JP3062753B1 - Method for producing bulk single crystal of fluoride - Google Patents
Method for producing bulk single crystal of fluorideInfo
- Publication number
- JP3062753B1 JP3062753B1 JP11167116A JP16711699A JP3062753B1 JP 3062753 B1 JP3062753 B1 JP 3062753B1 JP 11167116 A JP11167116 A JP 11167116A JP 16711699 A JP16711699 A JP 16711699A JP 3062753 B1 JP3062753 B1 JP 3062753B1
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- fluoride
- melt
- impurities
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
【要約】
【課題】 従来方法よりも簡単に、純度が低い(例え
ば、99.9重量%)級のフッ化物粉末原料を使って、
高品質のフッ化物単結晶を製造することを可能とする製
造方法を提供する。
【解決手段】 10-6torr以上の高真空を保ちなが
ら、粉末フッ化物原料を室温から500℃以上で所定の
温度以下の範囲内の温度まで加熱し、炉内において原料
中に含まれる水分・酸素を除去し、原料を融解後、作製
炉内にフロン系ガスを導入し、 融液又は溶液表面に発
生する不純物および融液又は溶液内に存在する不純物
と、作製炉内のフロン系ガスとを、不純物を除去するのに
十分な時間反応させることによって不純物を除去し、得
られた融液あるいは溶液から融液成長法によってフッ化
物バルク単結晶を製造することを特徴とするフッ化物バ
ルク単結晶の製造方法。Abstract: PROBLEM TO BE SOLVED: To use a fluoride powder raw material of lower purity (for example, 99.9% by weight) than a conventional method,
Provided is a manufacturing method capable of manufacturing a high-quality fluoride single crystal. SOLUTION: While maintaining a high vacuum of 10 -6 torr or more, a powdery fluoride raw material is heated from room temperature to a temperature within a range of 500 ° C. or more and a predetermined temperature or less, and the water contained in the raw material After removing oxygen and melting the raw materials, a fluorocarbon gas is introduced into the production furnace, and impurities generated on the surface of the melt or the solution and impurities present in the melt or solution, and the fluorocarbon gas in the production furnace, Is reacted for a time sufficient to remove the impurities, thereby removing the impurities, and producing a bulk fluoride single crystal from the resulting melt or solution by a melt growth method. Method for producing crystals.
Description
【発明の属する技術分野】本発明は、フッ化物バルク単
結晶の製造方法に関する。本発明の製造方法により、レ
ーザー用の高品質フッ化物単結晶を製造することが可能
となる。[0001] The present invention relates to a method for producing a bulk single crystal of fluoride. According to the production method of the present invention, a high-quality fluoride single crystal for laser can be produced.
【0002】[0002]
【従来の技術】フッ化物系単結晶材料は、その広範囲に
わたる高い透過性、小さな結晶場、屈折率の温度係数が
負であることなどの特性から、レーザー用結晶として大
きな期待を集めている。しかしながら,フッ化物単結晶
は作製雰囲気、作製温度、原料の純度や組成の制御等、
作製を困難にする要因が多数存在する。YLiF4(YLF)単
結晶は紫外線領域や赤外線領域でのレーザー発振におい
て用いられる優れた素材の一つであるが、その作製条件
は明確ではなかった。2. Description of the Related Art Fluoride-based single crystal materials have attracted great expectations as laser crystals because of their properties such as high transmittance over a wide range, a small crystal field, and a negative temperature coefficient of refractive index. However, the fluoride single crystal has a manufacturing atmosphere, a manufacturing temperature, control of the purity and composition of the raw materials, etc.
There are many factors that make fabrication difficult. YLiF 4 (YLF) single crystal is one of the excellent materials used for laser oscillation in the ultraviolet and infrared regions, but the conditions for its production were not clear.
【0003】従来、フッ化物バルク単結晶を製造する際
には、純度が99.999重量%(9が5つ並ぶので
“5N”と呼ぶ。以下“3N”においても同じ)以上の
紛末原料を用いるか、或いは水分量が1ppm以下の粉
末原料を用いなければならないとされていた。このた
め、出発原料をゾーン精製したり、あるいは乾燥フッ化
水素(以下にHFとする)気流中で水分等を除去するこ
とより高純度化することによってフッ化物バルク単結晶
を製造する方法、或いは乾燥HF中でフッ化物バルク単
結晶を製造する方法が提案されている。Conventionally, in producing a fluoride bulk single crystal, a powdery raw material having a purity of 99.999% by weight (hereinafter referred to as "5N" because five are arranged in 9; the same applies to "3N" hereinafter). , Or a powder raw material having a water content of 1 ppm or less. For this reason, a method for producing a bulk fluoride single crystal by zone-purifying the starting material or purifying the starting material by removing water and the like in a stream of dry hydrogen fluoride (hereinafter referred to as HF), or A method for producing a bulk fluoride single crystal in dry HF has been proposed.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、これら
の方法は高純度のフッ化物粉末原料を使用することを必
要としたり、煩雑な処理工程を必要とする。そこで、従
来技術の方法よりも簡単で、かつ例えば、純度3N(9
9.9重量%)級程度のフッ化物粉末原料を使っても、
高品質な単結晶を製造することを可能とする方法が要望
されている。However, these methods require the use of a high-purity fluoride powder raw material and require complicated processing steps. Therefore, it is simpler than the method of the prior art, and for example, has a purity of 3N (9
9.9% by weight) grade fluoride powder raw material,
There is a need for a method that can produce high quality single crystals.
【0005】[0005]
【課題を解決するための手段】本発明者は、全固体(波
長可変)紫外・赤外(近赤外・遠赤外)域レーザーに有用で
ある高品質フッ化物バルク単結晶の作製方法を検討した
結果、純度が左程高くないフッ化物粉末原料を使用する
場合にも高品質な単結晶を製造するために、フロン系ガ
スの利用等が有効であることを見出した。即ち、市販の
フッ化物粉末をゾーン精製または乾燥HF気流中での水分
除去等の高純度化を行わない、或いはHF雰囲気中で結晶
作製を行わなくも、以下の乃至の工程からなる方法
を用いることによって高品質フッ化物バルク単結晶が製
造できることを見出したものである。Means for Solving the Problems The present inventors have developed a method for producing a high-quality bulk single crystal of a fluoride which is useful for an all solid-state (variable wavelength) ultraviolet / infrared (near infrared / far infrared) region laser. As a result of the investigation, it has been found that the use of a fluorocarbon-based gas is effective for producing a high-quality single crystal even when using a fluoride powder raw material whose purity is not as high as the left. That is, a commercially available fluoride powder is not subjected to zone purification or high purification such as removal of water in a dry HF gas stream, or even without performing crystal preparation in an HF atmosphere, using a method comprising the following steps. Thus, it has been found that high quality bulk single crystals of fluoride can be produced.
【0006】即ち、本発明のフッ化物バルク単結晶の製
造方法は、10-6torr以上の高真空を保ちなが
ら、粉末フッ化物原料を室温から500〜1000℃の
範囲の温度まで加熱し、炉内において原料中に含まれる
水分・酸素を除去し、原料を融解後、作製炉内にフロ
ン系ガスを導入し、融液あるいは溶液表面に発生する不
純物および融液あるいは溶液内に存在する不純物と、作
製炉内のフロン系ガスとを、不純物を除去するのに十分
な時間反応させることによって不純物を除去し、得ら
れた融液あるいは溶液から融液成長法によってフッ化物
バ ルク単結晶を製造することを特徴とする。That is, according to the method for producing a bulk single crystal of fluoride of the present invention, a powdery fluoride raw material is heated from room temperature to a temperature in the range of 500 to 1000 ° C. while maintaining a high vacuum of 10 −6 torr or more. After removing water and oxygen contained in the raw material, melting the raw material, introducing a Freon-based gas into the production furnace, and removing impurities generated on the surface of the melt or solution and impurities present in the melt or solution. The impurities are removed by reacting with the fluorocarbon gas in the production furnace for a time sufficient to remove the impurities, and a fluoride bulk single crystal is produced from the resulting melt or solution by the melt growth method. It is characterized by doing.
【0007】上記製造方法によって、例えば、純度3N
(99.9重量%)級のフッ化物粉末原料を使った場合
でも、従来技術の方法に比してより簡便に、高品質な単
結晶を製造することが可能となる。[0007] According to the above manufacturing method, for example, 3N purity
Even when a (99.9% by weight) -grade fluoride powder raw material is used, a high-quality single crystal can be produced more easily than in the method of the related art.
【0008】また、本発明のフッ化物バルク単結晶の製
造方法は、不純物を除去して得た融液又は溶液からArな
どの不活性ガス雰囲気下で融液成長法によってフッ化物
バルク単結晶を作製することが好ましい。このようにす
ることによって、融液成長法によりフッ化物バルク単結
晶を成長・作製する際に不純物の混入をより効果的に防
止することが可能となる。[0008] The method for producing a bulk fluoride single crystal of the present invention comprises the step of growing a bulk fluoride single crystal from a melt or a solution obtained by removing impurities by a melt growth method in an atmosphere of an inert gas such as Ar. It is preferable to make it. By doing so, it is possible to more effectively prevent impurities from being mixed when growing and producing a bulk fluoride single crystal by the melt growth method.
【0010】[0010]
【発明の実施の態様】以下に、本発明のフッ化物バルク
単結晶の製造方法をより詳細に説明する。 粉末フッ化物原料の溶解・水分および酸素の除去 10-6torr以上の高真空を保ちながら、粉末フッ化
物原料を室温から500〜1000℃の範囲の所定の温
度まで加熱し、炉内において原料中に含まれる水分・酸
素を除去する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing a bulk fluoride single crystal of the present invention will be described below in more detail. Dissolution of powdered fluoride raw material and removal of water and oxygen While maintaining a high vacuum of 10 -6 torr or more, the powdered fluoride raw material is heated from room temperature to a predetermined temperature in the range of 500 to 1000 ° C. To remove moisture and oxygen contained in.
【0011】この場合、粉末フッ化物原料は所望の単結
晶の組成に応じて適宜選択して用いる。粒度等も特に制
限が無く当業者であれば適宜設定できる範囲内である。
また、10-6torr以上の高真空とするのは水分およ
び酸素の除去を容易とするためである。10-6torr
未満だと十分に水分除去できない。In this case, the powdery fluoride raw material is appropriately selected and used according to the desired composition of the single crystal. The particle size and the like are not particularly limited and are within a range that can be appropriately set by those skilled in the art.
The high vacuum of 10 -6 torr or more is intended to facilitate removal of moisture and oxygen. 10 -6 torr
If it is less than this, water cannot be sufficiently removed.
【0012】粉末フッ化物原料を室温から500以上で
例えば1000℃の範囲内の所定の温度まで加熱し、原
料中に含まれる水分・酸素を除去する。500℃未満で
あると十分な効果が望めず、また上限温度は、水分、酸
素除去という観点から設定し、例えば1000℃とす
る。The powdery fluoride raw material is heated from room temperature to a predetermined temperature in the range of 500 ° C. or more, for example, 1000 ° C., to remove moisture and oxygen contained in the raw material. If the temperature is lower than 500 ° C., a sufficient effect cannot be expected, and the upper limit temperature is set from the viewpoint of removing moisture and oxygen, for example, 1000 ° C.
【0013】 不純物の除去 原料を融解後、作製炉内にフロン系ガスを導入し、融液
又は溶液表面に発生する不純物および融液又は溶液内に
存在する不純物と、作製炉内のフロン系ガスとを、不純物
を除去するのに十分な時間反応させることによって不純
物を除去する。フロン系ガスであれば本工程で用いるこ
とができるが、例えばCF4を用いることができる。また
フロン系ガスと他のガス、例えばC2H6との混合ガスを用
いることもできる。「不純物を除去するのに十分な時
間」とは、例えば30分以内等とすることができる。な
お、成長結晶の組成と液体の組成が等しい場合を「融
液」といい、そうでない場合を溶液という。Removal of impurities After melting the raw material, a fluorocarbon-based gas is introduced into the production furnace, and impurities generated on the surface of the melt or the solution and impurities present in the melt or the solution are mixed with the fluorocarbon gas in the production furnace. Are reacted for a time sufficient to remove the impurities, thereby removing the impurities. As long as a fluorocarbon-based gas can be used in this step, for example, CF 4 can be used. Also, a mixed gas of a chlorofluorocarbon-based gas and another gas, for example, C 2 H 6 can be used. The “sufficient time for removing impurities” can be, for example, within 30 minutes. Note that the case where the composition of the grown crystal is equal to the composition of the liquid is called “melt”, and the case where it is not is called “solution”.
【0014】 融液成長法によるフッ化物バルク単結
晶の製造 得られた融液あるいは溶液から融液成長法によってフッ
化物バルク単結晶を製造する。Production of Fluoride Bulk Single Crystal by Melt Growth Method From the obtained melt or solution, a fluoride bulk single crystal is produced by a melt growth method.
【0015】以下に、本発明のフッ化物バルク単結晶の
製造方法の好ましい実施態様を具体的に述べる。原料成
分として、所望の単結晶の化学組成を得るため、例えば
CaF2, AlF3,LiF, BaF2, YF3, CeF3など、純度99.95%
の市販のフッ化物粉末原料を適宜選択して所定の量で調
合混合する。粉末フッ化物混合原料を坩堝内にスプーン
などで押し込め、そのまま単結晶作製炉内に置く。ここ
で10-6torr程度まで真空に引き、室温から500
〜1000℃の範囲の温度まで、例えば700℃程度ま
で昇温して真空状態で加熱し、粉末フッ化物原料中の水
分・酸素を除去する。Hereinafter, preferred embodiments of the method for producing a bulk fluoride single crystal of the present invention will be specifically described. As a raw material component, in order to obtain a desired single crystal chemical composition, for example, CaF 2 , AlF 3 , LiF, BaF 2 , YF 3 , CeF 3, etc., purity 99.95%
The commercially available fluoride powder raw material is appropriately selected and blended in a predetermined amount. The powdered fluoride mixed raw material is pushed into the crucible with a spoon or the like, and is placed in a single crystal production furnace as it is. Here, vacuum is drawn to about 10 -6 torr, and 500
The temperature is raised to a temperature in the range of -1000 ° C., for example, about 700 ° C., and the mixture is heated in a vacuum state to remove water and oxygen in the powdery fluoride raw material.
【0016】ここで例えばCF4などのフロン系ガスを単
結晶作製炉に導入する。その後、さらに昇温し、粉末原
料を融解し、そのまま30分、液体状態で保つ。この時、
粉末原料中、或いは炉内に存在する水分などの影響によ
り液体表面に現れる不純物(酸化物、酸フツ化物、カー
ボン等)は、フロン系ガスと反応することにより、全て
消滅する。これにより不純物のない、融液(あるいは溶
液)が得られる。この融液(あるいは溶液)から溶液成長
法によって単結晶を作製することにより高品質フッ化物
バルク単結晶が得られる。Here, a fluorocarbon gas such as CF 4 is introduced into a single crystal production furnace. Thereafter, the temperature is further raised to melt the powder raw material and kept in a liquid state for 30 minutes. At this time,
Impurities (oxides, oxyfluorides, carbon, etc.) appearing on the liquid surface due to the influence of moisture or the like existing in the powder raw material or in the furnace are completely eliminated by reacting with the chlorofluorocarbon-based gas. As a result, a melt (or solution) free of impurities is obtained. By producing a single crystal from this melt (or solution) by a solution growth method, a high quality fluoride bulk single crystal can be obtained.
【0017】単結晶の製造方法には種々あるが、例えば
引き上げ法では以下のように行う。融液の温度は各化合
物の融点近辺に保ち、種結晶を1〜50rpmで回転させなが
ら0.1〜10mm/hの速度で引き上げることによって、結晶
中に気泡やスキャツタリングセンターなどのない、透明
な高品質単結晶が得られる。他の単結晶の製造方法とし
ては、ブリッジマン法等が考えられる。There are various methods for producing a single crystal. For example, the pulling method is performed as follows. The temperature of the melt is kept close to the melting point of each compound, and by pulling the seed crystal at a speed of 0.1 to 10 mm / h while rotating at 1 to 50 rpm, the crystal is transparent and free of bubbles and scattering centers. High quality single crystals can be obtained. As another single crystal manufacturing method, the Bridgman method or the like can be considered.
【0018】なお、得られた単結晶の相は粉末X線解析
(XRD)で、またOH-基の存在の有無はFR−IR
により調べた。[0018] In the phase of the resulting single crystal X-ray powder analysis (XRD), also OH - presence or absence of groups FR-IR
Investigated by
【0019】[0019]
【実施例】以下に、本発明の実施例を比較例を参照しつ
つ説明する。EXAMPLES Examples of the present invention will be described below with reference to comparative examples.
【実施例1】純度3NのLiF, CaF2, AIF3市販粉末原料を
モル比で1:1:1として準備し、それらを混合せずに
坩堝内に充填した。原料の全重量は140gであった。
そのまま単結晶作製炉内に坩堝を置き、10-6torr
程度まで真空に引き、そのまま約700℃程度まで真空
状態で加熱し混合物中の水分・酸素を除去した。Example 1 Commercial powdery materials of 3N purity LiF, CaF 2 , AIF 3 were prepared at a molar ratio of 1: 1: 1, and they were filled in a crucible without mixing. The total weight of the raw materials was 140 g.
Place the crucible in the single crystal production furnace as it is, 10 -6 Torr
The mixture was evacuated to a vacuum and heated under vacuum to about 700 ° C. to remove water and oxygen in the mixture.
【0020】ここでCF4 ガスを単結晶作製炉に導入し、
CF4ガス雰囲気中で粉末原料を加熱融解し、そのまま30
分、液体状態で保った。この時、液体表面に現れた不純物
は、CF4ガスと反応することにより、全て消滅した。次に融
液に種結晶を接触させ、 c 軸方向に引き上げ速度1mm/h、
回転数15rpmで引き上げ単結晶を成長・作製した。作製
した結晶は、直径約20mm、長さ約80mmで、気泡、クラッ
ク、スキャッタリングセンターなどの無く、透明かつ高品
質なLiCaAIF 6単結晶であった。結晶内にはレーザー特
性の劣化をもたらすOH-基等の存在は一切観察されな
かった。Here, CF 4 gas is introduced into a single crystal production furnace,
Heat and melt the powder raw material in CF 4 gas atmosphere,
Minutes, kept in liquid state. At this time, all impurities appearing on the liquid surface disappeared by reacting with the CF 4 gas. Next, the seed crystal is brought into contact with the melt, and pulled up in the c-axis direction at a speed of 1 mm / h.
A single crystal was grown and produced at a rotation speed of 15 rpm. The produced crystal was a transparent and high-quality LiCaAIF 6 single crystal having a diameter of about 20 mm and a length of about 80 mm without bubbles, cracks, and scattering centers. No existence of OH - groups or the like which cause deterioration of laser characteristics was observed in the crystal.
【0021】[0021]
【比較例1】純度5NのLiF, CaF2, AIF3の市販粉末原料
をモル比で1:1:1として準備し、それらを混合し、
混合物を坩堝内に充填した。原料の全量量は130gで
あった。そのまま単結晶作製炉内に坩堝を置き, 10
-2torr程度まで真空に引き、真空状態で約700℃
程度まで加熱した。[Comparative Example 1] Commercial powdery raw materials of LiF, CaF 2 and AIF 3 having a purity of 5N were prepared at a molar ratio of 1: 1: 1, and they were mixed.
The mixture was filled in a crucible. The total amount of the raw materials was 130 g. Place the crucible in the single crystal production furnace and
Vacuum to about -2 torr, about 700 ° C in vacuum
Heated to the extent.
【0022】ここでArガス(又はCF4ガス)を単結晶作製
炉に充填し、そのまま1l/minの流量で流し続けた。そ
の後、昇温し、粉末原料を融解したところ、液体表面に
多量の不純物が発生した。そこで一度室温まで冷却し、
表面の不純物を取り除いた。その後再び同様のプロセス
で昇温したが再び同じ不純物が発生した。そこで、液体
に種結晶を接触させ、 c軸方向に引き上げ速度1mm/h、回
転数15rpmで単結晶を作製した結果、多量の不純物が結
晶表面に付着したLiCaAIF6結晶が得られた。Here, an Ar gas (or CF 4 gas) was charged into a single crystal production furnace and kept flowing at a flow rate of 1 l / min. Thereafter, when the temperature was raised to melt the powder raw material, a large amount of impurities were generated on the liquid surface. So once cool down to room temperature,
The impurities on the surface were removed. Thereafter, the temperature was raised again by the same process, but the same impurities were generated again. Then, a seed crystal was brought into contact with the liquid to produce a single crystal at a pulling rate of 1 mm / h and a rotation speed of 15 rpm in the c-axis direction. As a result, a LiCaAIF 6 crystal having a large amount of impurities attached to the crystal surface was obtained.
【0023】[0023]
【実施例2】純度3NのYF3, LiF, CeF3市販粉末原料をYF
3:LiF=0.48:0.52(モル比)として準備し、
それらを混合せずに坩堝内に充填した。原料の全重量は
250gであった。そのまま単結晶作製炉内に坩堝を置
き、10-6torr程度まで真空に引き、そのまま約70
0℃程度まで真空状態で加熱した。[Example 2] YF 3 , LiF, CeF 3 with a purity of 3N
3 : Prepared as LiF = 0.48: 0.52 (molar ratio),
They were filled into crucibles without mixing. The total weight of the raw materials was 250 g. Place the crucible in the single crystal production furnace as it is and evacuate it to about 10 -6 torr,
It was heated in a vacuum to about 0 ° C.
【0024】ここでCF4ガスを単結晶作製炉に導入した。
その後、昇温し、粉末原料を融解し、そのまま30分、液体状
態に保った。この時、液体表面に現れた不純物は、CF4ガス
と反応することにより、全て消滅した。液体に種結晶を接
触させ、 c軸方向に引き上げ速度1mm/h、回転数15rpmで
引き上げ単結晶を作製した。作製した単結晶は、直径約
20mm、長さ約90mmで、気泡、タラツタ、スキャッタリン
グ センターなどの無い、透明な高品質Ce:YLiF4単結晶で
あった。結晶内にはレーザー 特性の劣化をもたらすOH
等の存在は一切観察されなかった。Here, CF 4 gas was introduced into a single crystal production furnace.
Thereafter, the temperature was raised to melt the powder raw material, and kept in a liquid state for 30 minutes. At this time, all impurities appearing on the liquid surface disappeared by reacting with the CF 4 gas. A seed crystal was brought into contact with the liquid, and a single crystal was pulled in the c-axis direction at a pulling speed of 1 mm / h and a rotation speed of 15 rpm. The prepared single crystal has a diameter of about
It was a transparent, high-quality single crystal of Ce: YLiF 4 having a size of 20 mm and a length of about 90 mm, free of bubbles, tarts, scattering centers and the like. OH which causes deterioration of laser characteristics in the crystal
Was not observed at all.
【0025】[0025]
【比較例2】純度5NのYF3, LiF, CeF3市販粉末原料をYF
3:LiF=0.48:0.52(モル比)として準備し、
それらを混合した後、坩堝内に充填した。原料の全重量
は250gであった。そのまま単結晶作製炉内に坩堝を
置き、10-2torr程度まで真空に引き、そのまま約
700℃程度まで真空状態で加熱した。[Comparative Example 2] YF 3 , LiF, CeF 3 with 5N purity
3 : Prepared as LiF = 0.48: 0.52 (molar ratio),
After mixing them, they were filled in a crucible. The total weight of the raw materials was 250 g. The crucible was placed in a single crystal production furnace as it was, and the crucible was evacuated to about 10 -2 torr and heated to about 700 ° C. in a vacuum.
【0026】ここでArガス(又はCF4ガス)を単結晶作製
炉に充填し、 そのまま1l/minの流量で流し続けた。そ
の後、昇温し、粉末原料を融解したところ、液体表面に多
量の不純物が発生した。そこで一度室温まで冷却し、表面
の不純物を取り除いた。その後再び同様のプロセスで昇
温したが再び同じ不純物が発生した。そこで、液体に種結
晶を接触させ、 c軸方向に引き上げ速度1mm/h,回転数15r
pmで引き上げ単結晶を作製した結果、完全に白濁し、 Ce:
YLiF4及び YOF、 CeOFの混じった結晶が得られた。Here, an Ar gas (or CF 4 gas) was charged into a single crystal production furnace, and kept flowing at a flow rate of 1 l / min. Thereafter, when the temperature was raised to melt the powder raw material, a large amount of impurities were generated on the liquid surface. Then, it was once cooled to room temperature to remove impurities on the surface. Thereafter, the temperature was raised again by the same process, but the same impurities were generated again. Then, the seed crystal is brought into contact with the liquid, the pulling speed is 1mm / h in the c-axis direction,
As a result of producing a single crystal pulled at pm, it became completely cloudy, Ce:
Crystals containing YLiF 4 and a mixture of YOF and CeOF were obtained.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 戸澤慎一郎ほか,”Cz法による紫外 レーザー硝材用CaF2単結晶の作 製,”技術部技術研究報告,東北大学金 属材料研究所,平成11年3月,pp.29 −32 I.M.Ranieri et a l.,”Growth of LiYF 4 crystals doped w ith holmium,erbium and thulium,”Jour nal of Crystal Gro wth ,vol.166.1996,pp. 423−428 (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 CA(STN)──────────────────────────────────────────────────続 き Continuing from the front page (56) References Shinichiro Tozawa et al., “Creating CaF2 Single Crystal for Ultraviolet Laser Glass by Cz Method,” Technical Research Report, Technical Department, Institute of Metals, Tohoku University, 1999. Month, pp. 29-32 I. M. Ranieri et al. , “Growth of LiYF 4 crystals doped with holmium, erbium and thulium,”, Journal of Crystal Growth, vol. 166. 1996, pp. 423-428 (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35/00 CA (STN)
Claims (2)
ら、粉末フッ化物原料を室温から500℃以上で所定範
囲以下の範囲内の温度まで加熱し、炉内において原料中
に含まれる水分・酸素を除去し、原料を融解後、作製炉内
にフロン系ガスを導入し、融液あるいは溶液表面に発生
する不純物および融液あるいは溶液内に存在する不純物
と、作製炉内のフロン系ガスとを、不純物を除去するのに
十分な時間反応させることによって不純物を除去し、得
られた融液あるいは溶液から融液成長法によってフッ化
物バルク単結晶を製造することを特徴とするフッ化物バ
ルク単結晶の製造方法。1. While maintaining a high vacuum of 10 -6 torr or more, a powdery fluoride raw material is heated from room temperature to a temperature in a range of not less than 500 ° C. and not more than a predetermined range. After removing oxygen and melting the raw material, a fluorocarbon gas is introduced into the production furnace, and impurities generated on the surface of the melt or solution and impurities present in the melt or solution, and fluorocarbon gas in the production furnace are mixed with each other. Is reacted for a time sufficient to remove the impurities, thereby removing the impurities, and producing a bulk fluoride single crystal from the resulting melt or solution by a melt growth method. Method for producing crystals.
からAr等の不活性ガス雰囲気下で融液成長法によって
フッ化物バルク単結晶を製造することを特徴とする請求
項1に記載した製造方法。 【0001】2. A fluoride bulk single crystal is produced from a melt or a solution obtained by removing impurities by a melt growth method in an atmosphere of an inert gas such as Ar. Production method. [0001]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11167116A JP3062753B1 (en) | 1999-06-14 | 1999-06-14 | Method for producing bulk single crystal of fluoride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11167116A JP3062753B1 (en) | 1999-06-14 | 1999-06-14 | Method for producing bulk single crystal of fluoride |
Publications (2)
Publication Number | Publication Date |
---|---|
JP3062753B1 true JP3062753B1 (en) | 2000-07-12 |
JP2000351696A JP2000351696A (en) | 2000-12-19 |
Family
ID=15843744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11167116A Expired - Lifetime JP3062753B1 (en) | 1999-06-14 | 1999-06-14 | Method for producing bulk single crystal of fluoride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3062753B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004083497A1 (en) * | 2003-03-20 | 2004-09-30 | Riken | Process for producing fluoride single crystal and wavelength transforming device |
JP2005029418A (en) * | 2003-07-11 | 2005-02-03 | Mitsubishi Materials Corp | Lithium fluoride vapor deposition material and method of manufacturing the same |
US7060982B2 (en) | 2003-09-24 | 2006-06-13 | Hokushin Corporation | Fluoride single crystal for detecting radiation, scintillator and radiation detector using the single crystal, and method for detecting radiation |
WO2012046323A1 (en) * | 2010-10-07 | 2012-04-12 | 株式会社光学技研 | Phaser |
-
1999
- 1999-06-14 JP JP11167116A patent/JP3062753B1/en not_active Expired - Lifetime
Non-Patent Citations (2)
Title |
---|
I.M.Ranieri et al.,"Growth of LiYF4 crystals doped with holmium,erbium and thulium,"Journal of Crystal Growth ,vol.166.1996,pp.423−428 |
戸澤慎一郎ほか,"Cz法による紫外レーザー硝材用CaF2単結晶の作製,"技術部技術研究報告,東北大学金属材料研究所,平成11年3月,pp.29−32 |
Also Published As
Publication number | Publication date |
---|---|
JP2000351696A (en) | 2000-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1567611B1 (en) | Method for preparing rare-earth halide blocks, blocks obtained and their use to form single crystals and single crystals obtained thereby. | |
DE60310932T2 (en) | METHOD FOR THE TREATMENT OF CHLORIDES, BROMIDS AND JODIDES OF RARE EARTHS IN A CARBON-CONTAINING TIP | |
JP6978157B2 (en) | How to make a crystal scintillator | |
JP3289895B2 (en) | Hydrothermal method for growing optical quality single crystals | |
EP2496736A1 (en) | Method for preparing single-crystal cubic sesquioxides and uses thereof | |
JP3168294B2 (en) | Lithium barium fluoride single crystal and method for producing the same | |
JP3062753B1 (en) | Method for producing bulk single crystal of fluoride | |
US3959442A (en) | Preparing single crystals of Li(Ho,Y,Er,Tm,Dy)F4 in HF atmosphere | |
Wanklyn | The flux growth of crystals of some fluorides (AlF3, CrF3, NiF2, KNiF3, CoF2 and KCoF3) | |
JP3089418B1 (en) | Lithium calcium aluminum fluoride single crystal and method for producing the same | |
JP3127015B2 (en) | Manufacturing method of oxide laser single crystal | |
Joukoff et al. | Crystal growth and structural particularities of (BaF2) 1− x (Y, LnF3) x solid solutions | |
JPS61501984A (en) | Method for producing a single crystal thin layer of silver thiogallate (AgGaS↓2) | |
JP2002060299A (en) | Lithium calcium aluminum fluoride single crystal and method of producing the same | |
JP4463730B2 (en) | Method for producing metal fluoride single crystal | |
Zhu et al. | Modified growth of Cd1− xZnxTe single crystals | |
JP2003119096A (en) | Multicomponent-based fluoride single crystal and method of producing the same | |
RU2108418C1 (en) | Method for growing single crystals of lanthanum-gallium silicate | |
JPH11116393A (en) | Growth of inorganic fluoride single crystal | |
Egger et al. | Czochralski growth of Ba2Y1− xErxCl7 (0< x⩽ 1) using growth equipment integrated into a dry-box | |
CN114606570B (en) | Preparation method of cesium hafnium chloride scintillation crystal | |
JP4836913B2 (en) | BaLiF3 single crystal | |
JP2003119095A (en) | Method for producing single crystal fluoride | |
JP2002234795A (en) | Lithium calcium aluminum fluoride single crystal and method for producing the same | |
CN119041031A (en) | Lamellar Nb3TeX7(X=cl, br, I) single crystal material and method for preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3062753 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S631 | Written request for registration of reclamation of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313631 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees | ||
EXPY | Cancellation because of completion of term |