JP3068276B2 - Manufacturing method of non-single crystal tandem solar cell and manufacturing apparatus used therefor - Google Patents
Manufacturing method of non-single crystal tandem solar cell and manufacturing apparatus used thereforInfo
- Publication number
- JP3068276B2 JP3068276B2 JP3254728A JP25472891A JP3068276B2 JP 3068276 B2 JP3068276 B2 JP 3068276B2 JP 3254728 A JP3254728 A JP 3254728A JP 25472891 A JP25472891 A JP 25472891A JP 3068276 B2 JP3068276 B2 JP 3068276B2
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- layer
- chamber
- pin junction
- tandem solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、非単結晶シリコンを中
心とする非単結晶タンデム型太陽電池の製法及びそれに
用いる製造装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-single-crystal tandem solar cell centering on non-single-crystal silicon and a manufacturing apparatus used for the method.
【0002】[0002]
【従来の技術】非晶質シリコン太陽電池をはじめとする
非単結晶太陽電池はその大部分がシラン、ジシラン、ゲ
ルマン、メタンなどの原料ガスを、必要に応じてジボラ
ン、フォスフィン、アルシンなどのドーピングガスとと
もに高周波電力などによるプラズマ中で分解し所望の基
板上に堆積するいわゆるグロー放電分解法によってpi
n接合を形成することによって形成されている。その
際、高い性能を得るためには、i層中の不純物濃度を極
力低減する必要があることは公知となっている。p層や
n層を形成するためのボロンやリンなども性能の低下を
引き起こすため、最近では、p層、i層、n層をそれぞ
れ専用の反応室で形成するいわゆる分離形成法が一般的
となっている。この分離形成法は、変換効率の高い太陽
電池を形成できる反面、各層を形成後、真空中で他の反
応室に基板を搬送するシステムを有する多室分離型成膜
装置が必要となるとともに製造工程も複雑となる。2. Description of the Related Art Non-single-crystal solar cells such as amorphous silicon solar cells are mostly doped with source gases such as silane, disilane, germane, and methane, and doped with diborane, phosphine, and arsine as necessary. Pi is decomposed in a plasma by high frequency power or the like together with gas and deposited on a desired substrate by a so-called glow discharge decomposition method.
It is formed by forming an n-junction. At that time, it is known that in order to obtain high performance, it is necessary to reduce the impurity concentration in the i-layer as much as possible. Since boron and phosphorus for forming the p-layer and the n-layer also deteriorate the performance, recently, a so-called separation formation method in which the p-layer, the i-layer, and the n-layer are formed in dedicated reaction chambers, respectively, is generally used. Has become. Although this separation and formation method can form a solar cell with high conversion efficiency, it also requires a multi-chamber separation type film forming apparatus having a system for transferring each substrate to another reaction chamber in a vacuum after forming each layer and manufacturing. The process is also complicated.
【0003】しかるに最近では、pinが一層からなる
接合太陽電池に代わって、高い変換効率と信頼性が期待
されるpin層を複数積層したタンデム型太陽電池が注
目されてきている。このタンデム型太陽電池を形成する
には、積層する層数が少なくとも2倍以上になるため分
離形成法を採用した場合、ますます複雑で高価な装置が
必要となるという問題がある(図15参照)。In recent years, however, attention has been paid to a tandem solar cell in which a plurality of pin layers, each of which is expected to have high conversion efficiency and reliability, are replaced with a junction solar cell having a single pin. In order to form this tandem type solar cell, the number of layers to be laminated is at least twice or more, so that if a separation forming method is adopted, there is a problem that an increasingly complicated and expensive apparatus is required (see FIG. 15). ).
【0004】[0004]
【発明が解決しようとする課題】本発明は、かかる従来
技術の問題点に鑑みなされたもので、高い変換効率と信
頼性を有するタンデム型太陽電池を、比較的簡易な工程
で、安価な装置を用いて作成する非単結晶タンデム型太
陽電池の製法及びそれに用いる製造装置を提供すること
を目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is intended to provide a tandem-type solar cell having high conversion efficiency and reliability in a relatively simple process and at a low cost. An object of the present invention is to provide a method of manufacturing a non-single-crystal tandem solar cell manufactured by using the method and a manufacturing apparatus used therefor.
【0005】[0005]
【課題を解決するための手段】本発明の非単結晶タンデ
ム型太陽電池の製法の第1形態は、非単結晶層を少なく
とも一層以上含む複数のpin接合を膜厚方向に直列に
接続してなる非単結晶タンデム型太陽電池の製法であっ
て、少なくとも一つのpin接合を単室型成膜装置で成
膜し、該pin接合とは別のpin接合の少なくとも一
つのi層を多室分離型成膜装置のi室で成膜することを
特徴とし、本発明の非単結晶タンデム型太陽電池の製法
の第2形態は、非晶質シリコンまたは非晶質のシリコン
とゲルマニウムまたは炭素の合金を主成分とする層のみ
から構成されている複数のpin接合を電気的に膜厚方
向に直列に接続してなる非単結晶タンデム型太陽電池の
製法であって、前記複数のpin接合のうち、少なくと
も一つのpin接合を単室型成膜装置を用いて形成する
とともに、他の少なくとも一つのpin接合における少
なくともi層を多室分離型成膜装置を用いて形成するこ
とを特徴とし、本発明の非単結晶タンデム型太陽電池の
製法の第3形態は、非晶質シリコンまたは非晶質のシリ
コンとゲルマニウムまたは炭素の合金を主成分とする層
のみから構成されている3つのpin接合を電気的に膜
厚方向に直列に接続してなる非単結晶タンデム型太陽電
池の製法であって、前記各pin接合を光入射方向より
第一のpin接合および第二のpin接合の第一のpi
n接合に隣接している層を単室型成膜装置を用いて形成
し、第二のpin接合の他の層および残りの一つのpi
n接合を多室分離型成膜装置を用いて形成することを特
徴とし、本発明の非単結晶タンデム型太陽電池の製法の
第4形態は、非晶質シリコンまたは非晶質のシリコンと
ゲルマニウムまたは炭素の合金を主成分とする層のみか
ら構成されている3つのpin接合を電気的に膜厚方向
に直列に接続してなる非単結晶タンデム型太陽電池の製
法であって、前記各pin接合を光入射方向より第一の
pin接合と第二のpin接合とを単室型成膜装置を用
いて形成し、他の一つのpin接合を多室分離型成膜装
置を用いて形成することを特徴としている。 The first aspect of the method for producing a non-single-crystal tandem solar cell of the present invention is to reduce the number of non -single-crystal layers.
Multiple pin junctions including at least one layer in series in the film thickness direction
It is a method of manufacturing connected non-single crystal tandem solar cells.
Therefore, at least one pin junction is formed by a single-chamber type film forming apparatus.
Film and at least one of the pin junctions different from the pin junction.
To form two i-layers in the i-chamber of the multi-chamber separable type
A method for producing a non-single-crystal tandem solar cell according to the present invention
The second mode is amorphous silicon or amorphous silicon
Only layers mainly containing alloys of germanium and carbon
The multiple pin junctions composed of
Of non-single-crystal tandem solar cells connected in series
Manufacturing method, wherein at least one of the plurality of pin junctions is
One pin junction is formed using a single-chamber type film forming apparatus
And at least one other pin junction
At least the i-layer can be formed using a multi-chamber separation type film forming apparatus.
Characterized in that the non-single-crystal tandem solar cell of the present invention
The third form of the manufacturing method is amorphous silicon or amorphous silicon.
Layer mainly composed of alloy of copper and germanium or carbon
Only three pin junctions consisting of
Non-single-crystal tandem solar cell connected in series in the thickness direction
A method of manufacturing a pond, wherein each of the pin junctions is
The first pi of the first pin junction and the second pin junction
Forming a layer adjacent to the n-junction using a single-chamber type film forming apparatus
And another layer of the second pin junction and the remaining one pi
The feature is that the n-junction is formed using a multi-chamber separation type film forming apparatus.
As a feature, the method of manufacturing the non-single-crystal tandem solar cell of the present invention
The fourth mode is to use amorphous silicon or amorphous silicon.
Is only the layer mainly composed of germanium or carbon alloy?
The three pin junctions composed of
Of non-single-crystal tandem solar cells connected in series
Wherein each of the pin junctions is placed first from the light incident direction.
Use a single-chamber type film forming apparatus for the pin junction and the second pin junction
And another pin junction is formed by a multi-chamber separation type film forming apparatus.
It is characterized by being formed using a device.
【0006】 また、本発明の非単結晶タンデム型太陽
電池の製造装置の第1形態は、主制御装置と、原料ガス
供給装置と、ガス流量制御装置と、搬送装置と基板保持
装置と反応装置とを有する複数の反応室と、ガス圧力調
節装置と、ガス排出装置とからなる非単結晶タンデム型
太陽電池の製造装置であって、主制御装置の制御により
一つの反応室において、pin接合が形成され、前記p
in接合とは別のpin接合の少なくとも一つのi層が
前記反応室とは別の単一の反応室にて形成されてなるこ
とを特徴とし、本発明の非単結晶タンデム型太陽電池の
製造装置の第2形態は、主制御装置と、原料ガス供給装
置と、ガス流量制御装置と、搬送装置と基板保持装置と
反応装置とを有する複数の反応室と、ガス圧力調節装置
と、ガス排出装置とからなる非単結晶タンデム型太陽電
池の製造装置であって、主制御装置の制御により少なく
とも1つの反応室において、pin・pin接合が形成
されてなることを特徴としている。本発明の非単結晶タ
ンデム型太陽電池の製造装置においては、前記反応装置
が、グロー放電分解化学蒸着装置であってもよく、また
光分解化学蒸着装置とグロー放電分解化学蒸着装置とを
組み合わせてなる装置であってもよい。 A first embodiment of a non-single-crystal tandem solar cell manufacturing apparatus according to the present invention includes a main controller, a source gas,
Supply device, gas flow control device, transfer device and substrate holding
A plurality of reaction chambers each having an apparatus and a reaction apparatus;
Non-single crystal tandem type consisting of a knot device and a gas discharge device
Solar cell manufacturing equipment, controlled by the main controller
In one reaction chamber, a pin junction is formed,
at least one i-layer of a pin junction different from the in junction
It is formed in a single reaction chamber separate from the reaction chamber.
Characterized in that the non-single-crystal tandem solar cell of the present invention
The second embodiment of the manufacturing apparatus includes a main controller, a source gas supply device,
Device, gas flow control device, transfer device and substrate holding device
A plurality of reaction chambers having a reaction device, and a gas pressure adjusting device
Non-single crystal tandem solar cell
Pond manufacturing equipment, less control by main controller
A pin / pin junction is formed in one reaction chamber
It is characterized in Rukoto such is. Non-single-crystal crystal of the present invention
In the apparatus for manufacturing an Ndem solar cell, the reaction apparatus
May be a glow discharge decomposition chemical vapor deposition apparatus,
Photodecomposition chemical vapor deposition equipment and glow discharge decomposition chemical vapor deposition equipment
It may be a combination of the devices.
【0007】[0007]
【作用及び実施例】非単結晶半導体は、結晶半導体と比
較して吸収係数が大きい反面、電子や正孔などの担体輸
送能が低く、太陽電池の光電変換効率を制限する原因と
なっている。従って、膜質の低下を招くi層への不純物
の混入により担体の収集長が低下した場合、大きな性能
低下を引き起こすことになる。一方、タンデム型太陽電
池では、複数の接合を直列に接続した構造になるように
pin各層を繰り返し成膜することになるが、光の入射
側に近いi層は通常の単一接合型太陽電池と比較してか
なり薄い膜厚設計を行うことになる。これは各接合を電
気的に直列に接続するため、各接合で発生する電流をほ
ぼ同程度にする必要があるからである。第1の接合のi
層を厚くした場合、光が第1の接合で吸収されてしまい
第2の接合で発生する電流が小さくなりすぎる。アモル
ファスシリコンのみの2層タンデム型太陽電池において
入射側から2つ目の接合のi層膜厚を400nmとした
場合、第1の接合のi層膜厚は、100nm程度が最適
膜厚となる。Functions and Examples A non-single-crystal semiconductor has a large absorption coefficient as compared with a crystalline semiconductor, but has a low ability to transport electrons and holes, which limits the photoelectric conversion efficiency of a solar cell. . Therefore, when the collection length of the carrier is reduced due to mixing of impurities into the i-layer, which causes deterioration of the film quality, the performance is greatly reduced. On the other hand, in a tandem solar cell, each pin layer is repeatedly formed so as to have a structure in which a plurality of junctions are connected in series. However, the i-layer close to the light incident side is a normal single-junction solar cell. In this case, the thickness of the film is designed to be considerably smaller than that of the film. This is because the electric currents generated at the respective junctions need to be substantially equal in order to electrically connect the respective junctions in series. I of the first junction
When the layer is thickened, light is absorbed at the first junction and the current generated at the second junction becomes too small. In a two-layer tandem solar cell using only amorphous silicon, when the i-layer thickness of the second junction from the incident side is 400 nm, the optimum thickness of the i-layer of the first junction is about 100 nm.
【0008】この傾向は3層タンデム型太陽電池の場合
も基本的には同様で、3段目の接合に用いられるi層の
膜厚と比較して1段目、2段目の接合のi層膜厚は薄く
する必要がでてくる。This tendency is basically the same in the case of a three-layer tandem type solar cell. Compared with the film thickness of the i-layer used for the third-stage junction, the i-layer of the first-stage and second-stage junctions It is necessary to reduce the thickness of the layer.
【0009】この場合、i層の内部電界は、その膜厚が
薄いため、シングル接合型太陽電池と比較して大きくな
り、i層の膜質そのものも、シングル接合型太陽電池の
i層やタンデム接合型太陽電池の光入射側から最も遠い
接合を構成するi層ほど高品質である必要はない可能性
がある。In this case, the internal electric field of the i-layer is larger than that of the single-junction solar cell due to its small thickness, and the film quality of the i-layer itself is also different from that of the i-layer or tandem junction of the single-junction solar cell. May not need to be as high in quality as the i-layer that makes up the junction furthest from the light incident side of the solar cell.
【0010】このような観点から、i層の膜厚を変えて
シングル接合型太陽電池を単室製膜、2室製膜および3
室製膜の3種類の成膜法で形成しその変換効率を調べ
た。From such a viewpoint, a single-junction solar cell is formed by changing the thickness of the i-layer to form a single-chamber solar cell, a two-chamber solar cell and a three-chamber solar cell.
They were formed by three kinds of film forming methods of chamber film formation, and their conversion efficiencies were examined.
【0011】成膜法1 SnO2付ガラス基板上をp層形成用平行平板容量結合
型グロー放電分解成膜室に設置し、ヒーター温度200℃
で加熱した後、SiH4 5sccm、 CH3 15sccm、 B2H6(1000p
pmH2) 15sccm、 H2 50sccmを導入し、反応圧力1.0tor
r、 RFパワー50mW/cm2でp層を25nm成膜した。つ
いで、残留ガスを排気した後、隣接するi層形成用平行
平板容量結合型グロー放電分解成膜室に移動し、ヒータ
ー温度200℃で SiH4 10sccmを導入し、反応圧力0.3tor
r、 RFパワー50mW/cm2でi層を500nm成膜した。
しかるのち残留ガスを排気し、隣接するn層形成用平行
平板容量結合型グロー放電分解成膜室に移動し、ヒータ
ー温度200℃で SiH4 5sccm、PH3(1000ppmH2) 100sccm、
H2 200sccmを導入し、反応圧力1.0torr、 RFパワー5
0mW/cm2でn層を30nm成膜した。その後試料を成膜
装置から取り出し、電子ビーム蒸着により1cm角のAg層
を形成し太陽電池とした。Film forming method 1 A glass substrate with SnO 2 was placed in a parallel plate capacitively coupled glow discharge decomposition film forming chamber for forming a p-layer, and the heater temperature was 200 ° C.
In after heating, SiH 4 5sccm, CH 3 15sccm , B 2 H 6 (1000p
pmH 2 ) 15 sccm and H 2 50 sccm were introduced, and the reaction pressure was 1.0 torr
r, A p layer was formed to a thickness of 25 nm with an RF power of 50 mW / cm 2 . Then, after exhausting the residual gas, the chamber was moved to an adjacent parallel-plate capacitively coupled glow discharge decomposition film formation chamber for forming an i-layer, and 10 sccm of SiH 4 was introduced at a heater temperature of 200 ° C., and a reaction pressure of 0.3 torr.
r, an i layer was formed to a thickness of 500 nm with an RF power of 50 mW / cm 2 .
After that, the residual gas was exhausted, and moved to an adjacent parallel-plate capacitively coupled glow discharge decomposition film forming chamber for forming an n-layer, at a heater temperature of 200 ° C., SiH 4 5 sccm, PH 3 (1000 ppmH 2 ) 100 sccm,
H 2 200sccm was introduced, reaction pressure 1.0torr, RF power 5
An n layer was formed to a thickness of 30 nm at 0 mW / cm 2 . Thereafter, the sample was taken out of the film forming apparatus, and a 1 cm square Ag layer was formed by electron beam evaporation to obtain a solar cell.
【0012】成膜法2 i層の膜厚を100nmとしたほかは、成膜法1と同様
にして太陽電池を成膜した。Film forming method 2 A solar cell was formed in the same manner as in film forming method 1 except that the thickness of the i-layer was 100 nm.
【0013】成膜法3 SnO2付ガラス基板上を単室平行平板容量結合型グロ
ー放電分解成膜室に設置し、ヒーター温度200℃で加熱
した後、SiH4 5sccm、 CH3 15sccm、 B2H6(1000ppmH2)
15sccm、 H2 50sccmを導入し、反応圧力1.0torr、 RF
パワー50mW/cm2でp層を25nm成膜した。続いて、残
留ガスを排気した後、同じヒーター温度でSiH4 10sccm
を導入し、反応圧力0.3torr、 RFパワー50mW/cm2でi
層を500nm成膜した。続いて、残留ガスを排気した
後、同じヒーター温度200℃で SiH4 5sccm PH3(1000ppm
H2)100sccm、 H2 200sccmを導入し、反応圧力1.0torr、
RFパワー50mW/cm2で30nm成膜した。その後、試料
を成膜装置から取り出し、電子ビーム蒸着により1cm角
のAg層を形成し太陽電池とした。Film-forming method 3 A glass substrate with SnO 2 was placed in a single-chamber parallel-plate capacitively-coupled glow discharge decomposition film-forming chamber, heated at a heater temperature of 200 ° C., and then SiH 4 5 sccm, CH 3 15 sccm, B 2 H 6 (1000ppmH 2 )
15 sccm, H 2 50 sccm was introduced, reaction pressure 1.0 torr, RF
A 25 nm p-layer was formed at a power of 50 mW / cm 2 . Subsequently, after evacuating the residual gas, SiH 4 10sccm at the same heater temperature.
At a reaction pressure of 0.3 torr and RF power of 50 mW / cm 2
A layer was formed to a thickness of 500 nm. Subsequently, after exhausting the residual gas, SiH 4 5sccm PH 3 (1000 ppm
H 2 ) 100 sccm, H 2 200 sccm were introduced, and the reaction pressure was 1.0 torr,
A 30 nm film was formed at an RF power of 50 mW / cm 2 . Thereafter, the sample was taken out of the film forming apparatus, and a 1 cm square Ag layer was formed by electron beam evaporation to obtain a solar cell.
【0014】成膜法4 i層の膜厚を100nmとしたほかは、成膜法3と同様
にして太陽電池を成膜した。Film forming method 4 A solar cell was formed in the same manner as in film forming method 3 except that the thickness of the i-layer was 100 nm.
【0015】成膜法5 SnO2付ガラス基板上をpn層形成用平行平板容量結合
型グロー放電分解成膜室に設置し、ヒーター温度200℃
で加熱した後、SiH4 5sccm、 CH3 15sccm、 B2H6(1000p
pmH2) 15sccm、 H2 50sccmを導入し、反応圧力1.0tor
r、 RFパワー50mW/cm2でp層を25nm成膜した。つ
いで、残留ガスを排気した後、隣接するi層形成用平行
平板容量結合型グロー放電分解成膜室に移動し、ヒータ
ー温度200℃で SiH4 10sccmを導入し、反応圧力0.3tor
r、 RFパワー50mW/cm2でi層を500nm成膜した。
しかるのち残留ガスを排気し、再度pn層形成用平行平
板容量結合型グロー放電分解成膜室に移動し、ヒーター
温度200℃で SiH4 5sccm、 PH3(1000ppmH2) 100sccm、
H2 200sccmを導入し、反応圧力1.0torr、 RFパワー50
mW/cm2でn層を30nm成膜した。その後試料を成膜装
置から取り出し、電子ビーム蒸着により1cm角のAg層を
形成し太陽電池とした。Film forming method 5 A glass substrate with SnO 2 was placed in a parallel plate capacitively coupled glow discharge decomposition film forming chamber for forming a pn layer, and the heater temperature was 200 ° C.
In after heating, SiH 4 5sccm, CH 3 15sccm , B 2 H 6 (1000p
pmH 2 ) 15 sccm and H 2 50 sccm were introduced, and the reaction pressure was 1.0 torr
r, A p layer was formed to a thickness of 25 nm with an RF power of 50 mW / cm 2 . Then, after exhausting the residual gas, the chamber was moved to an adjacent parallel-plate capacitively coupled glow discharge decomposition film formation chamber for forming an i-layer, and 10 sccm of SiH 4 was introduced at a heater temperature of 200 ° C., and a reaction pressure of 0.3 torr.
r, an i layer was formed to a thickness of 500 nm with an RF power of 50 mW / cm 2 .
After that, the residual gas was exhausted, and moved again to the parallel-plate capacitively coupled glow discharge decomposition film forming chamber for forming the pn layer, and at a heater temperature of 200 ° C., SiH 4 5 sccm, PH 3 (1000 ppmH 2 ) 100 sccm,
H 2 200sccm was introduced, reaction pressure 1.0torr, RF power 50
An n layer was formed to a thickness of 30 nm at mW / cm 2 . Thereafter, the sample was taken out of the film forming apparatus, and a 1 cm square Ag layer was formed by electron beam evaporation to obtain a solar cell.
【0016】成膜法6 i層の膜厚を100nmとしたほかは、成膜法5と同様
にして太陽電池を成膜した。Film forming method 6 A solar cell was formed in the same manner as in film forming method 5, except that the thickness of the i-layer was changed to 100 nm.
【0017】以上の6種類の成膜法によって形成したシ
ングル接合型太陽電池の変換効率を、AM-1、 100mW/cm2
の擬似太陽光の下で測定した。結果を表1に示す。The conversion efficiency of a single-junction solar cell formed by the above-described six types of film formation methods was AM-1, 100 mW / cm 2
Was measured under simulated sunlight. Table 1 shows the results.
【0018】[0018]
【表1】 [Table 1]
【0019】表1からわかるように、i層膜厚500n
mでは、分離型成膜装置で形成する成膜法1が、単室成
膜装置で形成する成膜法3に優っており、得られる太陽
電池の変換効率は高い。これに対して、i層膜厚100
nmでは、分離型成膜装置で形成する成膜法2と、単室
成膜装置で形成する成膜法4に大きな差はみられず、得
られる太陽電池の変換効率はほぼ同じである。As can be seen from Table 1, the i-layer thickness is 500 n
In the case of m, the film forming method 1 formed by the separation type film forming apparatus is superior to the film forming method 3 formed by the single chamber film forming apparatus, and the conversion efficiency of the obtained solar cell is high. On the other hand, an i-layer thickness of 100
In nm, there is no significant difference between the film forming method 2 formed by the separation type film forming apparatus and the film forming method 4 formed by the single chamber film forming apparatus, and the conversion efficiency of the obtained solar cell is almost the same.
【0020】タンデム型太陽電池の変換効率は各接合で
発生する電流がほぼ同じ場合には、各接合の変換効率が
反映されることになる。厳密にはi層膜厚100nmの
シングル接合型太陽電池の場合にはAg層の反射の効果
で、タンデム型太陽電池の第1の接合より変換効率は高
くなっているが、これらの結果から、タンデム型太陽電
池の光入射側に近い接合は分離型成膜装置を使用せず、
単室成膜装置で形成しても高い変換効率を有する接合が
得られ、その他の接合を分離形成装置で形成すればよい
ことがわかる。The conversion efficiency of a tandem solar cell reflects the conversion efficiency of each junction when the current generated at each junction is substantially the same. Strictly, in the case of a single-junction solar cell having an i-layer thickness of 100 nm, the conversion efficiency is higher than that of the first junction of the tandem-type solar cell due to the reflection effect of the Ag layer. From these results, The junction near the light incident side of the tandem type solar cell does not use the separation type film forming device,
It can be seen that a junction having high conversion efficiency can be obtained even when formed by a single-chamber film forming apparatus, and other junctions can be formed by a separation forming apparatus.
【0021】以下、本発明の製造装置の構成概念の例を
示す。まず、参考として2層タンデム型太陽電池を形成
するための従来の基本的な成膜室の配置を図16に示
す。この装置においては、各半導体層間の不純物の侵入
を防ぐ目的で6室の成膜装置が必要である。これに対し
て、本発明による代表的な製造装置の場合(図1)、i
層の薄い第1の接合を1室で形成するために、合計4室
で従来のものと同程度の変換効率を有する太陽電池を製
造することができる。また、p層とn層は不純物の影響
が少ないことを利用して図2に示した製造装置も可能に
なる。これらの製造装置を用いた製法のほかに、接合の
形成途中での大気中への取り出しと異なり、各接合が形
成された後の取り出しの影響が小さいことを利用してそ
れぞれの接合を独立の製造装置で形成する図3の製造装
置も本発明の製法を実施するものとして利用できる。Hereinafter, an example of a configuration concept of the manufacturing apparatus of the present invention will be described. First, for reference, FIG. 16 shows a conventional basic film-forming chamber arrangement for forming a two-layer tandem solar cell. In this apparatus, a film forming apparatus having six chambers is required to prevent intrusion of impurities between semiconductor layers. In contrast, in the case of a typical manufacturing apparatus according to the present invention (FIG. 1), i
Since the first junction with a thin layer is formed in one chamber, a solar cell having a conversion efficiency similar to that of the conventional one can be manufactured in a total of four chambers. Further, the manufacturing apparatus shown in FIG. 2 can be realized by utilizing the fact that the p layer and the n layer are less affected by impurities. In addition to the manufacturing method using these manufacturing devices, each junction is made independent by taking advantage of the small influence of the extraction after each junction is formed, unlike the extraction into the air during the formation of the junction. The manufacturing apparatus of FIG. 3 formed by the manufacturing apparatus can also be used to carry out the manufacturing method of the present invention.
【0022】また、図16の装置の改良として各成膜室
間の一部またはすべてに不純物の混入を防ぐためにさら
に中間室を設けた装置、一部の単一または類似の半導体
層を複数の成膜室で形成する装置などが用いられる場合
もあるが、本発明はこれらにも適用できる。As an improvement of the apparatus shown in FIG. 16, an apparatus is further provided with an intermediate chamber in order to prevent impurities from being mixed in a part or all between the film forming chambers. Although an apparatus formed in a film formation chamber may be used in some cases, the present invention is also applicable thereto.
【0023】3層タンデム型太陽電池の場合にも、同様
に本発明を適用できる。まず、参考として3層タンデム
型太陽電池を形成するための従来の基本的な成膜室の配
置を図17に示す。この装置においては、各半導体層間
の不純物の侵入を防ぐ目的で9室の成膜装置が必要であ
る。これに対して、本発明による代表的な製造装置の場
合(図4)、i層の薄い第1の接合を1室で形成するた
めに、7室で従来のものと同程度の変換効率を有する太
陽電池を製造することができる。また、2層タンデム型
太陽電池の場合と同様に、p層とn層の不純物の影響が
少ないことを利用して図7に示した製造装置も可能にな
る。さらに、第2の接合も単室で形成する場合には図5
や図8が、第1、第2の接合を同一の成膜室で形成する
場合には、図6、図9の装置が利用できる。これらの製
造装置を用いた製法のほかに、2層タンデム型太陽電池
の場合と同様に、接合の形成途中での大気中への取り出
しと異なり、各接合が形成された後の取り出しの影響が
小さいことを利用してそれぞれの接合を独立の製造装置
で形成する図10〜13のもの本発明の製法を実施する
ものとして利用できる。The present invention can be similarly applied to a three-layer tandem solar cell. First, for reference, FIG. 17 shows a conventional basic film-forming chamber arrangement for forming a three-layer tandem solar cell. In this apparatus, a nine-chamber film forming apparatus is required for the purpose of preventing intrusion of impurities between semiconductor layers. On the other hand, in the case of the typical manufacturing apparatus according to the present invention (FIG. 4), since the first junction having the thin i-layer is formed in one chamber, the conversion efficiency in the seven chambers is almost the same as the conventional one. Can be manufactured. Further, as in the case of the two-layer tandem solar cell, the manufacturing apparatus shown in FIG. 7 can be realized by utilizing the small influence of impurities in the p-layer and the n-layer. Further, in the case where the second joint is also formed in a single chamber, FIG.
8 and FIG. 8, when the first and second junctions are formed in the same film forming chamber, the apparatus shown in FIGS. 6 and 9 can be used. In addition to the manufacturing method using these manufacturing equipment, unlike the case of the two-layer tandem solar cell, unlike the case of taking out into the air during the formation of the junction, the influence of the taking out after each junction is formed FIGS. 10 to 13 in which each junction is formed by an independent manufacturing apparatus by utilizing the small size can be used to implement the manufacturing method of the present invention.
【0024】また、2層タンデム型太陽電池の場合と同
様に、図17の装置の改良として各成膜室間の一部また
はすべてに不純物の混入を防ぐためにさらに中間室を設
けた装置、一部の単一または類似の半導体層を複数の成
膜室で形成する装置などが用いられる場合があるが、本
発明はこれらの場合にも適用できる。As in the case of the two-layer tandem-type solar cell, as an improvement of the apparatus shown in FIG. 17, there is provided an apparatus in which an intermediate chamber is further provided in order to prevent impurities from being mixed in part or all between the film forming chambers. An apparatus in which a single or similar semiconductor layer is formed in a plurality of film formation chambers may be used, but the present invention can be applied to these cases.
【0025】次に、本発明の製造装置の一実施例につい
て図面を参照しながら詳細に説明する。Next, an embodiment of the manufacturing apparatus of the present invention will be described in detail with reference to the drawings.
【0026】図14は本発明のpin層形成装置の一実
施例の概略図である。図において、1は主制御装置、2
は原料ガス供給装置、3はガス流量制御装置、4は反応
室、5はガス圧力調節装置、6はガス排出装置を示す。FIG. 14 is a schematic view of one embodiment of the pin layer forming apparatus of the present invention. In the figure, 1 is a main controller, 2
Denotes a source gas supply device, 3 denotes a gas flow control device, 4 denotes a reaction chamber, 5 denotes a gas pressure control device, and 6 denotes a gas discharge device.
【0027】主制御装置1は、制御盤であって、高周波
用電源、圧力・温度表示装置、マスフローコントローラ
表示装置、マスフローコントローラ制御部、コンダクタ
ンス制御バブル制御部、ポンプのスイッチ、搬送機構制
御部などを備えている。これにより主制御装置1は、1
反応室における反応条件を、p層用、i層用およびn層
用に変更することができるので、1室にてpin層を成
膜する機能を有する。The main control unit 1 is a control panel, and includes a high-frequency power supply, a pressure / temperature display device, a mass flow controller display device, a mass flow controller control unit, a conductance control bubble control unit, a pump switch, a transport mechanism control unit, and the like. It has. As a result, main controller 1
Since the reaction conditions in the reaction chamber can be changed for a p-layer, an i-layer, and an n-layer, a function of forming a pin layer in one chamber is provided.
【0028】なお、主制御装置1における各制御部は、
マイコン等を用いて構成してもよく、ワイヤードロジッ
ク回路により構成してもよい。Each control unit in the main control unit 1
It may be configured using a microcomputer or the like, or may be configured using a wired logic circuit.
【0029】原料ガス供給装置2は、ガスボンベからな
り、使用ガスの種類に見合う分だけ設置されている。The raw material gas supply device 2 is composed of a gas cylinder, and is provided in an amount corresponding to the type of gas used.
【0030】ガス流量制御装置3は、マスフローコント
ローラであって、使用ガスの種類に見合う分だけ配設さ
れている。The gas flow controller 3 is a mass flow controller, and is provided in an amount corresponding to the type of gas used.
【0031】反応室4は、本体41、基板保持装置4
2、対向電極43、周波数整合装置44および搬送装置
45からなる反応装置とから構成されている。これによ
り、反応室4内において、いわゆるグロー放電分解化学
蒸着を行うことができる。The reaction chamber 4 includes a main body 41 and a substrate holding device 4.
2, a reaction device including a counter electrode 43, a frequency matching device 44, and a transfer device 45. Thereby, so-called glow discharge decomposition chemical vapor deposition can be performed in the reaction chamber 4.
【0032】またこれら原料ガス供給装置2、ガス流量
制御装置3および反応室4は、配管により相互に接続さ
れている。これにより、原料ガス供給装置2からの原料
ガスは、ガス流量制御装置3を介して反応室4に供給さ
れることができる。The raw material gas supply device 2, gas flow control device 3, and reaction chamber 4 are connected to each other by piping. As a result, the source gas from the source gas supply device 2 can be supplied to the reaction chamber 4 via the gas flow control device 3.
【0033】これらの搬送装置45および基板保持装置
42は、従来より多室成膜法に用いられているものと同
様であるので、その構成の詳細な説明は省略する。Since the transfer device 45 and the substrate holding device 42 are the same as those conventionally used in the multi-chamber film forming method, a detailed description of their configurations will be omitted.
【0034】反応室4には、さらに所望に応じて光CV
D装置を付加してもよい。光CVD装置を用いる場合に
は、対向電極43に代って本体41には反応光照射用の
窓が形成されている。The reaction chamber 4 is further provided with a light CV as required.
A device D may be added. In the case of using an optical CVD apparatus, a window for irradiating reaction light is formed in the main body 41 instead of the counter electrode 43.
【0035】反応室4は、また配管を介してガス圧力調
節装置5に接続されている。このガス圧力調節装置5
は、コンダクタンス制御バブルから構成されている。The reaction chamber 4 is connected to a gas pressure controller 5 via a pipe. This gas pressure adjusting device 5
Consists of a conductance control bubble.
【0036】このガス圧力調節装置5のガス排気側は、
ガス排出装置6に接続されている。このガス排出装置6
は、ロータリポンプと、タ−ボ分子ポンプ、クライオポ
ンプや拡散ポンプとの組み合わせから構成されている。The gas exhaust side of the gas pressure adjusting device 5
It is connected to a gas discharge device 6. This gas discharge device 6
Is composed of a combination of a rotary pump, a turbo molecular pump, a cryopump and a diffusion pump.
【0037】本発明のpin層形成装置は、このように
構成されているので、一室にてpin層を形成すること
ができる。一室にてpin層を形成する場合は、当然の
ことながら各層形成に際し、反応室4内を充分に排気し
ておく必要がある。Since the pin layer forming apparatus of the present invention is configured as described above, the pin layer can be formed in one room. When a pin layer is formed in one chamber, it is necessary to sufficiently exhaust the inside of the reaction chamber 4 when forming each layer.
【0038】なお、当然のことながらこのpin層形成
装置は、原料ガスの供給を調節することにより、p層、
i層、n層の単独の製膜装置として、あるいはpinp
層製膜装置などとしても使用することができる。It should be noted that this pin layer forming apparatus adjusts the supply of the source gas so that the p layer,
As a single film forming device of i-layer and n-layer, or as pinp
It can also be used as a layer forming apparatus.
【0039】また、p層、i層、n層の単独の製膜装置
としては、従来の製膜装置を用いることができる。As a single film forming apparatus for the p-layer, the i-layer, and the n-layer, a conventional film-forming apparatus can be used.
【0040】以下、本発明の効果について、より具体的
な実施例をもとにさらに詳しく説明する。Hereinafter, the effects of the present invention will be described in more detail based on more specific examples.
【0041】実施例 SnO2付ガラス基板上を単室平行平板容量結合型グロ
ー放電分解成膜室に設置し、ヒーター温度200℃で加熱
した後、SiH4 5sccm、 CH3 15sccm、 B2H6(1000ppmH2)
15sccm、 H2 50sccmを導入し、反応圧力1.0torr、 RF
パワー50mW/cm2でp層を15nm成膜した。続いて、残
留ガスを排気した後、同じヒーター温度でSiH4 10sccm
を導入し、反応圧力0.3torr、 RFパワー50mW/cm2でi
層を100nm成膜した。続いて、残留ガスを排気した
後、同じヒーター温度200℃で SiH4 5sccm、 PH3(1000p
pmH2) 100sccm、 H2 200sccmを導入し、反応圧力1.0tor
r、RFパワー50mW/cm2でn層を20nm成膜し第1の
接合を形成した。しかるのち一旦、試料を成膜装置から
取り出し、今度は、分離形成型成膜装置のp層形成用平
行平板容量結合型グロー放電分解成膜室に設置し、ヒー
ター温度200℃で加熱した後、SiH4 5sccm、 CH3 15scc
m、 B2H6(1000ppmH2) 15sccm、 H2 50sccmを導入し、反
応圧力1.0torr、 RFパワー50mW/cm2でp層を15nm
成膜した。続いて、残留ガスを排気した後、隣接するi
層形成用平行平板容量結合型グロー放電分解成膜室に移
動し、ヒーター温度200℃でSiH4 10sccmを導入し、反応
圧力0.3torr、 RFパワー50mW/cm2でi層を400nm
成膜した。続いて、残留ガスを排気した後、隣接するn
層形成用平行平板容量結合型グロー放電分解成膜室に移
動し、ヒーター温度200℃で SiH4 5sccm、 PH3(1000ppm
H2) 100sccm、 H2 200sccmを導入し、反応圧力1.0tor
r、 RFパワー50mW/cm2でn層を30nm成膜し第2の
接合を形成した。その後、試料を成膜装置から取り出
し、電子ビーム蒸着により1cm角のAg層を形成し太陽電
池とした。この成膜法によって形成した2層タンデム型
太陽電池の変換効率を、AM-1、 100mW/cm2の擬似太陽光
の下で測定した。結果を表2に示す。EXAMPLE A glass substrate with SnO 2 was placed in a single-chamber parallel-plate capacitively coupled glow discharge decomposition film-forming chamber, heated at a heater temperature of 200 ° C., and then SiH 4 5 sccm, CH 3 15 sccm, B 2 H 6 (1000ppmH 2 )
15 sccm, H 2 50 sccm was introduced, reaction pressure 1.0 torr, RF
A 15 nm p-layer was formed with a power of 50 mW / cm 2 . Subsequently, after evacuating the residual gas, SiH 4 10sccm at the same heater temperature.
At a reaction pressure of 0.3 torr and RF power of 50 mW / cm 2
A layer was formed to a thickness of 100 nm. Then, after exhausting the residual gas, SiH 4 5sccm, PH 3 (1000p
pmH 2 ) 100 sccm, H 2 200 sccm were introduced, and the reaction pressure was 1.0 torr
r, an n-layer having a thickness of 20 nm was formed at an RF power of 50 mW / cm 2 to form a first junction. Thereafter, the sample was once taken out of the film forming apparatus, and then installed in a parallel-plate capacitively coupled glow discharge decomposition film forming chamber for forming a p-layer of the separation forming type film forming apparatus, and heated at a heater temperature of 200 ° C. SiH 4 5sccm, CH 3 15scc
m, B 2 H 6 (1000 ppm H 2 ) 15 sccm, H 2 50 sccm are introduced, the reaction pressure is 1.0 torr, the RF power is 50 mW / cm 2 , and the p layer is 15 nm.
A film was formed. Subsequently, after exhausting the residual gas, the adjacent i
Move to parallel plate capacitively coupled glow discharge decomposition film formation chamber for layer formation, introduce SiH 4 10sccm at heater temperature 200 ° C, react pressure 0.3 torr, RF power 50mW / cm 2 , i-layer 400nm
A film was formed. Subsequently, after exhausting the residual gas, the adjacent n
Go for the layer forming a parallel plate capacitively coupled glow discharge decomposition deposition chamber, SiH 4 5sccm, PH 3 at heater temperature 200 ° C. (1000 ppm
H 2 ) 100 sccm and H 2 200 sccm were introduced, and the reaction pressure was 1.0 torr.
r, an n layer was formed to a thickness of 30 nm with an RF power of 50 mW / cm 2 to form a second junction. Thereafter, the sample was taken out of the film forming apparatus, and a 1 cm square Ag layer was formed by electron beam evaporation to obtain a solar cell. The conversion efficiency of the two-layer tandem solar cell formed by this film forming method was measured under simulated sunlight of 100 mW / cm 2 at AM-1. Table 2 shows the results.
【0042】比較例1 SnO2付ガラス基板上をp層形成用平行平板容量結合
型グロー放電分解成膜室に設置し、ヒーター温度200℃
で加熱した後、SiH4 5sccm、 CH3 15sccm、 B2H6(1000p
pmH2) 15sccm、 H2 50sccmを導入し、反応圧力1.0tor
r、 RFパワー50mW/cm2でp層を15nm成膜した。続
いて、残留ガスを排気した後、隣接するi層形成用平行
平板容量結合型グロー放電分解成膜室に移動し、ヒータ
ー温度200℃でSiH4 10sccmを導入し、反応圧力0.3tor
r、 RFパワー50mW/cm2でi層を100nm成膜した。
続いて、残留ガスを排気した後、隣接するn層形成用平
行平板容量結合型グロー放電分解成膜室に移動し、ヒー
ター温度200℃で SiH4 5sccm、 PH3(1000ppmH2) 100scc
m、 H2 200sccmを導入し、反応圧力1.0torr、 RFパワ
ー50mW/cm2でn層を20nm成膜し第1の接合を形成し
た。しかるのち、試料を成膜装置から取り出し、再度、
同じp層形成用平行平板容量結合型グロー放電分解成膜
室に試料を設置し、ヒーター温度200℃で加熱した後、
i層の膜厚を400nmとしたほかは、第1の接合を形
成したのと同様にして第2の接合を形成した。その後、
試料を成膜装置から取り出し、電子ビーム蒸着により1
cm角のAg層を形成し太陽電池とした。この成膜法によっ
て形成した2層タンデム型太陽電池の変換効率を、実施
例と同様にAM-1、 100mW/cm2の擬似太陽光の下で測定し
た。結果を表2に示す。Comparative Example 1 A glass substrate with SnO 2 was placed in a parallel plate capacitively coupled glow discharge decomposition film forming chamber for forming a p-layer, and the heater temperature was 200 ° C.
In after heating, SiH 4 5sccm, CH 3 15sccm , B 2 H 6 (1000p
pmH 2 ) 15 sccm and H 2 50 sccm were introduced, and the reaction pressure was 1.0 torr
r, a 15 nm p-layer was formed at an RF power of 50 mW / cm 2 . Subsequently, after the residual gas was exhausted, the film was moved to an adjacent parallel plate capacitively coupled glow discharge decomposition film formation chamber for forming an i-layer, and SiH 4 10 sccm was introduced at a heater temperature of 200 ° C., and the reaction pressure was 0.3 torr.
r, an i-layer was formed to a thickness of 100 nm with an RF power of 50 mW / cm 2 .
Subsequently, after exhausting the residual gas, the chamber was moved to an adjacent parallel-plate capacitively coupled glow discharge decomposition film forming chamber for forming an n-layer, and heated at a heater temperature of 200 ° C. at 5 sccm for SiH 4 and 100 scc for PH 3 (1000 ppmH 2 ).
m, 200 sccm of H 2 were introduced, an n layer was formed to a thickness of 20 nm at a reaction pressure of 1.0 torr and an RF power of 50 mW / cm 2 to form a first junction. After that, remove the sample from the film forming apparatus and again
After placing the sample in the same parallel-plate capacitively coupled glow discharge decomposition film formation chamber for p-layer formation and heating at a heater temperature of 200 ° C.,
A second junction was formed in the same manner as the first junction except that the thickness of the i-layer was 400 nm. afterwards,
The sample was taken out of the film forming apparatus, and 1
A solar cell was formed by forming a cm-square Ag layer. The conversion efficiency of the two-layer tandem solar cell formed by this film forming method was measured under simulated sunlight of 100 mW / cm 2 at AM-1 in the same manner as in the example. Table 2 shows the results.
【0043】比較例2 SnO2付ガラス基板上を単室平行平板容量結合型グロ
ー放電分解成膜室に設置し、ヒーター温度200℃で加熱
した後、SiH4 5sccm、 CH3 15sccm、 B2H6(1000ppmH2)
15sccm、 H2 50sccmを導入し、反応圧力1.0torr、 RF
パワー50mW/cm2でp層を15nm成膜した。ついで、残
留ガスを排気した後、同じヒーター温度でSiH4 10sccm
を導入し、反応圧力0.3torr、 RFパワー50mW/cm2でi
層を100nm成膜した。ついで、残留ガスを排気した
後、同じヒーター温度200℃で SiH4 5sccm、 PH3(1000p
pmH2) 100sccm、 H2 200sccmを導入し、反応圧力1.0tor
r、RFパワー50mW/cm2でn層を20nm成膜し第1の
接合を形成した。しかるのち一旦、試料を成膜装置から
取り出し、再度、同じ成膜室に試料を設置し、i層の膜
厚を400nmとしたほかは第1の接合と同様にして、
第2の接合を形成した。その後、試料を成膜装置から取
り出し、実施例と同様に、電子ビーム蒸着により1cm角
のAg層を形成し太陽電池とした。この成膜法によって形
成した2層タンデム型太陽電池の変換効率を、AM-1、 1
00mW/cm2の擬似太陽光の下で測定した。結果を表2に示
す。COMPARATIVE EXAMPLE 2 A glass substrate with SnO 2 was placed in a single-chamber parallel-plate capacitively coupled glow discharge decomposition film forming chamber, heated at a heater temperature of 200 ° C., and then SiH 4 5 sccm, CH 3 15 sccm, B 2 H 6 (1000ppmH 2 )
15 sccm, H 2 50 sccm was introduced, reaction pressure 1.0 torr, RF
A 15 nm p-layer was formed with a power of 50 mW / cm 2 . Then, after exhausting the residual gas, at the same heater temperature, SiH 4 10 sccm
At a reaction pressure of 0.3 torr and RF power of 50 mW / cm 2
A layer was formed to a thickness of 100 nm. Then, after exhausting the residual gas, SiH 4 5sccm, PH 3 (1000p
pmH 2 ) 100 sccm, H 2 200 sccm were introduced, and the reaction pressure was 1.0 torr
r, an n-layer having a thickness of 20 nm was formed at an RF power of 50 mW / cm 2 to form a first junction. Thereafter, the sample was once taken out of the film forming apparatus, and the sample was set again in the same film forming chamber, and the thickness of the i-layer was changed to 400 nm in the same manner as in the first bonding.
A second bond was formed. Thereafter, the sample was taken out of the film forming apparatus, and a 1 cm square Ag layer was formed by electron beam evaporation to form a solar cell in the same manner as in the example. The conversion efficiency of the two-layer tandem solar cell formed by this film formation method was AM-1, 1
The measurement was performed under simulated sunlight of 00 mW / cm 2 . Table 2 shows the results.
【0043】[0043]
【表2】 [Table 2]
【0044】表2より明らかなように、第1の接合を単
室型成膜装置、第2の接合を3室分離型成膜装置で形成
した実施例の変換効率は、両接合を3室分離型成膜装置
で形成した比較例1とほぼ同じ値となっている。これに
対して、両接合を単室型成膜装置で形成した比較例2の
変換効率は比較例1や実施例の変換効率よりも10%以
上低い値となっている。As is clear from Table 2, the conversion efficiency of the embodiment in which the first junction was formed by a single-chamber film forming apparatus and the second junction was formed by a three-chamber separation type film forming apparatus was as follows. The values are almost the same as those of Comparative Example 1 formed by the separation type film forming apparatus. On the other hand, the conversion efficiency of Comparative Example 2 in which both junctions were formed by a single-chamber type film forming apparatus is lower than the conversion efficiency of Comparative Example 1 and Example by 10% or more.
【0045】[0045]
【発明の効果】このように、本発明の製法は、全ての半
導体層を、分離した成膜室で形成することなく、高い性
能を有する非単結晶タンデム型太陽電池を製造でき、ま
た本発明による製造装置は、全てを分離形成する従来技
術による製造装置よりもきわめて安価に非単結晶タンデ
ム型太陽電池を製造できる。As described above, according to the manufacturing method of the present invention, a non-single-crystal tandem solar cell having high performance can be manufactured without forming all the semiconductor layers in a separate film forming chamber. Makes it possible to manufacture a non-single-crystal tandem solar cell at a much lower cost than a manufacturing apparatus according to the prior art in which all are separated and formed.
【図1】2層タンデム型太陽電池の4室成膜法の一実施
例の概念図である。FIG. 1 is a conceptual diagram of one embodiment of a four-chamber film forming method for a two-layer tandem solar cell.
【図2】2層タンデム型太陽電池の4室成膜法の他の実
施例の概念図である。FIG. 2 is a conceptual diagram of another embodiment of a four-chamber film forming method for a two-layer tandem solar cell.
【図3】2層タンデム型太陽電池の3室成膜法の一実施
例の概念図である。FIG. 3 is a conceptual diagram of one embodiment of a three-chamber film forming method for a two-layer tandem solar cell.
【図4】3層タンデム型太陽電池の7室成膜法の一実施
例の概念図である。FIG. 4 is a conceptual diagram of one embodiment of a seven-chamber film forming method for a three-layer tandem solar cell.
【図5】3層タンデム型太陽電池の5室成膜法の一実施
例の概念図である。FIG. 5 is a conceptual view of one embodiment of a five-chamber film forming method for a three-layer tandem solar cell.
【図6】3層タンデム型太陽電池の4室成膜法の一実施
例の概念図である。FIG. 6 is a conceptual diagram of one embodiment of a four-chamber film forming method for a three-layer tandem solar cell.
【図7】3層タンデム型太陽電池の6室成膜法の一実施
例の概念図である。FIG. 7 is a conceptual diagram of one embodiment of a six-chamber film forming method for a three-layer tandem solar cell.
【図8】3層タンデム型太陽電池の4室成膜法の一実施
例の概念図である。FIG. 8 is a conceptual diagram of one embodiment of a four-chamber film forming method for a three-layer tandem solar cell.
【図9】3層タンデム型太陽電池の3室成膜法の一実施
例の概念図である。FIG. 9 is a conceptual diagram of an embodiment of a three-chamber film forming method for a three-layer tandem solar cell.
【図10】3層タンデム型太陽電池の7室成膜法の他の
実施例の概念図である。FIG. 10 is a conceptual diagram of another embodiment of a seven-chamber film forming method for a three-layer tandem solar cell.
【図11】3層タンデム型太陽電池の5室成膜法の他の
実施例の概念図である。FIG. 11 is a conceptual diagram of another embodiment of a five-chamber film forming method for a three-layer tandem solar cell.
【図12】3層タンデム型太陽電池の4室成膜法の他の
実施例の概念図である。FIG. 12 is a conceptual diagram of another embodiment of a four-chamber film forming method for a three-layer tandem solar cell.
【図13】3層タンデム型太陽電池の4室成膜法のさら
に他の実施例の概念図である。FIG. 13 is a conceptual diagram of still another embodiment of a four-chamber film forming method for a three-layer tandem solar cell.
【図14】本発明のpin層形成装置の一実施例の概略
図である。FIG. 14 is a schematic view of one embodiment of a pin layer forming apparatus of the present invention.
【図15】従来のタンデム型太陽電池の製造装置の概略
図である。FIG. 15 is a schematic view of a conventional tandem solar cell manufacturing apparatus.
【図16】2層タンデム型太陽電池の従来の成膜法の概
念図である。FIG. 16 is a conceptual diagram of a conventional film forming method for a two-layer tandem solar cell.
【図17】3層タンデム型太陽電池の従来の成膜法の概
念図である。FIG. 17 is a conceptual diagram of a conventional film forming method for a three-layer tandem solar cell.
1 主制御装置 2 原料ガス供給装置 3 ガス流量制御装置 4 反応室 5 ガス圧力調節装置 6 ガス排出装置 DESCRIPTION OF SYMBOLS 1 Main control device 2 Raw material gas supply device 3 Gas flow control device 4 Reaction chamber 5 Gas pressure control device 6 Gas discharge device
フロントページの続き (56)参考文献 特開 昭59−61078(JP,A) 特開 昭59−214221(JP,A) 特開 平4−242979(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 H01L 21/205 Continuation of the front page (56) References JP-A-59-61078 (JP, A) JP-A-59-214221 (JP, A) JP-A-4-242979 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H01L 31/04-31/078 H01L 21/205
Claims (8)
数のpin接合を膜厚方向に直列に接続してなる非単結
晶タンデム型太陽電池の製法であって、少なくとも一つ
のpin接合を単室型成膜装置で成膜し、該pin接合
とは別のpin接合の少なくとも一つのi層を多室分離
型成膜装置のi室で成膜することを特徴とする非単結晶
タンデム型太陽電池の製法。1. A method of manufacturing a non-single-crystal tandem solar cell comprising a plurality of pin junctions including at least one non-single-crystal layer connected in series in a film thickness direction, wherein at least one
The pin junction was formed by single-chamber deposition apparatus, the pin junction
A method for producing a non-single-crystal tandem solar cell, characterized in that at least one i-layer having a different pin junction is formed in an i-room of a multi-chamber separated film-forming apparatus.
とゲルマニウムまたは炭素の合金を主成分とする層のみ
から構成されている複数のpin接合を電気的に膜厚方
向に直列に接続してなる非単結晶タンデム型太陽電池の
製法であって、前記複数のpin接合のうち、少なくと
も一つのpin接合を単室型成膜装置を用いて形成する
とともに、他の少なくとも一つのpin接合における少
なくともi層を多室分離型成膜装置を用いて形成するこ
とを特徴とする非単結晶タンデム型太陽電池の製法。2. A plurality of pin junctions composed of only a layer mainly composed of amorphous silicon or an alloy of amorphous silicon and germanium or carbon are electrically connected in series in a film thickness direction. A method for producing a non-single-crystal tandem solar cell comprising the steps of:
One pin junction is formed using a single-chamber type film forming apparatus
And at least one other pin junction
A method for producing a non-single-crystal tandem solar cell, characterized in that at least the i-layer is formed using a multi-chamber separation type film forming apparatus.
とゲルマニウムまたは炭素の合金を主成分とする層のみ
から構成されている3つのpin接合を電気的に膜厚方
向に直列に接続してなる非単結晶タンデム型太陽電池の
製法であって、前記各pin接合を光入射方向より第一
のpin接合および第二のpin接合の第一のpin接
合に隣接している層を単室型成膜装置を用いて形成し、
第二のpin接合の他の層および残りの一つのpin接
合を多室分離型成膜装置を用いて形成することを特徴と
する非単結晶タンデム型太陽電池の製法。3. A three- pin junction composed of only a layer mainly containing amorphous silicon or an amorphous silicon and an alloy of germanium or carbon is electrically connected in series in a film thickness direction. A method for producing a non-single-crystal tandem solar cell, comprising: forming a first pin junction of a first pin junction and a first pin junction of a second pin junction from a light incident direction;
In this case, adjacent layers are formed using a single-chamber film forming apparatus ,
A method for producing a non-single-crystal tandem solar cell, wherein another layer of the second pin junction and the remaining one pin junction are formed by using a multi-chamber separation type film forming apparatus.
とゲルマニウムまたは炭素の合金を主成分とする層のみ
から構成されている3つのpin接合を電気的に膜厚方
向に直列に接続してなる非単結晶タンデム型太陽電池の
製法であって、前記各pin接合を光入射方向より第一
のpin接合と第二のpin接合とを単室型成膜装置を
用いて形成し、他の一つのpin接合を多室分離型成膜
装置を用いて形成することを特徴とする非単結晶タンデ
ム型太陽電池の製法。4. A three- pin junction comprising only a layer mainly composed of amorphous silicon or amorphous silicon and an alloy of germanium or carbon is electrically connected in series in a film thickness direction. A non-single-crystal tandem solar cell manufacturing method, wherein each of the pin junctions is formed by using a single-chamber film forming apparatus to form a first pin junction and a second pin junction from a light incident direction. A method for producing a non-single-crystal tandem solar cell, wherein one pin junction is formed using a multi-chamber separated type film forming apparatus.
ス流量制御装置と、搬送装置と基板保持装置と反応装置
とを有する複数の反応室と、ガス圧力調節装置と、ガス
排出装置とからなる非単結晶タンデム型太陽電池の製造
装置であって、主制御装置の制御により一つの反応室に
おいて、pin接合が形成され、前記pin接合とは別
のpin接合の少なくとも一つのi層が前記反応室とは
別の単一の反応室にて形成されてなることを特徴とする
非単結晶タンデム型太陽電池の製造装置。5. A main control unit, a source gas supply unit, a gas flow control unit, a plurality of reaction chambers having a transfer unit, a substrate holding unit, and a reaction unit, a gas pressure control unit, a gas discharge unit, A pin junction is formed in one reaction chamber under the control of a main controller , and is different from the pin junction.
At least one i-layer of the pin junction is
Another single non-single-crystal tandem solar cell manufacturing apparatus is formed, characterized in Rukoto such by at reaction chamber.
ス流量制御装置と、搬送装置と基板保持装置と反応装置Flow control device, transfer device, substrate holding device, and reaction device
とを有する複数の反応室と、ガス圧力調節装置と、ガスA plurality of reaction chambers, a gas pressure regulator, and a gas
排出装置とからなる非単結晶タンデム型太陽電池の製造Manufacture of non-single-crystal tandem solar cell with discharge device
装置であって、主制御装置の制御により少なくとも1つAt least one device controlled by a main controller
の反応室において、pin・pin接合が形成されてなNo pin-pin junction was formed in the reaction chamber
ることを特徴とする非単結晶タンデム型太陽電池の製造Of non-single-crystal tandem solar cell
装置。apparatus.
着装置であることを特徴とする請求項5または6記載の
非単結晶タンデム型太陽電池の製造装置。7. An apparatus for manufacturing a non-single-crystal tandem solar cell according to claim 5 , wherein said reaction apparatus is a glow discharge decomposition chemical vapor deposition apparatus.
グロー放電分解化学蒸着装置とを組み合わせてなる装置
であることを特徴とする請求項5または6記載の非単結
晶タンデム型太陽電池の製造装置。8. The non-single-crystal tandem solar cell according to claim 5 , wherein the reaction device is a device obtained by combining a photolytic chemical vapor deposition device and a glow discharge chemical vapor deposition chemical vapor deposition device. manufacturing device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3254728A JP3068276B2 (en) | 1991-09-04 | 1991-09-04 | Manufacturing method of non-single crystal tandem solar cell and manufacturing apparatus used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3254728A JP3068276B2 (en) | 1991-09-04 | 1991-09-04 | Manufacturing method of non-single crystal tandem solar cell and manufacturing apparatus used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0563223A JPH0563223A (en) | 1993-03-12 |
JP3068276B2 true JP3068276B2 (en) | 2000-07-24 |
Family
ID=17269031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3254728A Expired - Fee Related JP3068276B2 (en) | 1991-09-04 | 1991-09-04 | Manufacturing method of non-single crystal tandem solar cell and manufacturing apparatus used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3068276B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995026571A1 (en) * | 1994-03-25 | 1995-10-05 | Amoco/Enron Solar | Stabilized amorphous silicon and devices containing same |
JP2000306978A (en) | 1999-02-15 | 2000-11-02 | Kokusai Electric Co Ltd | Substrate processing apparatus, substrate transfer apparatus, and substrate processing method |
JP2010129971A (en) * | 2008-12-01 | 2010-06-10 | Sharp Corp | Silicon-based thin film photoelectric conversion device and method of manufacturing same |
-
1991
- 1991-09-04 JP JP3254728A patent/JP3068276B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0563223A (en) | 1993-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3589581B2 (en) | Manufacturing method of tandem type thin film photoelectric conversion device | |
US20070023081A1 (en) | Compositionally-graded photovoltaic device and fabrication method, and related articles | |
US20080245414A1 (en) | Methods for forming a photovoltaic device with low contact resistance | |
US6979589B2 (en) | Silicon-based thin-film photoelectric conversion device and method of manufacturing thereof | |
US20090101201A1 (en) | Nip-nip thin-film photovoltaic structure | |
CN102447013A (en) | Thin-film solar cell fabrication process, deposition method for solar cell precursor layer stack, and solar cell precursor layer stack | |
KR101321813B1 (en) | Photoelectric conversion device manufacturing method, photoelectric conversion device, and photoelectric conversion device manufacturing system | |
JPS6150378A (en) | Manufacturing method of amorphous solar cells | |
JP2000138384A (en) | Amorphous semiconductor device and its manufacture | |
CN101845620B (en) | Pulse heating multi-box type chemical vapor deposition p-i-n film coating device | |
JP3068276B2 (en) | Manufacturing method of non-single crystal tandem solar cell and manufacturing apparatus used therefor | |
JP3664875B2 (en) | Method for manufacturing photovoltaic device | |
JP2009027160A (en) | Silicon multi-cell solar cell and method for manufacturing the same | |
JP3070309B2 (en) | Manufacturing method of thin film solar cell | |
JPH08195348A (en) | Semiconductor device manufacturing equipment | |
JP2007180364A (en) | Optoelectric transducer, its manufacturing method and device for forming thin-film | |
JP2815711B2 (en) | Thin-film semiconductor device manufacturing equipment | |
JP2757896B2 (en) | Photovoltaic device | |
JPH0225078A (en) | Photovoltaic device and manufacture thereof | |
JPS59161880A (en) | Manufacture of amorphous solar battery | |
JPH11204814A (en) | Manufacture of silicon type thin film photoelectric converter | |
JPH1174550A (en) | Production of amorphous silicon solar cell | |
JPH0714077B2 (en) | Method of manufacturing thin film solar cell | |
WO2010023948A1 (en) | Photoelectric conversion device manufacturing method, photoelectric conversion device, and photoelectric conversion device manufacturing system | |
JPH0673348B2 (en) | Cleaning method for plasma processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000425 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080519 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090519 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090519 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |