[go: up one dir, main page]

JP3060889B2 - Thin film thickness measurement method - Google Patents

Thin film thickness measurement method

Info

Publication number
JP3060889B2
JP3060889B2 JP7121568A JP12156895A JP3060889B2 JP 3060889 B2 JP3060889 B2 JP 3060889B2 JP 7121568 A JP7121568 A JP 7121568A JP 12156895 A JP12156895 A JP 12156895A JP 3060889 B2 JP3060889 B2 JP 3060889B2
Authority
JP
Japan
Prior art keywords
thin film
thickness
sample
measuring
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7121568A
Other languages
Japanese (ja)
Other versions
JPH08313244A (en
Inventor
信明 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7121568A priority Critical patent/JP3060889B2/en
Publication of JPH08313244A publication Critical patent/JPH08313244A/en
Application granted granted Critical
Publication of JP3060889B2 publication Critical patent/JP3060889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、薄膜の膜厚の測定方法
に関し、特に数nmレベルのコーティング薄膜を切断する
ことなく傾斜断面を露出し直接測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the thickness of a thin film, and more particularly, to a method for exposing an inclined cross section without directly cutting a coating thin film having a thickness of several nanometers.

【0002】[0002]

【従来の技術】表面を被覆された膜厚を測定する方法と
して、光学的方法として多重光束干渉法による膜厚測定
が一般的に採用されてきた。この方法では、干渉縞の観
測が鮮明さに大きく影響され、その干渉条件はミラーと
サンプル間の距離の設定および光自体の反射率の向上等
に制約され、その条件設定にかなりの労力を要してい
た。さらに、X線を使用して膜厚を測定する方法とし
て、X線の吸収を利用する方法、蛍光X線励起による方
法および全反射X線の干渉を利用する方法等があるが、
これらの方法では膜厚がnmオーダーに対して、その精度
において問題があり、十分に適用されるに至っていな
い。
2. Description of the Related Art As a method for measuring a film thickness coated on a surface, a film thickness measurement by a multiple beam interference method has been generally adopted as an optical method. In this method, the observation of interference fringes is greatly affected by the sharpness, and the interference conditions are limited by setting the distance between the mirror and the sample and improving the reflectance of the light itself, and the setting of the conditions requires considerable effort. Was. Further, methods for measuring film thickness using X-rays include a method using X-ray absorption, a method using fluorescent X-ray excitation, and a method using total reflection X-ray interference.
These methods have a problem in the accuracy of the film thickness on the order of nm and have not been sufficiently applied.

【0003】最近では、以上のように従来困難であった
nmオーダーの膜厚に対して、精度上問題ない方法につい
て検討され、基板等にコーティングされた薄膜の厚さ測
定法およびその装置として種々考案されている。その中
でミクロトーム等を用いてコーティング薄膜を基板と共
に斜めに機械的に切断し、その切り口をSEM(走査型
電子顕微鏡)等を用いて断面観察し、膜厚を測定する方
法がある。しかし、この方法では薄膜が数nmレベルの場
合には切断面がダレてしまうので観察すべき膜が確認で
きず測定不可となる。
Recently, it has been difficult as described above.
Methods with no problem in accuracy for nm-order film thickness have been studied, and various methods have been devised as a method for measuring the thickness of a thin film coated on a substrate or the like and a device therefor. Among them, there is a method in which a coating thin film is mechanically cut obliquely together with a substrate using a microtome or the like, and the cut end is observed in cross section using an SEM (scanning electron microscope) or the like, and the film thickness is measured. However, in this method, when the thin film has a thickness of several nm, the cut surface is sagged, so that the film to be observed cannot be confirmed and measurement becomes impossible.

【0004】他の方法として、薄膜表面からイオンエッ
チングを行いつつオージェ電子分光法による深さ方向の
分析を行い、膜材料特有の元素をモニターし、この元素
が検出されなくなった時のイオンエッチング深さを検量
することによって膜厚を知る方法がある。しかしなが
ら、オージェ電子脱出深さが数nmであるため、オージェ
電子分光法の深さ方向分解能が数nm以上となり、この場
合も薄膜が数nmレベルの場合には測定は不可となる。
As another method, while performing ion etching from the surface of the thin film, an analysis in the depth direction is performed by Auger electron spectroscopy, an element peculiar to the film material is monitored, and the ion etching depth when this element is no longer detected is detected. There is a method of knowing the film thickness by measuring the thickness. However, since the Auger electron escape depth is several nanometers, the resolution in the depth direction of Auger electron spectroscopy is several nanometers or more. In this case, too, the measurement becomes impossible when the thin film has a level of several nanometers.

【0005】上記のごとく、数nmレベルの薄膜の厚さを
簡便にかつ高精度で測定可能とする測定方法の開発が望
まれていた。
As described above, there has been a demand for the development of a measuring method capable of easily and accurately measuring the thickness of a thin film on the order of several nm.

【0006】[0006]

【発明が解決しようとする課題】以上のような問題に鑑
み、本発明の目的は、基材が硬質もしくは軟質に関わら
ず、機械的切断法に代わる高エネルギー粒子によるドラ
イエッチング法を検討し、この処理により一定条件の膜
厚断面を露出させ、この露出部を測定することによって
膜厚を求める膜厚測定方法を提供する。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to examine a dry etching method using high energy particles instead of a mechanical cutting method, regardless of whether the substrate is hard or soft. This process provides a film thickness measuring method for exposing a film thickness section under a certain condition and measuring the exposed portion to obtain a film thickness.

【0007】また、本発明の他の目的は、前記露出部で
の特定元素のオージェ電子像を取り込むことによって、
効率よく膜層露出部の幅を測定可能とする膜厚測定方法
を提供する。さらに、本発明の別の目的は、サンプルが
電子照射を受けた場合の、試料電流値を測定し、その抵
抗値をモニターして、薄膜と基材の界面での抵抗値の勾
配の変化を認識することによって、ドライエッチング速
度からその時点までのエッチング量の積分値との対応を
検討し、これによって膜厚を求める膜厚方法を提供す
る。
Another object of the present invention is to capture an Auger electron image of a specific element at the exposed portion,
Provided is a method for measuring the thickness of a film, which enables the width of a film layer exposed portion to be measured efficiently. Further, another object of the present invention is to measure the sample current value when the sample is irradiated with electrons, monitor the resistance value, and monitor the change in the gradient of the resistance value at the interface between the thin film and the substrate. By recognizing this, the correspondence between the dry etching rate and the integrated value of the etching amount up to that point is examined, and a film thickness method for obtaining the film thickness is provided.

【0008】[0008]

【課題を解決するための手段】上記の目的は、薄膜の膜
厚測定方法において、サンプルの事前処理として薄膜上
に導電性被覆を施し、前記サンプルの表面をエッチング
することによって水平面に対して一定の傾斜角度を有す
る薄膜層断面を露出し、前記薄膜層断面の水平面に対す
る投影露出幅Wをオージェ電子像を用いて測定し、かつ
前記薄膜層断面の水平面に対する傾斜角である露出角度
θを求め、前記投影露出幅Wおよび露出角度θを用いて
D=Wtan θなる関係から膜厚Dを求めることを特徴と
する薄膜の膜厚測定方法によって達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a method for measuring the thickness of a thin film, in which a conductive coating is applied on the thin film as a pretreatment of the sample, and the surface of the sample is etched so as to be constant with respect to a horizontal plane. The thin film layer cross section having an inclination angle is exposed, the projected exposure width W of the thin film layer cross section with respect to the horizontal plane is measured using an Auger electron image , and the exposure angle θ which is the inclination angle of the thin film layer cross section with respect to the horizontal plane is obtained. The thickness D is obtained from the relationship of D = Wtan θ using the projection exposure width W and the exposure angle θ.

【0009】また、上記の目的は、前記露出角度θを光
反射法等の光学手段によって求める薄膜の膜厚測定方法
によっても達成される。さらに、前記露出角度θを2次
電子放出量測定法によって求める薄膜の膜厚測定方法に
よっても達成される。また、上記の目的は、薄膜を設け
たサンプルの膜厚測定方法において、イオンエッチング
装置を有する走査型電子顕微鏡内にサンプルをセット
し、一定のエッチング速度でイオンエッチングを行いな
がら、電子ビームを照射し、サンプルに流れる電流値を
時々刻々測定し、前記電流値から求まるサンプルの抵抗
値をモニターし、前記抵抗値の減少割合がエッチング時
間に対して屈曲点を示す時点を認識し、その時点までの
エッチング量の積分値から薄膜の厚さを求めることを特
徴とする薄膜の膜厚測定方法によっても達成される。
The above object can also be attained by a method for measuring the thickness of a thin film, wherein the exposure angle θ is obtained by an optical means such as a light reflection method. Further, the present invention is also achieved by a method of measuring the thickness of a thin film in which the exposure angle θ is determined by a secondary electron emission amount measuring method. Further, the above object is to provide a method for measuring the thickness of a sample provided with a thin film, in which the sample is set in a scanning electron microscope having an ion etching apparatus and irradiated with an electron beam while performing ion etching at a constant etching rate. Then, the current value flowing through the sample is measured every moment, the resistance value of the sample obtained from the current value is monitored, and the time point at which the rate of decrease in the resistance value indicates a bending point with respect to the etching time is recognized. The thickness of the thin film is obtained from the integrated value of the etching amount of the thin film.

【0010】[0010]

【作用】本発明では、エッチング領域は四周が傾斜を有
する壁で囲まれた浅い擂鉢状となっており、その端部で
は1°以下の低角度で薄膜層断面が切り出され露出して
いる。この露出した薄膜層断面の水平方向投影幅Wと露
出角度θが測定されれば、膜厚DはD=Wtan θなる関
係から求めることができる。この露出幅Wは膜特有の元
素のオージェ電子像から求められ、また露出角度θは光
学的手段または2次電子放出量測定方法により求められ
る。この方法では、極めて低角度の薄膜切出し断面を利
用するため、数nmレベルの薄膜の膜厚を測定することが
可能となった。
According to the present invention, the etching region has a shallow mortar shape surrounded by walls having four slopes, and a cross section of the thin film layer is cut and exposed at a low angle of 1 ° or less at the end. If the horizontal projection width W and the exposure angle θ of the cross section of the exposed thin film layer are measured, the film thickness D can be obtained from the relationship D = Wtan θ. The exposure width W is obtained from an Auger electron image of an element peculiar to the film, and the exposure angle θ is obtained by optical means or a secondary electron emission amount measuring method. In this method, it is possible to measure the thickness of a thin film on the order of several nanometers, since a thin-section of a thin film cut at an extremely low angle is used.

【0011】また、本発明は、電子ビームを照射するこ
とでサンプルと装置で一つの電気回路が形成される。こ
のとき、薄膜と基材では抵抗が異なるため、抵抗値の勾
配が変化する点、すなわち変化の割合の屈曲点が薄膜と
基材の界面となる。そこで、この時点までのエッチング
時間を測れば、このエッチング時間は膜厚に比例するた
め、合計のエッチング深さとして、膜厚に換算すること
ができる。この方法はオージェ電子とは違い脱出深さの
影響がないため数nmの膜厚でも測定可能となる。
Further, according to the present invention, a sample and an apparatus form one electric circuit by irradiating an electron beam. At this time, since the resistance is different between the thin film and the base material, the point where the gradient of the resistance value changes, that is, the bending point of the change rate becomes the interface between the thin film and the base material. Therefore, if the etching time up to this point is measured, this etching time is proportional to the film thickness, and can be converted into a film thickness as a total etching depth. Unlike the Auger electrons, this method does not have the effect of the escape depth, and can measure even a film thickness of several nm.

【0012】以下、本発明について実施例の添付図面を
参照して詳述する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings of embodiments.

【0013】[0013]

【実施例】【Example】

実施例1 本発明の第一発明の超低角度断面切り出し法についての
実施例を説明する。図1は本実施例の装置例を示す図で
ある。電子銃1から照射された高エネルギーの1次電子
線は、収束レンズ2および対物レンズ3によって、極め
て細く絞られてステージ8にセットされたサンプル7に
入射する。この時、サンプル表面から2次電子として散
乱する電子は、2次電子検出器5によって検出される。
また、二次電子とは別の放出過程をとり、そのスペクト
ルは一般に複数の複雑なピークから成り立っているオー
ジェ電子はオージェ電子検出器6によって検出される。
以上の基本的構造の他に、イオン銃4、レーザー光源9
およびスクリーン10を備えたものである。
Example 1 An example of the ultra-low-angle section cutting method according to the first invention of the present invention will be described. FIG. 1 is a diagram showing an example of the apparatus of the present embodiment. The high-energy primary electron beam emitted from the electron gun 1 is extremely narrowed down by the converging lens 2 and the objective lens 3 and is incident on the sample 7 set on the stage 8. At this time, electrons scattered as secondary electrons from the sample surface are detected by the secondary electron detector 5.
In addition, the Auger electron has a different emission process from that of the secondary electron, and the Auger electron whose spectrum generally includes a plurality of complex peaks is detected by the Auger electron detector 6.
In addition to the above basic structure, the ion gun 4, the laser light source 9
And a screen 10.

【0014】本実施例の超低角度断面切り出し法を工程
順に説明する。図4(a)のように基材13と膜12か
らなるサンプル7に、Au蒸着11を施しステージ8に
セットする。装置内を高真空にしたのちArイオン銃4
によりサンプル表面をエッチングする。図4(b)に
は、表面が擂鉢状に削られ四周が傾斜角である断面露出
角度θの壁に囲まれ、膜厚Dに対して露出幅Wとなる。
擂鉢状に削られた全幅Bはほぼ1mmである。
An ultra-low angle section cutting method according to the present embodiment will be described in the order of steps. As shown in FIG. 4A, a sample 7 including a base material 13 and a film 12 is subjected to Au vapor deposition 11 and set on a stage 8. After vacuuming the inside of the device, Ar ion gun 4
To etch the sample surface. In FIG. 4 (b), the surface is cut into a mortar shape, and four rounds are surrounded by a wall having a cross-section exposure angle θ of an inclination angle, and the exposure width W becomes equal to the film thickness D.
The total width B cut into a mortar is approximately 1 mm.

【0015】前記エッチング域の端部は、SEM(低
倍)で真上からは図4(c)のようにほぼ同心円状とし
て観測される。膜厚層断面が露出しているので、SEM
像で部位を決めた後、膜特有元素のオージェ電子像(高
倍)を取り込む。この時、膜特有の元素はあらかじめ定
性分析により把握しておく。図4(d)に示す像により
膜断面露出幅Wを測る。この結果から膜厚Dは下記式で
与えられる。
The edge of the etching area is observed as an almost concentric circle from directly above by SEM (low magnification) as shown in FIG. 4 (c). Because the film thickness cross section is exposed,
After the site is determined by the image, an Auger electron image (high magnification) of a film-specific element is captured. At this time, the elements unique to the film are grasped in advance by qualitative analysis. The film cross-section exposure width W is measured from the image shown in FIG. From this result, the film thickness D is given by the following equation.

【0016】D=Wtan θ (1) 次に、露出角度θの測定工程について説明する。図4
(e)に示す光学的方法としての光反射法を説明する。
レーザー光源14の方向にステージ8を向け露出断面に
レーザー光を当てる。このレーザー光は入射光と2θの
開きで、反射しスクリーンに戻る。この時の光源から戻
り点までの距離を測り、下記式によりθを算出する。
D = Wtan θ (1) Next, the step of measuring the exposure angle θ will be described. FIG.
The light reflection method as an optical method shown in FIG.
The stage 8 is directed toward the laser light source 14 and a laser beam is applied to the exposed section. The laser light is reflected by the incident light at an angle of 2θ and returns to the screen. At this time, the distance 1 from the light source to the return point is measured, and θ is calculated by the following equation.

【0017】θ=1/2Tan-1/L) (2) さらに、他の測定方法として、2次電子量測定方法によ
って求めてもよい。この方法は、2次電子放出効率と傾
斜角度との関係より求める方法で、図3に示すように、
最初のステージ角度αからα+θに変化させた時の二次
電子放出効率δの変化から、θを求める方法である。
Θ = 1/2 Tan −1 ( l / L) (2) As another measurement method, the secondary electron quantity measurement method may be used. This method is a method of obtaining from the relationship between the secondary electron emission efficiency and the inclination angle, and as shown in FIG.
In this method, θ is obtained from a change in the secondary electron emission efficiency δ when the initial stage angle α is changed to α + θ.

【0018】以上のような測定によって、式(1)に式
(2)で求めたθを代入して膜厚Dを算出する。なお、
本実施例のイオン銃は、好ましくはイオン源として通常
の例えば液体金属イオン源を使用する。また、Au蒸着
以外にPt、Cおよび光の時はAg等を使用してもよ
い。さらに、レーザーとしては好ましくは分布帰還型お
よび分布フラッグ反射器レーザ等の集積レーザがよい。
By the above measurement, the thickness D is calculated by substituting θ obtained by equation (2) into equation (1). In addition,
The ion gun of this embodiment preferably uses a usual, for example, liquid metal ion source as the ion source. In addition to Pt, C and light other than Au vapor deposition, Ag or the like may be used. Further, the laser is preferably an integrated laser such as a distributed feedback type and a distributed flag reflector laser.

【0019】実施例2 以下、第二発明の実施例を説明する。第二発明では、露
出角度θの測定を電気抵抗計測法によるものである。図
2に本実施例の測定例を示す。電子銃1とステージ8を
電気回路として結線した以外は実施例1の基本図と同様
である。高エネルギー電子束はできるだけ絞られ、サン
プル7を照射する。また、エッチングするイオン銃4か
らは高エネルギーイオンが照射する。まず、薄膜サンプ
ル7をそのままステージ8にセットし装置内を高真空に
する。このサンプルと装置間は電子銃1より電子ビーム
を照射した場合、チャージアップしなければサンプル、
装置筒内をはさんで、ひとつの電気回路となり、電流I
と電圧Vが測定される。この時、サンプルから放出され
る2次電子電流は回路を流れる試料電流I(1次電子電
流)に比べて、非常に小さく無視しうる。
Embodiment 2 Hereinafter, an embodiment of the second invention will be described. In the second invention, the measurement of the exposure angle θ is based on the electric resistance measurement method. FIG. 2 shows a measurement example of the present embodiment. It is the same as the basic diagram of the first embodiment except that the electron gun 1 and the stage 8 are connected as an electric circuit. The high-energy electron beam is reduced as much as possible, and the sample 7 is irradiated. High energy ions are irradiated from the ion gun 4 to be etched. First, the thin film sample 7 is set on the stage 8 as it is, and the inside of the apparatus is made high vacuum. When the electron beam is irradiated from the electron gun 1 between the sample and the device, the sample is not charged up,
A single electric circuit is formed across the device cylinder, and the current I
And the voltage V are measured. At this time, the secondary electron current emitted from the sample is very small and can be ignored compared to the sample current I (primary electron current) flowing through the circuit.

【0020】上記の電流Iより抵抗Rを求め、このRを
モニターしながらイオンエッチングを継続して行ない、
エッチング時間と抵抗値との関係をプロットする。図5
(b)は抵抗値のモニター時を示し、基材13と膜12
を通して、一次電子電流が測定され、図5(a)に示す
ように、エッチング時間Cまでは膜厚の減少と共に、抵
抗値Rがエッチング時間に比例して減少し、その後膜と
基材の界面に達すると一定の抵抗値を示す。
A resistance R is obtained from the current I, and ion etching is continuously performed while monitoring the resistance R.
The relationship between the etching time and the resistance value is plotted. FIG.
(B) shows the case where the resistance value is monitored, and the substrate 13 and the film 12 are monitored.
5A, the primary electron current is measured, and as shown in FIG. 5A, the resistance value R decreases in proportion to the etching time as the film thickness decreases until the etching time C. Reaches a certain resistance value.

【0021】すなわち、膜と基材の界面で抵抗値減少勾
配が変化するので、この時点までのエッチング時間を厚
さに換算する。本法は従来法であるAES(オージェ電
子分光)深さ測定でも同様に換算厚さを求めているが、
オージェ電子とは違い脱出深さの影響を除くことがで
き、深さ分解能は向上する。
That is, since the resistance decrease gradient changes at the interface between the film and the substrate, the etching time up to this point is converted into a thickness. In this method, the converted thickness is similarly obtained in the conventional AES (Auger electron spectroscopy) depth measurement.
Unlike Auger electrons, the effect of escape depth can be eliminated and depth resolution is improved.

【0022】[0022]

【発明の効果】請求項1〜3に係る発明は、イオンエッ
チング領域端部であるエッチングで形成される擂鉢状形
状を用いることで、極めて低角度での薄膜断面切り出し
が可能となる。また、光学系の併用により、極めて低傾
斜面の傾斜角度を求めることが可能となる。さらに、請
求項4に係る発明はオージェ電子分析機構が不要なた
め、装置自体がSEM程度の簡易なものとなる。
According to the first to third aspects of the present invention, it is possible to cut out a thin film cross section at an extremely low angle by using a mortar-like shape formed by etching at the end of the ion etching region. Further, by using the optical system together, it is possible to obtain the inclination angle of the extremely low inclination surface. Furthermore, since the invention according to claim 4 does not require an Auger electron analysis mechanism, the apparatus itself is as simple as an SEM.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係る測定装置の概要を示す
図である。
FIG. 1 is a diagram illustrating an outline of a measuring apparatus according to a first embodiment of the present invention.

【図2】本発明の実施例2に係る測定装置の概要を示す
図である。
FIG. 2 is a diagram illustrating an outline of a measuring device according to a second embodiment of the present invention.

【図3】本発明の実施例1に係る2次電子放出量測定法
の概要を示す図である。
FIG. 3 is a diagram showing an outline of a secondary electron emission amount measuring method according to the first embodiment of the present invention.

【図4】本発明の実施例1に係る測定例を示し、(a)
Au蒸着、(b)擂鉢状形状、(c)エッチング部位、
(d)膜厚層断面の幅、(e)露出角度の測定を示す図
である。
FIG. 4 shows a measurement example according to Example 1 of the present invention, and (a)
Au deposition, (b) mortar shape, (c) etching site,
It is a figure which shows the measurement of (d) width of a film thickness layer cross section, and (e) exposure angle.

【図5】本発明の実施例2に係る測定例を示し、(a)
抵抗値の変化、(b)1次電子電流の測定を示す図であ
る。
FIG. 5 shows a measurement example according to Example 2 of the present invention, and (a)
It is a figure which shows the change of a resistance value, and the measurement of (b) primary electron current.

【符号の説明】 1…電子銃 2…収束レンズ 3…対物レンズ 4…イオン銃 5…2次電子検出器 6…オージェ電子検出器 7…サンプル 8…ステージ 9…レーザ光源 10…スクリーン 11…Au 12…膜 13…基材 14…光・レーザ光源[Description of Signs] 1 ... Electron gun 2 ... Convergent lens 3 ... Objective lens 4 ... Ion gun 5 ... Secondary electron detector 6 ... Auger electron detector 7 ... Sample 8 ... Stage 9 ... Laser light source 10 ... Screen 11 ... Au 12 ... film 13 ... substrate 14 ... light / laser light source

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01B 21/00 - 21/32 G01B 11/00 - 11/30 G01B 15/00 - 15/06 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01B 21/00-21/32 G01B 11/00-11/30 G01B 15/00-15/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 薄膜の膜厚測定方法において、サンプル
の事前処理として薄膜上に導電性被覆を施し、該サンプ
ルの表面をエッチングすることによって水平面に対して
一定の傾斜角度を有する薄膜層断面を露出し、該薄膜層
断面の水平面に対する投影露出幅Wをオージェ電子像を
用いて測定し、かつ該薄膜層断面の水平面に対する傾斜
角である露出角度θを求め、該投影露出幅Wおよび露出
角度θを用いてD=Wtan θなる関係から膜厚Dを求め
ることを特徴とする薄膜の膜厚測定方法。
In a method for measuring the thickness of a thin film, a conductive coating is applied on the thin film as a pretreatment of a sample, and a cross section of the thin film layer having a constant inclination angle with respect to a horizontal plane is etched by etching the surface of the sample. Exposed, and the projected exposure width W of the thin film layer section with respect to the horizontal plane is defined as an Auger electron image.
Using the projection exposure width W and the exposure angle θ to determine the film thickness D from the relationship D = Wtan θ. A method for measuring the thickness of a thin film to be used.
【請求項2】 前記露出角度θを光反射法等の光学手段
によって求める請求項1記載の薄膜の膜厚測定方法。
2. The method according to claim 1, wherein the exposure angle θ is obtained by an optical means such as a light reflection method.
【請求項3】 前記露出角度θを2次電子放出量測定法
によって求める請求項1記載の薄膜の膜厚測定方法。
3. The method for measuring the thickness of a thin film according to claim 1, wherein said exposure angle θ is obtained by a secondary electron emission amount measuring method.
【請求項4】 薄膜を設けたサンプルの膜厚測定方法に
おいて、イオンエッチング装置を有する走査型電子顕微
鏡内にサンプルをセットし、一定のエッチング速度でイ
オンエッチングを行いながら、電子ビームを照射し、サ
ンプルに流れる電流値を時々刻々測定し、該電流値から
求まるサンプルの抵抗値をモニターし、該抵抗値の減少
割合がエッチング時間に対して屈曲点を示す時点を認識
し、その時点までのエッチング量の積分値から薄膜の厚
さを求めることを特徴とする薄膜の膜厚測定方法。
4. A method for measuring a film thickness of a sample provided with a thin film, wherein the sample is set in a scanning electron microscope having an ion etching apparatus and irradiated with an electron beam while performing ion etching at a constant etching rate. The current value flowing through the sample is measured every moment, the resistance value of the sample obtained from the current value is monitored, and the point in time at which the rate of decrease in the resistance value indicates a bending point with respect to the etching time is recognized. A method for measuring the thickness of a thin film, wherein the thickness of the thin film is obtained from an integral value of the amount.
JP7121568A 1995-05-19 1995-05-19 Thin film thickness measurement method Expired - Fee Related JP3060889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7121568A JP3060889B2 (en) 1995-05-19 1995-05-19 Thin film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121568A JP3060889B2 (en) 1995-05-19 1995-05-19 Thin film thickness measurement method

Publications (2)

Publication Number Publication Date
JPH08313244A JPH08313244A (en) 1996-11-29
JP3060889B2 true JP3060889B2 (en) 2000-07-10

Family

ID=14814461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121568A Expired - Fee Related JP3060889B2 (en) 1995-05-19 1995-05-19 Thin film thickness measurement method

Country Status (1)

Country Link
JP (1) JP3060889B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897440B1 (en) 1998-11-30 2005-05-24 Fab Solutions, Inc. Contact hole standard test device
JP3749107B2 (en) 1999-11-05 2006-02-22 ファブソリューション株式会社 Semiconductor device inspection equipment
JP3874996B2 (en) 2000-05-30 2007-01-31 ファブソリューション株式会社 Device inspection method and apparatus
JP3847568B2 (en) 2001-03-01 2006-11-22 ファブソリューション株式会社 Semiconductor device manufacturing method
JP4738610B2 (en) 2001-03-02 2011-08-03 株式会社トプコン Contamination evaluation method for substrate surface, contamination evaluation apparatus and semiconductor device manufacturing method
JP3913555B2 (en) 2002-01-17 2007-05-09 ファブソリューション株式会社 Film thickness measuring method and film thickness measuring apparatus
CN101091101A (en) * 2004-12-27 2007-12-19 新科实业有限公司 Method for Measuring the Thickness of Nano Films by Auger Electron Spectroscopy
KR101181274B1 (en) * 2009-12-31 2012-09-11 한국과학기술연구원 Method for evaluating thickness of metal thin film on flexible substrates
JP2014219536A (en) * 2013-05-08 2014-11-20 日立化成株式会社 Optical waveguide
CN115265444B (en) * 2022-09-26 2024-08-16 国标(北京)检验认证有限公司 Method for measuring thickness of film sample by transmission electron microscope

Also Published As

Publication number Publication date
JPH08313244A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
JP3001596B2 (en) Focused ion beam processing apparatus and processing method
JP4801903B2 (en) Method and apparatus for endpoint detection in etching using an electron beam
EP0377446A2 (en) Surface analysis method and apparatus
EP0615123A1 (en) Method and apparatus for surface analysis
JP3060889B2 (en) Thin film thickness measurement method
US4569592A (en) Plasma monitor
US8530836B2 (en) Electron-beam dimension measuring apparatus and electron-beam dimension measuring method
US5594246A (en) Method and apparatus for x-ray analyses
US20030080292A1 (en) System and method for depth profiling
US6573497B1 (en) Calibration of CD-SEM by e-beam induced current measurement
US10054557B2 (en) Method for measuring the mass thickness of a target sample for electron microscopy
US4746571A (en) X-ray detector efficiency standard for electron microscopes
JP3323042B2 (en) Method and apparatus for measuring three-dimensional element concentration distribution
EP0844644A2 (en) Apparatus and method for analyzing microscopic area
US7189968B2 (en) Sample measurement method and measurement sample base material
EP1049928B1 (en) Apparatus for x-ray analysis in grazing exit conditions
US7365320B2 (en) Methods and systems for process monitoring using x-ray emission
JPH0712763A (en) Surface analysis method and surface analysis device
Nunn Application of Monte Carlo modelling in the measurement of photomask linewidths at the National Physical Laboratory
JPH09145344A (en) Film thickness measurement method
JPH08152418A (en) Photoelectric spectrometric measuring device
JPH0692946B2 (en) Method and apparatus for inspecting the structure of a diaphragm surface
JPH0361841A (en) Attachment for X-ray absorption spectrum measurement
JP2004286638A (en) Analysis method
JPH1183766A (en) X-ray reflectivity measurement device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees