) Code explanation: tpn: current product temperature (° C)  tpn-1: previous product temperature in sequential calculation (° C)  Δtpn: Change in product temperature that contributed to reaching the current product temperature (° C)  Δtpn-1: Change in product temperature that contributed to reaching the previous product temperature (° C)  α: Individual heat transfer coefficient per specified time (dimensionless number)  twn: Current bath temperature (° C)  Δtwn: Change in bath temperature that contributed to reaching the current bath temperature (° C)

【0012】第3発明では、包装食品又は輸液等を装填
したレトルト試験機からの信号に基づき、実測槽温(tw)
(包装食品等の伝熱媒体温度)と実測品温(tp)(包装食
品等の内部温度)の各データを蓄積する手段と、殺菌工
程終了後、前記蓄積データから包装食品又は輸液等の加
熱側熱交換器 (αH) と冷却側個別伝熱係数 (αC)と
を演算する手段と、前記個別伝熱係数 (αH) と (α
C) とを用いてシミュレート品温(tpc) を計算し、シミ
ュレート品温曲線を描き、前記実測槽温(tw)と実測品温
(tp)のデータ曲線上に載せて表示する手段と、からなる
包装食品又は輸液等の品温モニターシステムを制御部に
組み込んだレトルト殺菌装置を用いる。このレトルト殺
菌装置において、予めレトルト試験機で決定された包装
食品又は輸液等の加熱側個別伝熱係数(αH) と冷却側
個別伝熱係数(αC) とを用いて、前記レトルト殺菌装
置からの実測槽温(tw)に対してリアルタイムにシミュレ
ート品温(tpc) を求めてF値(Fc)を演算する手段と、殺
菌工程で制御F値(Fs)に達した時、殺菌工程を終了し冷
却工程へ移行するようにしたF値制御付きレトルト殺菌
とを制御部に組み込んだ熱水式、蒸気式、スプレー式そ
の他のレトルト殺菌装置とした。
In the third invention, the measured tank temperature (tw) is based on a signal from a retort tester loaded with packaged food or infusion.
Means for accumulating data of (heat transfer medium temperature of packaged food, etc.) and measured product temperature (tp) (inner temperature of packaged food, etc.), and heating of packaged food or infusion solution from the accumulated data after the sterilization process. Means for calculating the side heat exchanger (αH) and the cooling-side individual heat transfer coefficient (αC), and the individual heat transfer coefficient (αH) and (α
Calculate the simulated product temperature (tpc) using C) and, Simi
Draw a temperature curve of the measured product, and measure the measured bath temperature (tw) and the measured product temperature.
(tp) data displayed on the data curve of (tp).
Product temperature monitoring system for packaged foods or infusions as control unit
Use the installed retort sterilizer. In this retort sterilizer, the heating-side individual heat transfer coefficient (αH) and the cooling-side individual heat transfer coefficient (αC) of the packaged food or infusion solution, etc., which are determined in advance by a retort tester, are used. simulator in real time corresponding to the measured bath temperature (tw)
Means for calculating the F value (Fc) by calculating the product temperature (tpc), and the F value which is set so that when the control F value (Fs) is reached in the sterilization process, the sterilization process is terminated and the cooling process is started. A retort sterilizer with a retort sterilizer with a built-in controllable retort sterilizer was installed in the control unit .

【0013】(作用) 第1発明では、試験機の品温モニターシステムで得られ
た遅れ時間(δ)、個別伝熱係数(α)(加熱側個別伝
熱係数 (αH) 及び冷却側個別伝熱係数 (αC) )を利
用して、槽温データから品温(tpc) をリアルタイムに
ミュレートしF値(Fc )も演算してゆく。殺菌工程で
制御F値(Fs ) に達した時、殺菌工程を終了し冷却工
程へ移行させることにより、非破壊的操作によって、過
剰な殺菌処理がないように制御できるようになった。
(Action) In the first invention, the delay time (δ), the individual heat transfer coefficient (α) (the individual heat transfer coefficient (αH) on the heating side and the individual using heat coefficient (αC)), from the bath temperature data material temperature of (tpc) in real time
It simulates and also calculates the F value (Fc). When the control F value (Fs) is reached in the sterilization process, the sterilization process is terminated and the process is shifted to the cooling process, so that a non-destructive operation can be performed so that there is no excessive sterilization treatment.

【0014】第2発明では、品温モニターシステムにお
いて、個別伝熱係数 (α) を用いてシミュレート品温(t
pc) を計算し、シミュレート品温曲線を描く手段とし
て、下記の基本式(逐次計算式−MAAの式)を用い
た。 基本式(MAAの式): tpn =tpn-1 +Δtpn ・・・ (1) Δtpn =α×Δtwn +(1−α)×Δtpn-1 ・・・ (2) ここで、 tpn :現在の品温 (℃) tpn-1 :逐次計算における前回の品温 (℃) Δtpn :現在の品温へ到達するに寄与した品温変化 (℃) Δtpn-1 :前回の品温へ到達するに寄与した品温変化 (℃) α :所定時間当たりの個別伝熱係数 (無次元数) twn :現在の槽温 (℃) Δtwn :現在の槽温へ到達するに寄与した槽温変化 (℃)
In the second invention,Product temperature monitoring system
Simulated product temperature (t) using the individual heat transfer coefficient (α).
pc) as a means to draw a simulated temperature curve
Then, using the following basic formula (a sequential calculation formula-the formula of MAA)
Was. Basic formula (MAA formula): tpn = tpn-1 + Δtpn (1) Δtpn = α × Δtwn + (1−α) × Δtpn-1 (2) here,  tpn: current product temperature (° C)  tpn-1: previous product temperature in sequential calculation (° C)  Δtpn: Change in product temperature that contributed to reaching the current product temperature (° C)  Δtpn-1: Change in product temperature that contributed to reaching the previous product temperature (° C)  α: Individual heat transfer coefficient per specified time (dimensionless number)  twn: Current bath temperature (° C)  Δtwn: Change in bath temperature that contributed to reaching the current bath temperature (° C)

【0015】第3発明では、熱水式、蒸気式、スプレー
式その他の加熱方式に関係なく、上記のF値制御を組み
込んだF値制御付きのレトルト殺菌装置が提供できた。
According to the third aspect of the invention, a retort sterilizer with an F value control incorporating the above F value control can be provided irrespective of a hot water type, a steam type, a spray type or any other heating method.

【0016】[0016]

【発明の実施の形態】品温モニターシステムの要点は次
の通りである。 (1) 基本式の構成 はじめに、殺菌工程における包装食品又は輸液等の内部
温度としての実測品温(tp)の経時変化特性を表す式を求
める。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The main points of the product temperature monitoring system are as follows. (1) Configuration of Basic Formula First, an equation representing the time-dependent change characteristic of the measured product temperature (tp) as the internal temperature of the packaged food or the infusion in the sterilization process is obtained.

【0017】レトルトでは一般的に、図1の品温シミュ
レーションモデル図に見られるように、任意の槽温(tw)
に対して、異なる6つの食品の品温(tpA, tpB, tpC, tp
D, tpE, tpF)のように経時変化の特性はすべて加熱側で
S字カーブを描き、冷却側では反対に逆S字カーブを描
く。ここで、加熱側は昇温及び殺菌の区間をいう。要す
るに、伝熱開始時に昇温の遅れを示し、伝熱終了時に殺
菌温度の槽温(tw)に漸近することを示すカーブ(曲線)
である。この曲線はヒステリシス曲線に類似している
が、ヒステリシス曲線のように上下、左右において対称
性がないので一つの関数式として表すのは困難である。
In the retort, generally, the temperature simulation of FIG.
As seen in configuration model diagram, any bath temperature (tw)
The temperature of six different foods (tpA, tpB, tpC, tp
D, tpE, tpF), the characteristics of the change with time all draw an S-shaped curve on the heating side and draw an inverted S-shaped curve on the contrary on the cooling side. Here, the heating side refers to a section of temperature rise and sterilization. In short, a curve (curve) that indicates a delay in temperature rise at the start of heat transfer and that approaches asymptotically the bath temperature (tw) of the sterilization temperature at the end of heat transfer.
It is. Although this curve is similar to the hysteresis curve, it is difficult to express it as a single functional expression because there is no symmetry in the vertical and horizontal directions as in the hysteresis curve.

【0018】試行錯誤の上、下記の逐次計算式が、現在
求めようとしている品温曲線を一番よく表現できること
が判った。基本式(逐次計算式−MAAの式): tpn =tpn-1 +Δtpn ・・・ (1) Δtpn =α×Δtwn +(1−α)×Δtpn-1 ・・・ (2) 運用方法: 図2の逐次計算グラフのモデル図で、逐次
計算の方法を示す。
After trial and error, it has been found that the following successive calculation formula can best represent the material temperature curve currently being obtained. Basic formula (sequential calculation formula-MAA formula): tpn = tpn-1 + Δtpn (1) Δtpn = α × Δtwn + (1-α) × Δtpn-1 (2) Operation method: FIG. Is a model diagram of a sequential calculation graph of FIG.

【0019】 tp0 :殺菌開始時の品温(℃) ・・・ 実測する tw0 :殺菌開始時の槽温(℃) ここで、tw0 =tp0 とする。 ・・・ (3) θ1,θ2,θ3,・・・θn-2,θn-1,θn :所定の一定時間間隔(サンプリングサイクル(θn =n×θ)) tw1,tw2,tw3,・・・twn-2,twn-1,twn :サンプリングサイクル毎に採取された槽温実測値(℃) tp1,tp2,tp3,・・・tpn-2,tpn-1,tpn :サンプリングサイクル毎に採取された品温実測値(℃) ここで、Δtwn =twn − twn-1 を示す。Tp 0 : temperature of product at the start of sterilization (° C.)... To be measured tw 0 : bath temperature at the start of sterilization (° C.) Here, tw 0 = tp 0 . (3) θ1, θ2, θ3,... Θn-2, θn-1, θn: predetermined fixed time intervals (sampling cycle (θn = n × θ)) tw1, tw2, tw3,. twn-2, twn-1, twn: Actual measured tank temperature (C) taken at each sampling cycle tp1, tp2, tp3, ... tpn-2, tpn-1, tpn: Taken at each sampling cycle Actual measured temperature (° C.) Here, Δtwn = twn−twn−1 is shown.

【0020】また、Δtpn-1 =tpn-1 −tpn-2 を
示す。 α:個別伝熱係数(所定の一定時間間隔当たりの無次元
数) なお、ここで、θは1〜30sec が実用的である。 個別伝熱係数αの伝熱特性: 図1の如く、α値が大きい程、伝熱性が高く、α値が小
さい程、伝熱性が低い。
Further, Δtpn-1 = tpn-1-tpn-2 is shown. α: Individual heat transfer coefficient (dimensionless number per predetermined time interval) Here, 1 to 30 seconds is practical. Heat transfer characteristics of individual heat transfer coefficient α: As shown in FIG. 1, the larger the α value, the higher the heat conductivity, and the smaller the α value, the lower the heat conductivity.

【0021】図3の微少時間における温度分布の変化図
から、方程式を展開すると、その伝熱特性がより明確に
なる。 αを求めるための方程式の展開: 微少時間(θ)における微少熱量(qn )の流れは下記
の二方法で表すことができる。熱伝導の式より、 qn =−(k/ Te ) ×A ×(tp n-1−twn )×θ ・・・ (4) 又、熱収支より、 qn =V ×ρ×cp×(tp n−tp n-1) ・・・ (5) (4)式と (5)式の熱量qn は近似的に等しいとみなせ
る。次に、その等式を展開してゆくと以下のようにな
る。
When the equation is expanded from the change diagram of the temperature distribution in a very short time in FIG. 3, the heat transfer characteristic becomes clearer. Development of Equation for Obtaining α: The flow of minute heat (qn) in minute time (θ) can be expressed by the following two methods. From the equation of heat conduction, qn = − (k / Te) × A × (tp n−1−twn) × θ (4) From the heat balance, qn = V × ρ × cp × (tp n −tp n-1) (5) It can be considered that the calorific values qn of the equations (4) and (5) are approximately equal. Next, the equation is expanded as follows.

【0022】 V ×ρ×cp×(tp n−tp n-1)=−(k/Te ) ×A ×(tp n-1−twn )×θ (tp n−tpn-1 )=(((k/Te ) ×A ×θ)/(V×ρ×cp))×(twn −tp n-1) tpn =(((k/Te ) ×A ×θ)/(V×ρ×cp))×(twn −tp n-1)+tp n-1 ((k/ Te ) ×A ×θ)/(V×ρ×cp))=αとおいて整理すると、・・・ (6) tp n =α×twn +(1−α) ×tp n-1 図1からも判るように品温tpn は非線形の特性を示すの
で、このまま運用することはできない。そこで逐次計算
を可能にするような線形性を得るために、これを微分処
理する。その結果、前記の基本式 (2)が求まる。
V × ρ × cp × (tp n−tp n−1) = − (k / Te) × A × (tp n−1−twn) × θ (tp n−tpn−1) = ((( k / Te) × A × θ) / (V × ρ × cp)) × (twn−tp n-1) tpn = (((k / Te) × A × θ) / (V × ρ × cp)) X (twn−tp n−1) + tp n−1 ((k / Te) × A × θ) / (V × ρ × cp)) = α, (6) tp n = α × twn + (1−α) × tp n−1 As can be seen from FIG. 1, since the product temperature tpn shows a non-linear characteristic, it cannot be operated as it is. Then, in order to obtain linearity that enables sequential calculation, this is differentiated. As a result, the above basic formula (2) is obtained.

【0023】 Δtpn =α×Δtwn +(1−α)×Δtpn-1 ・・・ (2) 上式により、品温変化は槽温変化のみから逐次計算でき
るようになる。従って、前記の基本式 (1)を運用するこ
とで図1の如く精度の高い品温カーブがシミュレーショ
ン可能になる。 tpn =tpn-1 +Δtpn ・・・ (1) (6) 式の形状特性をさらに整理する。
Δtpn = α × Δtwn + (1−α) × Δtpn−1 (2) From the above equation, the product temperature change can be sequentially calculated only from the bath temperature change. Therefore, the basic formula (1) simulated high product temperature curve of as shown in FIG. 1 accuracy by operating the sucrose
Become possible . tpn = tpn-1 + .DELTA.tpn (1) The shape characteristics of equation (6) will be further arranged.

【0024】 T e =V/A とおけるので、 ・・・ (7) α=(k×θ)/(Te2×ρ×cp) ・・・ (8) ここで、k:包装食品の熱伝導率 (kcal/ mh℃) ρ:包装食品の密度 (kg/ m3) cp :包装食品の比熱 (kcal/ kg℃) A :包装食品の伝熱表面積 (m2) V :包装食品の体積 (m3) twn :現在の槽温 (℃) Δtwn :現在の槽温へ到達するに寄与した槽温変化 (℃) tpn :現在の品温(最遅速温度で規定される) (℃) Δtpn :現在の品温へ到達するに寄与した品温変化 (℃) tp n-1:逐次計算における前回の品温 (℃) Δtp n-1:逐次計算における前回の品温到達に寄与した品温変化 (℃) Te :包装食品の相当厚み (m) θ:サンプリングサイクル (h) α:所定時間間隔当たりの個別伝熱係数 (無次元数) (2) 品温モニター(α値モニター)の構成 対象の包装食品の殺菌工程中の実測槽温(tw)と実測品温
(tp)データを取る。
Since T e = V / A, (7) α = (k × θ) / (Te 2 × ρ × cp) (8) where k: heat of the packaged food conductivity (kcal / mh ℃) ρ: density of the packaged food (kg / m 3) cp: specific heat of the packaged food (kcal / kg ℃) a: heat transfer surface area of the packaged food (m 2) V: volume of the packaged food (m 3 ) twn: current bath temperature (° C) Δtwn: change in bath temperature contributing to reach the current bath temperature (° C) tpn: current product temperature (specified by the slowest temperature) (° C) Δtpn : Change in product temperature that contributed to reaching the current product temperature (° C) tp n-1: Previous product temperature in sequential calculation (° C) Δtp n-1: Product temperature that contributed to the previous product temperature in sequential calculation Change (° C) Te: Equivalent thickness of packaged food (m) θ: Sampling cycle (h) α: Individual heat transfer coefficient per specified time interval (dimensionless number) (2) Configuration of product temperature monitor (α value monitor) Measured tank temperature during the sterilization process of the target packaged food (tw) The actual product temperature
(tp) Take the data.

【0025】実測のtpデータからF値演算をさせてお
く。(F値) 次に、各初期値を決める。 包装食品のTeを (7)式より求める。 ・・・ (手動で入力する) 食品の各物性は、とりあえず、25℃の水物性で代用す
る。 (K)/ (ρ×cp) =(0.522)/(997.1×0.9989) =5.241 ×10-4 ・・・ (各物性値を手動で入力する) 以上により個別伝熱係数の初期値α0 が決まる。
The F value is calculated from the actually measured tp data. (F value) Next, each initial value is determined. Calculate the Te of the packaged food from equation (7). ... (input manually) For the physical properties of food, substitute the physical properties of water at 25 ° C for the time being. (K) / (ρ × cp) = (0.522) / (997.1 × 0.9989) = 5.241 × 10 -4 (Input each property value manually) From the above, the initial value α 0 of the individual heat transfer coefficient is Decided.

【0026】 ・・・(自動演算される。) (3)式に従いtw0(=tp0 ) が決まる。・・・ (自動で入力される。) 経過時間(θn ) のカウントは、槽内温度が均一条件に
なったところから開始する。例えば、熱水式の場合であ
れば、熱水注入後(又は冷却水注入後)、循環ポンプが
ONになった時点からカウントを開始することになる。
.. (Automatically calculated) tw 0 (= tp 0 ) is determined according to the equation (3). ... (Automatically input.) The counting of the elapsed time (θn) starts when the temperature in the chamber becomes uniform. For example, in the case of the hot water type, after the hot water is injected (or after the cooling water is injected), the counting is started from the time when the circulation pump is turned on.

【0027】なお、実測槽温(twn )が昇温を開始した
後、最遅速の実測品温(tpn )が昇温し始めるまでに
は、所定の温度勾配を形成するための遅れ時間(δ)が
存在するので、これも自動で読み出す。前述の基本式
(1) 、(2) に、初期値α0 、tw0 及び実測槽温( twn )
データを入れて対応する品温データ(tpc) をシミュレー
ト計算する。この場合、遅れ時間(δ)分ほど実測槽温
(twn )データをずらせて品温データ(tpc) のシミュレ
ート計算するものとする。また、品温シミュレートと共
F値も演算しておく。(Fc値)前記の実測されたF
値と演算されたFc値を比較し、一定の精度まで収斂さ
せてα値は基本的に決定される。この場合、一般的な収
斂法を用いて自動で行う。
After the temperature of the actually measured tank (twn) starts to rise, the delay time (δ) for forming a predetermined temperature gradient is required until the latest measured temperature (tpn) of the slowest speed starts to rise. ) Exists, so that this is also read automatically. The above basic formula
In (1) and (2), the initial values α 0 and tw 0 and the measured tank temperature (twn)
Simulate corresponding temperature data (tpc) by inserting data
Calculate . In this case, simulator delay time ([delta]) min as measured bath temperature (twn) data by shifting the material temperature data (tpc)
Calculation . Simultaneous with product temperature simulation
F value is also advance by calculating the. (Fc value) The measured F
The α value is basically determined by comparing the value with the calculated Fc value and converging to a certain precision. In this case, it is performed automatically using a general convergence method.

【0028】まず、加熱側個別伝熱係数 (αH) は、加
熱終了時点でのF値とFc値の比較を行い、通常、Fc
値がF値に比較して−0.1%以内の精度に収斂するよう
にし、決定する。−0.1%以内と負側の範囲設定にした
のは、安全サイドの考慮によるものである。
First, the heating-side individual heat transfer coefficient (αH) is calculated by comparing the F value and the Fc value at the end of heating.
The value is determined so as to converge to an accuracy within -0.1% compared to the F value. The reason for setting the negative range within -0.1% is due to consideration of the safety side.

【0029】次に、冷却側個別伝熱係数(αC)の初期
値には、直前に決定したαHを用いる。そして、冷却開
始から終了までのシミュレート計算を行う。この場合、
冷却工程時の正味のF値増加分で、収斂計算を行わせ
る。この場合も通常、−0.1%以内の精度に収斂させ
る。
Next, as the initial value of the cooling-side individual heat transfer coefficient (αC), αH determined immediately before is used. Then, a simulation calculation from the start to the end of the cooling is performed. in this case,
Convergence calculation is performed based on the net increase in the F value during the cooling step. Also in this case, usually, the accuracy is converged to within -0.1%.

【0030】なお、αCが収斂しない場合は最初の遅れ
時間(δ)に戻って修正し、やり直す。加熱側個別伝熱
係数 (αH) と冷却側個別伝熱係数(αC)が共にF値
偏差において−0.1%以内の精度で求まると、殺菌工程
終了時の最終F値に対しても−0.1%以内の精度が得ら
れる。 (3) レトルト試験機の構成 殺菌工程中の温度データは、一つの槽温twと一つまた
は複数の品温tpデータを品温モニターへ、所定の一定
間隔で送信する。
If αC does not converge, the process returns to the initial delay time (δ), corrects it, and starts over. When the heating-side individual heat transfer coefficient (αH) and the cooling-side individual heat transfer coefficient (αC) are both determined with an accuracy of within -0.1% of the F value deviation, the final F value at the end of the sterilization process is also- Accuracy within 0.1% is obtained. (3) Configuration of Retort Testing Machine As temperature data during the sterilization process, one bath temperature tw and one or a plurality of product temperature tp data are transmitted to the product temperature monitor at predetermined regular intervals.

【0031】この場合、twは包装食品の外面の雰囲気
温度を正確に表示するものが必要である。しかも、槽内
において温度の均一性が保証されなければならない。温
度検出センサーも精度の高いサーミスタや測温抵抗体が
用いられる。なお、複数の品温データの内、最低のF値
を示すものをデータとして採用することで、安全性を高
めている。
In this case, tw needs to accurately indicate the ambient temperature of the outer surface of the packaged food. In addition, temperature uniformity must be ensured in the bath. For the temperature detection sensor, a highly accurate thermistor or a resistance temperature detector is used. It should be noted that among the plurality of product temperature data, the one exhibiting the lowest F value is adopted as data, thereby enhancing safety.

【0032】さらに、品温モニターは試験機の制御盤に
組み込まれている場合もある。 (4) 本発明の構成 上記品温モニターシステムに示すように、個々のレトル
ト殺菌対象品は個々に特定の遅れ時間(δ)と個別伝熱
係数 (α)(厳密には加熱側のαHと冷却側のαC)を
求めることができる。これらδやα値のデータ蓄積か
ら、レトルト殺菌の温度領域(20℃〜 135℃)において
は槽温(tw)を少々変化させてもδやα値はほとんど変
わらず、一定値であることが判明している。さらにδや
α値は品物の形状と包材を含めた内容物の物性のみに依
存していて、殺菌方式が熱水式でも、蒸気式でもまたそ
の他であっても構わないことが確認された。本発明は、
この一定値で扱えるδやα値を利用したレトルト殺菌シ
ステムである。
Further, the temperature monitor may be incorporated in the control panel of the testing machine. (4) Configuration of the present invention As shown in the above product temperature monitoring system, each of the retort sterilization products has a specific delay time (δ) and individual heat transfer coefficient (α) (strictly speaking, αH on the heating side. ΑC) on the cooling side can be determined. From the data accumulation of these δ and α values, in the temperature range of retort sterilization (20 ° C to 135 ° C), even if the bath temperature (tw) is slightly changed, the δ and α values hardly change and remain constant. It is known. Furthermore, the δ and α values depend only on the physical properties of the contents, including the shape of the product and the packaging material, and it has been confirmed that the sterilization method may be a hot water method, a steam method, or any other method. . The present invention
This is a retort sterilization system that uses δ and α values that can be handled at a constant value.

【0033】計画F値(最終的に必要とされるF値:F
t )は制御F値(殺菌工程を停止し、冷却工程へ移行す
るために制御するF値:Fs )と冷却F値(冷却時発生
分のF値:Fr )の合計で表される。Ft 値は普通、開
発や品質管理の担当者により、レトルト試験機とF値モ
ニター(又は品温モニター)を使用して決定される。F
s 値の初期値は、前もって空回転で出しておいたFr の
初期値をFt 値から引き算して求めておく。空運転の場
合、品物の熱容量が無い分、冷却スピードが速く、Fr
値が少なく出るので、殺菌の点からは安全サイドであ
る。通常の場合、Fr 値の絶対値はもともと小さく、F
t 値に占める割合が少ないので誤差は気にならない程度
である。従って、1バッチ目は多少安全サイドの殺菌処
理になるが問題はない。なお、2バッチ目からは、1バ
ッチのデータをフィードバックして精度を上げるように
する。
Planned F value (F value finally required: F
t) is expressed by the sum of the control F value (F value for controlling the sterilization step to stop and shift to the cooling step: Fs) and the cooling F value (F value generated during cooling: Fr). The Ft value is usually determined by the person in charge of development and quality control using a retort tester and an F value monitor (or temperature monitor). F
The initial value of the s value is obtained by subtracting the initial value of Fr, which was previously obtained by idling, from the Ft value. In the case of dry operation, the cooling speed is fast because Fr
Since the value is low, it is a safe side in terms of sterilization. In the normal case, the absolute value of the Fr value is originally small,
The error is negligible because it accounts for a small percentage of the t value. Therefore, the first batch is somewhat sterilized on the safe side, but there is no problem. In addition, from the second batch, data of one batch is fed back to improve accuracy.

【0034】所定の設定された槽温(tw)で殺菌を行い、
それでシミュレートされた品温(tpc) から演算されたF
値(Fc )が、制御F値(Fs )に達したところで、殺
菌工程を終了して、冷却工程へ移行する。大幅な殺菌時
間の短縮を目的として殺菌工程をプログラム温度制御す
る場合は、まず、基本式(MAAの式)を逆展開して、
理想的な任意の品温レサイプを描きそれに対応する槽温
レサイプをシミュレーションする。次にシミュレーショ
ンされた槽温レサイプデータをシーケンサーに予め入力
しておき、殺菌の全工程をそのプログラム通りに制御す
る。
Sterilization is performed at a predetermined tank temperature (tw),
So the F calculated from the simulated product temperature (tpc)
When the value (Fc) reaches the control F value (Fs), the sterilization step is ended and the process shifts to the cooling step. When program temperature control of the sterilization process is performed for the purpose of greatly shortening the sterilization time, first, the basic equation (MAA equation) is reversely developed,
Draw an ideal arbitrary temperature resipe and simulate the corresponding tank temperature resipe . Next, simulate
The stored tank temperature resipe data is input to the sequencer in advance, and the entire sterilization process is controlled according to the program.

【0035】基本式(逐次計算式−MAAの式): tpn =tpn-1 +Δtpn ・・・ (1) Δtpn =α×Δtwn +(1−α)×Δtpn-1 ・・・ (2) 逆展開式: twn = twn-1 +Δtwn ・・・ (9) Δtwn =(1/α)×Δtpn −((1−α)/α)×Δtpn-1 ・・・(10) ここで、 tpn :現在の品温 (℃) tpn-1 :逐次計算における前回の品温 (℃) Δtpn :現在の品温へ到達するに寄与した品温変化 (℃) Δtpn-1 :前回の品温へ到達するに寄与した品温変化 (℃) α :所定時間当たりの個別伝熱係数 (無次元数) twn :現在の槽温 (℃) Δtwn-1 :逐次計算における前回の槽温 (℃) Δtwn :現在の槽温へ到達するに寄与した槽温変化 (℃) ここでも、 tw0 =tp0 とおく。 ・・・(11) 決定済のδとαを入れて (9) (10) (11)式を運用すれ
ば、任意の品温レサイプに対する槽温レサイプがシミュ
レーションできる。
Basic formula (sequential calculation formula-MAA formula): tpn = tpn-1 + Δtpn (1) Δtpn = α × Δtwn + (1-α) × Δtpn-1 (2) Reverse expansion Expression: twn = twn-1 + Δtwn (9) Δtwn = (1 / α) × Δtpn − ((1−α) / α) × Δtpn−1 (10) where tpn: current Item temperature (° C) tpn-1: Previous item temperature in sequential calculation (° C) Δtpn: Item temperature change (° C) that contributed to reach current item temperature Δtpn-1: Contributed to reach previous item temperature Temperature change (° C) α: Individual heat transfer coefficient per predetermined time (dimensionless number) twn: Current tank temperature (° C) Δtwn-1: Previous tank temperature in sequential calculation (° C) Δtwn: Current tank Temperature change of tank that contributes to reaching temperature (° C.) Here, tw 0 = tp 0 is set. (11) Putting the determined δ and α into consideration, (9) (10) By operating the equation (11), it is possible to simulate the tank temperature resipe for an arbitrary product temperature resipe.

【0036】基本的にはどんな品温レサイプに対しても
槽温レサイプをシミュレーションして描くことは可能で
あるが、殺菌釜の設計条件やユーティリティー条件さら
には包材の耐熱性、食品の耐熱性などの制限条件がある
ので、それらをすべて勘案して最適な槽温レサイプを選
定する必要がある。
Basically, it is possible to simulate and draw the bath temperature resipe for any product temperature resipe, but the design conditions and utility conditions of the sterilization pot, the heat resistance of the packaging material, and the heat resistance of the food Because of these restrictions, it is necessary to select the optimal tank temperature recipe in consideration of all of them.

【0037】[0037]

【実施例】 食品の種類 :70ccアルミ容器入りプリン(Te=7mm) 殺菌方式 :熱水式(静置)、含気処理方式 サンプリングサイクル :15 sec F値の計算式 :Σ((15/60) x1E + ((1.8 x tpn +32−250)/18)) F値誤差 (%) の計算式 :((MAA のF値−実測F値)/ 実測F値)×100 (試験機の設定データ) 殺菌温度 120 ℃ 殺菌温度維持時間 20 min (試験機における品温モニターの結果データ) 初期品温 tp0 =43.7〜46.1℃ (平均44.9℃) 遅れ時間 δ =45〜15 sec (平均30 sec) 加熱側個別伝熱係数 αH=0.0486〜0.0525 (平均0.0506) 冷却側個別伝熱係数 αC=0.0759〜0.0763 (平均0.0761) 演算最終F値 Fc =9.2 〜10.3 (平均9.75) 実測最終F値 F =9.2 〜10.3 (平均9.75) (生産機における計画殺菌条件の決定) 計画殺菌温度 120 ℃ 計画殺菌条件 Ft =7 (生産機に用いる品温モニターの設定データ) 初期品温 tp0 =45℃以上に適用 遅れ時間 δ =30 sec 加熱側個別伝熱係数 αH=0.0506 冷却側個別伝熱係数 αC=0.0761 (F値制御付きレトルト生産機の結果データ)(図4参照) 初期品温 tp0 =45.2℃ 演算冷却F値 Fr =0.62 演算制御F値 Fs = 7−0.62=6.38以上 殺菌温度維持時間 17.5 min 演算最終F値 Fc =7.10 実測最終F値 F =7.59 (上記レトルト生産機でスチーム圧低下が発生した場合の結果データ) (図5参照) スチーム圧低下時点 :カムアップ後、2分目 スチーム圧復帰時点 :低下時点から3分後 殺菌温度まで復帰時点 :スチーム圧復帰時点から2分後 初期品温 tp0 =45.2℃ 演算冷却F値 Fr =0.62 演算制御F値 Fs = 7−0.62=6.38以上 殺菌温度維持時間 19.5 min 演算最終F値 Fc =7.24 実測最終F値 F =7.67 (殺菌工程をプログラム温度制御したレトルト生産機の結果データ) (図6参照) 品温の昇温度カーブと冷却カーブを任意に設定し、予
め、制御すべき槽温カーブを決定しておく。
[Example] Food type: Pudding in 70cc aluminum container (Te = 7mm) Sterilization method: Hot water method (static), aeration treatment method Sampling cycle: 15 sec F value calculation formula: Σ ((15/60 ) x1E + ((1.8 x tpn + 32-250) / 18)) Formula for calculating F value error (%): ((MAA F value-actual F value) / actual F value) x 100 (Test machine setting data ) Sterilization temperature 120 ℃ Sterilization temperature maintenance time 20 min (Result data of product temperature monitor in test machine) Initial product temperature tp 0 = 43.7-46.1 ℃ (average 44.9 ℃) Delay time δ = 45-15 sec (average 30 sec) Heating-side individual heat transfer coefficient αH = 0.0486 to 0.0525 (average 0.0506) Cooling-side individual heat transfer coefficient αC = 0.0759 to 0.0763 (average 0.0761) Calculation final F value Fc = 9.2 to 10.3 (average 9.75) Actual measurement final F value F = 9.2 110.3 (average 9.75) (Determining planned sterilization conditions for production machines) Planned sterilization temperature 120 ° C Planned sterilization conditions Ft = 7 (Product temperature used for production machines) Setting data) of the initial product temperature tp 0 = 45 ° C. or higher to apply the delay time [delta] = 30 sec heating side individual heat transfer coefficient .alpha.H = 0.0506 cooling side individual heat transfer coefficient αC = 0.0761 (F value control with retort production machine results in Nita Data) (See Fig. 4) Initial temperature tp 0 = 45.2 ° C Calculation cooling F value Fr = 0.62 Calculation control F value Fs = 7-0.62 = 6.38 or more Sterilization temperature maintenance time 17.5 min Calculation final F value Fc = 7.10 Actual measurement final F Value F = 7.59 (Result data when steam pressure drop occurs in the above retort production machine) (See Fig. 5) Steam pressure drop point: 2 minutes after cam-up Steam pressure return point: 3 minutes after drop Return time to temperature: 2 minutes after steam pressure return Initial product temperature tp 0 = 45.2 ° C Calculation cooling F value Fr = 0.62 Calculation control F value Fs = 7-0.62 = 6.38 or more Sterilization temperature maintenance time 19.5 min Calculation final F value Fc = 7.24 Final measured F value F = 7.67 Result data retort production machine the sterilization process was programmed temperature control) (see FIG. 6) products arbitrarily set the temperature temperature curve and the cooling curve of the temperature, in advance to determine the bath temperature curve to be controlled.

【0038】 初期品温 tp0 =45.2℃ 演算冷却F値 Fr =0.62 演算制御F値 Fs = 7−0.62=6.38以上 殺菌温度維持時間 13.5 min 演算最終F値 Fc =7.25 実測最終F値 F =7.47 3例のF値制御の結果はいずれも計画殺菌条件に対して
+10%以内に入っており、F値制御が効果的に作動して
いる。しかも実測最終F値が演算F値よりも大きくなっ
ていて、安全性についても問題はなく初期の目的を充分
満足している。
Initial product temperature tp 0 = 45.2 ° C. Calculation cooling F value Fr = 0.62 Calculation control F value Fs = 7−0.62 = 6.38 or more Sterilization temperature maintenance time 13.5 min Calculation final F value Fc = 7.25 Actual measurement final F value F = 7.47 The results of the F value control of the three cases are all within + 10% of the planned sterilization conditions, and the F value control is operating effectively. Moreover, the actually measured final F value is larger than the calculated F value, and there is no problem in safety, and the initial purpose is sufficiently satisfied.

【0039】今回のサンプルは従来 120℃×20min の殺
菌条件で処理されていたものであるが、本発明のF値制
御を使用することによって 120℃×17.5 min付近にて処
理することが可能になった。約12.5%の殺菌時間の短縮
である。スチーム圧低下時も品温シミュレーションが連
続的になされていてF値制御が行われるので、ほとんど
の場合問題なく処理が可能である。今回のF値制御では
カムアップ後、3分間のスチーム圧低下に対して、殺菌
時間は2分間の延長で済んだ。
Although the present sample was conventionally processed under the sterilization conditions of 120 ° C. × 20 min, the use of the F value control of the present invention enables processing at about 120 ° C. × 17.5 min. became. The sterilization time is reduced by about 12.5%. Even when the steam pressure drops, the product temperature simulation is continuously performed and the F value control is performed, so that processing can be performed without any problem in most cases. With this F-number control, the sterilization time was extended by 2 minutes for the steam pressure drop of 3 minutes after the cam-up.

【0040】槽温のプログラム温度制御を取り入れたも
のでは、32.5%の殺菌温度時間の短縮ができており、大
幅な時間短縮の目的を充分満足させている。この場合、
槽温(tw)が昇温中に一瞬、 130℃の温度域を通過する
が、釜、包材及び食品には問題はなかった。なお、これ
は計画的なオーバーシュート制御と言える。
In the case where the program temperature control of the bath temperature is incorporated, the sterilization temperature time can be shortened by 32.5%, which sufficiently satisfies the purpose of greatly reducing the time. in this case,
While the tank temperature (tw) passed through the temperature range of 130 ° C for an instant during the temperature rise, there was no problem with the pot, packaging material and food. It can be said that this is planned overshoot control.

【0041】[0041]

【発明の効果】本発明のF値制御システムによると、殺
菌における過加熱を防止できる。さらに、プログラム温
度制御システムを取り入れることによって、殺菌時間の
大幅な短縮が可能である。レトルト殺菌機として、蒸気
式、熱水式さらにはスプレー(シャワー)式等の型式に
ついても使用できる。
According to the F value control system of the present invention, overheating in sterilization can be prevented. Furthermore, by incorporating a programmed temperature control system, the sterilization time can be significantly reduced. As the retort sterilizer, a steam type, a hot water type, and a spray (shower) type can be used.

【0042】品温モニターシステムをレトルト殺菌機に
組み込むことにより、非接触で実測槽温(tw)から精度の
高いシミュレート品温(tpc) がリアルタイムに求めら
れ、F値(Fc )の演算も行われるので、作業負担が少
なく、ユーティリティー不調時も含めて確実で安全なF
値制御が可能である。品温モニターシステムの逐次計算
式(MAAの式)を用いて逆展開を行い、時間短縮など
を目的とする品温レサイプに対応した制御すべき槽温レ
サイプを予め作って、レトルト殺菌装置に入力してプロ
グラム温度制御することで、大幅な殺菌時間の短縮がは
かれる。
By incorporating the product temperature monitor system into the retort sterilizer, a highly accurate simulated product temperature (tpc) can be obtained in real time from the measured tank temperature (tw) in a non-contact manner, and the calculation of the F value (Fc) can also be performed. Since the operation is performed, the work load is small, and the secure and safe F
Value control is possible. Reverse development is performed using the sequential calculation formula (MAA formula) of the product temperature monitor system, and a tank temperature recipe to be controlled corresponding to the product temperature recipe for the purpose of time reduction, etc. is prepared in advance and input to the retort sterilizer. By controlling the program temperature, the sterilization time can be significantly reduced.

【0043】上記のように計画殺菌条件に近づくこと
や、大幅な殺菌時間の短縮をはかることで、包装食品等
の不必要な品質劣化を防止することができるF値制御付
きレトルト殺菌方法及び殺菌装置を提供できた。
A retort sterilization method with F-value control and sterilization that can prevent unnecessary quality deterioration of packaged foods, etc. by approaching the planned sterilization conditions and significantly shortening the sterilization time as described above. Equipment could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 品温シミュレーションモデル図 FIG. 1 is a simulation model of product temperature

【図2】 逐次計算グラフのモデル図FIG. 2 is a model diagram of a sequential calculation graph

【図3】 微小時間における温度分布変化図FIG. 3 is a diagram showing a change in temperature distribution in a minute time.

【図4】 F値制御付きレトルト生産機の結果を示すグ
ラフ
FIG. 4 is a graph showing the results of a retort production machine with F-value control.

【図5】 スチーム圧低下が発生した場合の結果を示す
グラフ
FIG. 5 is a graph showing a result when a steam pressure drop occurs.

【図6】 プログラム温度制御を行った場合のレトルト
生産機の結果を示すグラフ
FIG. 6 is a graph showing a result of a retort production machine when a program temperature control is performed.

【符号の説明】[Explanation of symbols]

tw 槽温 tp 品温 tpc シミュレート品温 α 個別伝熱係数 αH 加熱側個別伝熱係数 αC 冷却側個別伝熱係数 MAAの式 基本式(逐次計算式) tpA 輸液袋 100cc tpB チキンスープ 200g パウチ tpC ガラエキス 2号缶 tpD 中華風スープ1kg パウチ tpE カレーソース1kg パウチ tpF ごま豆腐インジェクション tw Tank temperature tp Material temperature tpcSimulated temperature  α Individual heat transfer coefficient αH Heating-side individual heat transfer coefficient αC Cooling-side individual heat transfer coefficient MAA formula Basic formula (sequential calculation formula) tpA Infusion bag 100cc tpB Chicken soup 200g Pouch tpC Gala extract No.2 can tpD Chinese style soup 1kg Pouch tpE Curry sauce 1kg Pouch tpF Sesame tofu injection

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】包装食品又は輸液等を装填したレトルト試
験機からの信号に基づき、実測槽温(tw)(包装食品等の
伝熱媒体温度)と実測品温(tp)(包装食品等の内部温
度)の各データを蓄積する手段と、殺菌工程終了後、前
記蓄積データから包装食品又は輸液等の個別伝熱係数
(α) を演算する手段と、演算結果を表示する手段と、
前記個別伝熱係数 (α) を用いてシミュレート品温(tp
c) を計算し、シミュレート品温曲線を描く手段と、こ
シミュレート品温曲線を前記実測槽温(tw)と実測品温
(tp)のデータ曲線上に載せて表示する手段と、からなる
包装食品又は輸液等の品温モニターシステムを制御部に
組み込んだレトルト殺菌装置を設け、 予めレトルト試験機で決定された包装食品又は輸液等の
加熱側個別伝熱係数(αH) と冷却側個別伝熱係数(α
C) とを用いて、前記レトルト殺菌装置からの実測槽温
(tw)に対してリアルタイムにシミュレート品温(tpc) を
求めてF値(Fc)を演算する手段を設け、殺菌工程で制御
F値(Fs)に達した時、殺菌工程を終了し冷却工程へ移行
するようにしたことを特徴とするF値制御付きレトルト
殺菌方法。
1. Based on a signal from a retort testing machine loaded with packaged food or infusion, etc., the measured tank temperature (tw) (temperature of the heat transfer medium of the packaged food, etc.) and the measured product temperature (tp) (packaged food, etc.) Means for accumulating each data of internal temperature), and after completion of the sterilization step, the individual heat transfer coefficient of the packaged food or the infusion from the accumulated data.
means for calculating (α), means for displaying the calculation result,
Simulated product temperature (tp) using the individual heat transfer coefficient (α)
c) means for calculating a simulated product temperature curve, and calculating the simulated product temperature curve from the measured bath temperature (tw) and the measured product temperature.
(tp) means for displaying on the data curve, and a retort sterilizer incorporating a temperature monitoring system for packaged foods or infusions, etc., in the control unit, comprising: a packaged food or a packaged food determined in advance by a retort tester. The individual heat transfer coefficient (αH) and the individual heat transfer coefficient (α
C) and the measured tank temperature from the retort sterilizer
A means for calculating the simulated product temperature (tpc) in real time for (tw) and calculating the F value (Fc) is provided, and when the control F value (Fs) is reached in the sterilization process, the sterilization process ends and cooling is performed. A retort sterilization method with F-value control, characterized by shifting to a process.
【請求項2】品温モニターシステムにおいて、個別伝熱
係数 (α) を用いてシミュレート品温(tpc) を計算し、
シミュレート品温曲線を描く手段として、下記の基本式
(逐次計算式−MAAの式)を用いた請求項1記載のF
値制御付きレトルト殺菌方法。 基本式(逐次計算式−MAAの式): tpn =tpn-1 +Δtpn ・・・ (1) Δtpn =α×Δtwn +(1−α)×Δtpn-1 ・・・ (2) 符号説明: tpn :現在の品温 (℃) tpn-1 :逐次計算における前回の品温 (℃) Δtpn :現在の品温へ到達するに寄与した品温変化 (℃) Δtpn-1 :前回の品温へ到達するに寄与した品温変化 (℃) α :所定時間当たりの個別伝熱係数 (無次元数) twn :現在の槽温 (℃) Δtwn :現在の槽温へ到達するに寄与した槽温変化 (℃)
(2)Individual heat transfer in product temperature monitoring system
Calculate the simulated product temperature (tpc) using the coefficient (α),
The following basic formula is used to draw the simulated temperature curve.
2. The F according to claim 1, wherein (a sequential calculation formula-MAA formula) is used.
Retort sterilization method with value control. Basic formula (Sequential calculation formula-MAA formula): tpn = tpn-1 + Δtpn (1) Δtpn = α × Δtwn + (1−α) × Δtpn-1 (2) Code explanation: tpn: current product temperature (° C)  tpn-1: previous product temperature in sequential calculation (° C)  Δtpn: Change in product temperature that contributed to reaching the current product temperature (° C) Δtpn-1: Change in product temperature that contributed to reaching the previous product temperature (° C)  α: Individual heat transfer coefficient per specified time (dimensionless number)  twn: Current bath temperature (° C)  Δtwn: Change in bath temperature that contributed to reaching the current bath temperature (° C)
【請求項3】包装食品又は輸液等を装填したレトルト試
験機からの信号に基づき、実測槽温(tw)(包装食品等の
伝熱媒体温度)と実測品温(tp)(包装食品等の内部温
度)の各データを蓄積する手段と、殺菌工程終了後、前
記蓄積データから包装食品又は輸液等の個別伝熱係数
(α) を演算する手段と、演算結果を表示する手段と、
前記個別伝熱係数 (α) を用いてシミュレート品温(tp
c) を計算し、シミュレート品温曲線を描く手段と、こ
シミュレート品温曲線を前記実測槽温(tw)と実測品温
(tp)のデータ曲線上に載せて表示する手段と、からなる
包装食品又は輸液等の品温モニターシステムを制御部に
組み込んだレトルト殺菌装置において、 予めレトルト試験機で決定された包装食品又は輸液等の
加熱側個別伝熱係数(αH) と冷却側個別伝熱係数(α
C) とを用いて、前記レトルト殺菌装置からの実測槽温
(tw)に対してリアルタイムにシミュレート品温(tpc) を
求めてF値(Fc)を演算する手段と、殺菌工程で制御F値
(Fs)に達した時、殺菌工程を終了し冷却工程へ移行する
ようにしたF値制御付きレトルト殺菌の制御手段とを制
御部に組み込んだことを特徴とする熱水式、蒸気式、ス
プレー式その他のレトルト殺菌装置。
3. Based on a signal from a retort tester loaded with packaged food or infusion, etc., the measured tank temperature (tw) (temperature of the heat transfer medium of the packaged food, etc.) and the measured product temperature (tp) (packaged food, etc.) Means for accumulating each data of internal temperature), and after completion of the sterilization step, the individual heat transfer coefficient of the packaged food or the infusion from the accumulated data.
means for calculating (α), means for displaying the calculation result,
Simulated product temperature (tp) using the individual heat transfer coefficient (α)
c) means for calculating a simulated product temperature curve, and calculating the simulated product temperature curve from the measured bath temperature (tw) and the measured product temperature.
(tp) means for displaying on the data curve, and a retort sterilizer incorporating a temperature monitoring system for packaged foods or infusions in the control unit, comprising a packaged food or infusion determined in advance by a retort tester. Heating-side individual heat transfer coefficient (αH) and cooling-side individual heat transfer coefficient (αH
C) and the measured tank temperature from the retort sterilizer
means for calculating the simulated product temperature (tpc) in real time for (tw) and calculating the F value (Fc);
(Fs), when the sterilization process is completed, the retort sterilization control means with F value control that shifts to the cooling process is incorporated in the control unit, and is characterized by a hot water type, a steam type, and a spray type. And other retort sterilizers.
JP10246005A 1998-08-31 1998-08-31 Retort sterilization method with F value control and retort sterilization apparatus Expired - Fee Related JP3071412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10246005A JP3071412B2 (en) 1998-08-31 1998-08-31 Retort sterilization method with F value control and retort sterilization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10246005A JP3071412B2 (en) 1998-08-31 1998-08-31 Retort sterilization method with F value control and retort sterilization apparatus

Publications (2)

Publication Number Publication Date
JP2000070344A JP2000070344A (en) 2000-03-07
JP3071412B2 true JP3071412B2 (en) 2000-07-31

Family

ID=17142055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10246005A Expired - Fee Related JP3071412B2 (en) 1998-08-31 1998-08-31 Retort sterilization method with F value control and retort sterilization apparatus

Country Status (1)

Country Link
JP (1) JP3071412B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104903229A (en) * 2012-12-27 2015-09-09 大日本印刷株式会社 Beverage filling device and pasteurization method for same
JP2019027832A (en) * 2017-07-26 2019-02-21 株式会社日阪製作所 Simulated sample for evaluating heating treatment and method for evaluating heating treatment using simulated sample
US20200319125A1 (en) * 2016-05-31 2020-10-08 Hisaka Works, Ltd. Simulation method, simulation program, and simulation device including storage medium having said program stored therein

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6761507B1 (en) * 2019-04-17 2020-09-23 大日本印刷株式会社 Beverage filling device sterilization method and beverage filling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104903229A (en) * 2012-12-27 2015-09-09 大日本印刷株式会社 Beverage filling device and pasteurization method for same
CN104903229B (en) * 2012-12-27 2016-12-28 大日本印刷株式会社 Beverage device for filling and method for disinfection thereof
US20200319125A1 (en) * 2016-05-31 2020-10-08 Hisaka Works, Ltd. Simulation method, simulation program, and simulation device including storage medium having said program stored therein
JP2019027832A (en) * 2017-07-26 2019-02-21 株式会社日阪製作所 Simulated sample for evaluating heating treatment and method for evaluating heating treatment using simulated sample

Also Published As

Publication number Publication date
JP2000070344A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
US5827556A (en) Electronic controller for heating apparatus
US11857111B2 (en) Cooking device and method of cooking food item based on predicting food core temperature
JP6687676B2 (en) Food cooking equipment
CN105725721B (en) The control method of cooking machine and cooking machine
CN1108482C (en) Method of uniformly heating plurality of foodstuff and heat cooking appts.
CN205923783U (en) Heating device for a milk that during is arranged in heating container's food, especially baby feeding bottle
JP2008517681A (en) Method of cooking cooked food lots containing cooked products of different dimensions and cookware for implementing such a method
CN105326386B (en) Water temperature boiling point judging method and device and electric kettle
CN107831804A (en) Cooking utensil and control method thereof
CN107727205A (en) Food quantity measuring method, food amount detecting device and cooking apparatus
KR20170013841A (en) Method and computer program for controlling a fryer, and fryer arranged for carrying out such method
CN109419366A (en) The judgment method of meter Shui Liang and device and cooking apparatus in cooking apparatus
JP3071412B2 (en) Retort sterilization method with F value control and retort sterilization apparatus
US9927304B2 (en) Apparatus and method for determining core temperature of food
Liu et al. Recent developments in low-moisture foods: microbial validation studies of thermal pasteurization processes
US20060011613A1 (en) Temperature calibration method for a cooking appliance
CN110146195A (en) Temperature deviation determines method, apparatus, cooking apparatus and readable storage medium storing program for executing
EP2397771A1 (en) System and method for the preparation of food in a cooking oven
US10344985B2 (en) Oven time and temperature device and method of computing oven cookng time
JP2958312B2 (en) Product temperature monitoring system for packaged foods or infusions and retort testing machine incorporating this
CN113384161A (en) Cooking control method and device, storage medium and cooking appliance
JPH08136355A (en) Method for estimating temperature of inner section of food
JP6931791B2 (en) Dry matter reconstitution cooking method using a cooker and a cooker
JP7389005B2 (en) Method for evaluating the temperature of the processed material and method for positioning the temperature sensor
CN107348831A (en) A kind of electric cooker and its method for heating and controlling for correcting the heat time

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees