[go: up one dir, main page]

JP3060649B2 - Semiconductor device and driving method thereof - Google Patents

Semiconductor device and driving method thereof

Info

Publication number
JP3060649B2
JP3060649B2 JP3257334A JP25733491A JP3060649B2 JP 3060649 B2 JP3060649 B2 JP 3060649B2 JP 3257334 A JP3257334 A JP 3257334A JP 25733491 A JP25733491 A JP 25733491A JP 3060649 B2 JP3060649 B2 JP 3060649B2
Authority
JP
Japan
Prior art keywords
conductivity type
diffusion layer
floating diffusion
charge transfer
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3257334A
Other languages
Japanese (ja)
Other versions
JPH05102201A (en
Inventor
裕將 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3257334A priority Critical patent/JP3060649B2/en
Publication of JPH05102201A publication Critical patent/JPH05102201A/en
Application granted granted Critical
Publication of JP3060649B2 publication Critical patent/JP3060649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に関し、特に
電荷を電圧に変換する素子部を含む半導体装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device including an element for converting a charge into a voltage.

【0002】[0002]

【従来の技術】入射光や電気信号等の情報入力を電荷の
形で蓄積および転送して信号として取り出す半導体装置
は撮像装置やメモリーなど幅広い用途に使われている。
図3は従来の半導体装置の一例の断面図、図4(a),
(b)はその電荷転送を説明するためのポテンシャル図
である。
2. Description of the Related Art Semiconductor devices which accumulate and transfer information input such as incident light and electric signals in the form of electric charges and extract them as signals are used in a wide range of applications such as imaging devices and memories.
FIG. 3 is a cross-sectional view of an example of a conventional semiconductor device, and FIGS.
(B) is a potential diagram for explaining the charge transfer.

【0003】この従来例は埋込みチャンネル型2相駆動
電荷転送素子の出力部であり、まず図3に示すように電
位V3 に固定されたN型半導体基板1内に形成された接
地電位のP型不純物ウェル層2の表面に絶縁膜3を介し
て多結晶シリコンからなる第1のゲート電極4と、基板
および第1のゲート電極4とこの上の絶縁膜5を介して
多結晶シリコンからなる第2のゲート電極6を形成す
る。第1のゲート電極4および第2のゲート電極6によ
って作られる電荷転送部には、埋込みチャンネル転送の
ため電荷転送部直下の半導体表面にN型電荷転送領域7
を形成し、かつ2相クロックによる駆動で電荷転送を実
現するため、電位障壁用のP型障壁用領域8を、間隔を
おいて第1のゲート電極4の隙間の第2のゲート電極6
直下の半導体表面に作る。
This conventional example is an output section of a buried channel type two-phase drive charge transfer device. First, as shown in FIG. 3, a ground potential P of a ground potential formed in an N-type semiconductor substrate 1 fixed at a potential V 3. A first gate electrode 4 made of polycrystalline silicon on the surface of the type impurity well layer 2 with an insulating film 3 interposed therebetween, and a substrate and the first gate electrode 4 made of polycrystalline silicon with an insulating film 5 thereover; A second gate electrode 6 is formed. The charge transfer portion formed by the first gate electrode 4 and the second gate electrode 6 has an N-type charge transfer region 7 on the semiconductor surface immediately below the charge transfer portion for buried channel transfer.
In order to realize the charge transfer by driving by the two-phase clock, the P-type barrier region 8 for the potential barrier is formed with the second gate electrode 6 in the gap between the first gate electrodes 4 at intervals.
It is made on the semiconductor surface directly below.

【0004】そして第1及び第2のゲート電極4,6を
それぞれ1組として交互にφ1 及びφ2 のたがいに逆相
のクロック電圧を印加させることで、半導体表面の電位
ポテンシャルを制御し、電荷を出力回路部へ転送する。
またこの電荷転送部最終段に隣接してN型電荷転送領域
7上に絶縁膜3を介して多結晶シリコンで作られ、電位
2 に固定された出力用ゲート電極9と転送されてきた
電荷を電圧に変換するためのN型不純物層で形成された
N型浮遊拡散層10と、これに隣接してN型浮遊拡散層
10をソースとし、電位V1 に固定されたN型不純物層
18をドレインに、かつ多結晶シリコンで作られたφR
クロック印加電極11をゲートとするトランジスタを、
ゲート部直下の半導体表面にN型不純物層12を形成し
て作る。また、N型浮遊拡散層10に接続することによ
って電荷信号を電圧に変換して信号として外部へ取り出
すための出力用トランジスタ13を設ける。
The potential potential on the semiconductor surface is controlled by alternately applying opposite-phase clock voltages to φ 1 and φ 2 as a set of the first and second gate electrodes 4 and 6, respectively. The charge is transferred to the output circuit.
Also made of polycrystalline silicon through the insulating film 3 on the N-type charge transfer region 7 adjacent to the charge transfer section final stage, electric charge transferred to the output gate electrode 9 fixed to the potential V 2 N-type floating diffusion layer 10 formed of an N-type impurity layer for converting the voltage to a voltage, and an N-type impurity layer 18 having an N-type floating diffusion layer 10 as a source adjacent thereto and fixed at a potential V 1. To the drain and φ R made of polycrystalline silicon
A transistor whose gate is the clock application electrode 11 is
It is formed by forming an N-type impurity layer 12 on the semiconductor surface immediately below the gate. Further, an output transistor 13 for converting the charge signal into a voltage by connecting to the N-type floating diffusion layer 10 and extracting the voltage to the outside is provided.

【0005】このようにして構成された従来の半導体装
置の駆動方法は、まず電極11に正の電圧を印加してN
型浮遊拡散層10の電位をドレイン電圧V1に設定し、
しかる後電極9を接地電位にして、N型浮遊拡散層10
とV1 電位のドレイン拡散層との電気的接続を切り離
す。この状態での図3の電荷転送部のポテンシャルを図
4(a)に示す。
In the conventional method of driving a semiconductor device having the above-described structure, first, a positive voltage is applied to the electrode 11 to
The potential of the floating diffusion layer 10 is set to the drain voltage V 1 ,
Thereafter, the electrode 9 is set to the ground potential, and the N-type floating diffusion layer 10 is formed.
Disconnecting the electrical connection between the drain diffusion layer of the V 1 voltage and. FIG. 4A shows the potential of the charge transfer unit in FIG. 3 in this state.

【0006】ここでφ1 クロック電圧は高く、φ2 クロ
ック電圧は低い状態であり、図4(a)の左より転送さ
れて来た電荷14は、φ1 クロック印加用の第1のゲー
ト電極4下のN型電荷転送領域7のポテンシャル井戸に
蓄えられている。次にφ1 ,φ2 クロックの電圧を逆転
させ、φ1 クロックの電圧を低くφ2 クロックの電圧を
高くする。この状態のポテンシャルを図4(b)に示
す。これよりわかるようにφ1 クロック下のポテンシャ
ル井戸に蓄えられた電荷14は、出力用ゲート電極9直
下の半導体表面を通ってN型浮遊拡散層10へ流れ込
む。
Here, the φ 1 clock voltage is high and the φ 2 clock voltage is low, and the electric charge 14 transferred from the left side of FIG. 4A is the first gate electrode for applying the φ 1 clock. 4 is stored in the potential well of the N-type charge transfer region 7 below. Then phi 1, by reversing the voltage of phi 2 clocks, increasing the low phi 2 clock voltage a voltage of phi 1 clock. FIG. 4B shows the potential in this state. As can be seen, the charge 14 stored in the potential well under the φ1 clock flows into the N-type floating diffusion layer 10 through the semiconductor surface immediately below the output gate electrode 9.

【0007】このように転送されてきた電荷量をQとし
て、N型浮遊拡散層10の容量をCとすると、電荷が流
入する前後のN型浮遊拡散層8の電位ΔVは、 ΔV=Q/C と表わすことができる。
Assuming that the amount of charges thus transferred is Q and the capacitance of the N-type floating diffusion layer 10 is C, the potential ΔV of the N-type floating diffusion layer 8 before and after the charge flows in is ΔV = Q / C.

【0008】従って、この電位差ΔVを出力トランジス
タ13を介して出力すれば、この従来例の半導体装置内
に蓄積された情報を読取ることができる。
Therefore, if the potential difference ΔV is output via the output transistor 13, information stored in the conventional semiconductor device can be read.

【0009】ここでN型浮遊拡散層10の容量Cとは、
N型浮遊拡散層10とP型不純物ウェル層2との容量、
N型浮遊拡散層10と出力用ゲート9間の容量、N型浮
遊拡散層10とゲート電極(φR )間の容量、および出
力トランジスタ13のゲート容量の和でほぼ決定される
ものである。
Here, the capacitance C of the N-type floating diffusion layer 10 is
The capacitance between the N-type floating diffusion layer 10 and the P-type impurity well layer 2,
The capacitance is substantially determined by the sum of the capacitance between the N-type floating diffusion layer 10 and the output gate 9, the capacitance between the N-type floating diffusion layer 10 and the gate electrode (φ R ), and the gate capacitance of the output transistor 13.

【0010】以上述べた浮遊拡散層の全容量Cによって
出力信号の感度が決定されることになる。すなわち高感
度の信号出力を得るには、前述の浮遊拡散層の全容量を
小さくする必要がある。
The sensitivity of the output signal is determined by the total capacitance C of the floating diffusion layer described above. That is, in order to obtain a high-sensitivity signal output, it is necessary to reduce the total capacitance of the floating diffusion layer.

【0011】[0011]

【発明が解決しようとする課題】上述した従来の電荷転
送装置では、信号電荷に対して高感度な出力信号を得る
には浮遊拡散層の全容量Cを小さくする必要があるが、
浮遊拡散層の面積を縮小させるものも限界があり、高感
度の信号出力ができないという欠点がある。
In the conventional charge transfer device described above, it is necessary to reduce the total capacitance C of the floating diffusion layer in order to obtain an output signal having high sensitivity to signal charges.
There is a limit to what can reduce the area of the floating diffusion layer, and there is a disadvantage that high-sensitivity signal output cannot be performed.

【0012】[0012]

【課題を解決するための手段】本発明の半導体装置は、
半導体基板上に形成された前記半導体基板と反対導電型
の不純物領域内に、電荷転送部と、前記電荷転送部より
転送された信号電荷を受け取る浮遊拡散層とを有する半
導体装置において、前記半導体基板電位により前記浮遊
拡散層電位を基準電位に設定するものである。
According to the present invention, there is provided a semiconductor device comprising:
In a semiconductor device having a charge transfer portion and a floating diffusion layer receiving a signal charge transferred from the charge transfer portion in an impurity region of a conductivity type opposite to that of the semiconductor substrate formed on the semiconductor substrate, the semiconductor substrate The floating diffusion layer potential is set to a reference potential by a potential.

【0013】[0013]

【実施例】次に本発明の実施例について図面を参照して
説明する。図1は本発明の一実施例の断面図であり、図
3従来例と同一箇所は同一番号で示す。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of one embodiment of the present invention, and the same parts as those in the conventional example of FIG.

【0014】この実施例はφR クロック電圧を印加する
N型半導体基板1上に形成された接地電位P型不純物ウ
ェル層2内の電荷転送部及び出力部を有する電荷転送素
子であり、N型浮遊拡散層10直下のP型不純物ウェル
層15のみは、他の領域のP型不純物ウェル層2より浅
くする。なお、絶縁膜3,5、ゲート電極4,6,9、
N型電荷転送領域7、P型障壁用領域8、出力トランジ
スタ13は従来と同じである。
This embodiment is a charge transfer element having a charge transfer portion and an output portion in a ground potential P-type impurity well layer 2 formed on an N-type semiconductor substrate 1 to which a φ R clock voltage is applied. Only the P-type impurity well layer 15 immediately below the floating diffusion layer 10 is made shallower than the P-type impurity well layer 2 in other regions. The insulating films 3, 5 and the gate electrodes 4, 6, 9,
The N-type charge transfer region 7, the P-type barrier region 8, and the output transistor 13 are the same as those in the related art.

【0015】このようにして構成された本発明の半導体
装置の駆動方法は、まずN型半導体基板1にφR パルス
により正の高い電圧を印加させることでP型不純物ウェ
ル15を空乏化させ、N型浮遊拡散層10の電位をP型
不純物ウェル15の空乏化電圧に対応する電位にセット
し、しかるのちφR パルスにより低い電圧を印加する。
In the driving method of the semiconductor device according to the present invention, the P-type impurity well 15 is depleted by applying a high positive voltage to the N-type semiconductor substrate 1 by a φ R pulse. the potential of the N-type floating diffusion layer 10 is set to a potential corresponding to the depletion voltage of the P-type impurity well 15, a low voltage is applied by later phi R pulses accordingly.

【0016】この状態での図1の電荷転送部のポテンシ
ャルを図2(a)に示す。
FIG. 2A shows the potential of the charge transfer section of FIG. 1 in this state.

【0017】ここでφ1 クロックは高く、φ2 クロック
は低い状態であり、図2(a)の左より転送されてきた
電荷14はφ1 クロック印加用の第1のゲート電極4F
のN型電荷転送領域7のポテンシャル井戸に蓄えられて
いる。次にφ1 ,φ2 クロック電圧を逆転させ、図2
(b)に示すように、N型浮遊拡散層10へ電荷14へ
流し込む。このようにして転送されてきた電荷QをN型
浮遊拡散層10で出力信号電圧に変換する。そして、N
型半導体基板1にφR パルスにより正の高い電圧を印加
させることで、電荷QをN型半導体基板へパンチスルー
トランジスタ動作により引き抜き、N型浮遊拡散層10
の電位をセットする。
Here, the φ 1 clock is in a high state and the φ 2 clock is in a low state, and the electric charge 14 transferred from the left side of FIG. 2A is the first gate electrode 4F for applying the φ 1 clock.
Are stored in the potential well of the N-type charge transfer region 7. Next, the φ 1 and φ 2 clock voltages are reversed, and FIG.
As shown in (b), the charges 14 flow into the N-type floating diffusion layer 10. The charge Q thus transferred is converted into an output signal voltage by the N-type floating diffusion layer 10. And N
A positive high voltage is applied to the N-type semiconductor substrate 1 by a φ R pulse, whereby the charge Q is drawn out to the N-type semiconductor substrate by a punch-through transistor operation, and the N-type floating diffusion layer 10 is formed.
Set the potential of.

【0018】このようにして作られる本発明は、例えば
N型比抵抗30Ω・cmの半導体基板内に、表面濃度が
2×1015cm-3のP型不純物ウェル層を作り、1016
cm-3以上の不純物濃度を持つN型浮遊拡散層を上記P
型不純物ウェル内に作ることで、N型半導体基板にφR
パルスとして18Vを印加することで、N型浮遊拡散層
電位を10Vにセットすることができ、これにより出力
回路部が実現できた。
[0018] The present invention made in this way, for example, in a semiconductor substrate of N-type resistivity 30 [Omega · cm, the surface density is created a P-type impurity well layer of 2 × 10 15 cm -3, 10 16
The N-type floating diffusion layer having an impurity concentration of cm -3 or higher the P
By forming it in the n-type impurity well, φ R
By applying 18 V as a pulse, the potential of the N-type floating diffusion layer can be set to 10 V, thereby realizing an output circuit section.

【0019】以上述べた本発明では、従来例で存在する
N型浮遊拡散層電位をセットするゲート電極部が不要と
なり、N型浮遊拡散層の容量は大幅に小さくなる。上記
実施例では、従来例でN型浮遊拡散層容量が0.02p
Fだったものが、0.012pFにすることができた。
In the present invention described above, the gate electrode portion for setting the potential of the N-type floating diffusion layer, which is present in the conventional example, becomes unnecessary, and the capacitance of the N-type floating diffusion layer is greatly reduced. In the above embodiment, the N-type floating diffusion layer capacitance is 0.02 p
What was F could be reduced to 0.012 pF.

【0020】[0020]

【発明の効果】以上説明したように本発明では、浮遊拡
散層部の全容量を小さくするため、浮遊拡散層電位をセ
ットする方法を従来例のゲート電極によるMOS型トラ
ンジスタから、半導体基板へのパンチスルートランジス
タに変更し、これにより信号検出感度を改善できる効果
がある。
As described above, according to the present invention, in order to reduce the total capacitance of the floating diffusion layer, the method of setting the potential of the floating diffusion layer is changed from a conventional MOS transistor with a gate electrode to a semiconductor substrate. Changing to a punch-through transistor has the effect of improving signal detection sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の断面図。FIG. 1 is a sectional view of one embodiment of the present invention.

【図2】本発明の実施例の電荷転送を説明するためのポ
テンシャル図。
FIG. 2 is a potential diagram for explaining charge transfer according to the embodiment of the present invention.

【図3】従来の半導体装置の一例の断面図。FIG. 3 is a cross-sectional view of an example of a conventional semiconductor device.

【図4】従来の半導体装置の電荷転送を説明するための
ポテンシャル図。
FIG. 4 is a potential diagram for explaining charge transfer of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 N型半導体基板 2,15 P型不純物ウェル 3,5 絶縁膜 4,6,9,11 ゲート電極 10 N型浮遊拡散層 13 出力用トランジスタ DESCRIPTION OF SYMBOLS 1 N-type semiconductor substrate 2, 15 P-type impurity well 3, 5 Insulating film 4, 6, 9, 11 Gate electrode 10 N-type floating diffusion layer 13 Output transistor

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1導電型半導体基板内に設けた第2導
電型不純物ウエルと、前記第2導電型ウエル内に設けた
第1導電型電荷転送領域と、電気的に絶縁して互いに隣
接した第1、第2のゲート電極から成る一対のゲート電
極が絶縁膜を間に介在して前記第1導電型電荷転送領域
上に複数並んだゲート電極列と、前記第1導電型電荷転
送領域に隣接し、前記第1導電型電荷転送領域から転送
された電荷を受け取る第1導電型浮遊拡散層とを備え、
前記第2導電型不純物ウエルの前記第1導電型浮遊拡散
層直下の領域を他のウエル領域よりも浅くし、前記第1
導電型半導体基板にパルス電圧を印加することにより前
記第1導電型浮遊拡散層内の電荷を前記第1導電型半導
体基板に引き抜き前記第1導電型浮遊拡散層の電位をセ
ットすることを特徴とする半導体装置。
A second conductivity type impurity well provided in the first conductivity type semiconductor substrate; and a first conductivity type charge transfer region provided in the second conductivity type well, which are electrically insulated and adjacent to each other. A gate electrode row in which a plurality of paired gate electrodes composed of the first and second gate electrodes are arranged on the first conductivity type charge transfer region with an insulating film interposed therebetween;
A first conductivity type floating diffusion layer that is adjacent to the transfer region and receives the charge transferred from the first conductivity type charge transfer region;
A region of the second conductive type impurity well immediately below the first conductive type floating diffusion layer is made shallower than other well regions ,
By applying a pulse voltage to the conductive type semiconductor substrate,
The charge in the first conductivity type floating diffusion layer is transferred to the first conductivity type semiconductor.
To the body substrate and set the potential of the first conductivity type floating diffusion layer to
A semiconductor device characterized by being cut .
【請求項2】 第1導電型半導体基板内に設けた第2導
電型不純物ウエルと、前記第2導電型ウエル内に設けた
第1導電型電荷転送領域と、電気的に絶縁して互いに隣
接した第1、第2のゲート電極から成る一対のゲート電
極が絶縁膜を間に介在して前記第1導電型電荷転送領域
上に複数並んだゲート電極列と、前記第1導電型電荷転
送領域に隣接し、前記第1導電型電荷転送領域から転送
された電荷を受け取る第1導電型浮遊拡散層とを備え、
前記第2導電型不純物ウエルの前記第1導電型浮遊拡散
層直下の領域が他のウエル領域よりも浅い半導体装置の
駆動方法であって、前記半導体基板に所定の電圧を印加
して前記第2導電型不純物ウエルを空乏化して、前記浮
遊拡散層の電位を前記第2導電型不純物ウエルの空乏化
電圧に対応する電位にセットした後、前記ゲート電極列
にクロックパルスを印加して前記浮遊拡散層に電荷を転
送することを特徴とする半導体装置の駆動方法。
2. A second conductivity type impurity well provided in a first conductivity type semiconductor substrate and a first conductivity type charge transfer region provided in said second conductivity type well, which are electrically insulated and adjacent to each other. A gate electrode row in which a plurality of paired gate electrodes composed of the first and second gate electrodes are arranged on the first conductivity type charge transfer region with an insulating film interposed therebetween; and the first conductivity type charge transfer region. And a first conductivity type floating diffusion layer for receiving the charge transferred from the first conductivity type charge transfer region.
A method for driving a semiconductor device, wherein a region of the second conductivity type impurity well immediately below the first conductivity type floating diffusion layer is shallower than other well regions, wherein a predetermined voltage is applied to the semiconductor substrate to form the second conductivity type impurity diffusion well. After the conductivity type impurity well is depleted and the potential of the floating diffusion layer is set to a potential corresponding to the depletion voltage of the second conductivity type impurity well, a clock pulse is applied to the gate electrode row to form the floating diffusion layer. A method for driving a semiconductor device, comprising transferring electric charges to a layer.
JP3257334A 1991-10-04 1991-10-04 Semiconductor device and driving method thereof Expired - Lifetime JP3060649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3257334A JP3060649B2 (en) 1991-10-04 1991-10-04 Semiconductor device and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3257334A JP3060649B2 (en) 1991-10-04 1991-10-04 Semiconductor device and driving method thereof

Publications (2)

Publication Number Publication Date
JPH05102201A JPH05102201A (en) 1993-04-23
JP3060649B2 true JP3060649B2 (en) 2000-07-10

Family

ID=17304923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3257334A Expired - Lifetime JP3060649B2 (en) 1991-10-04 1991-10-04 Semiconductor device and driving method thereof

Country Status (1)

Country Link
JP (1) JP3060649B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885160B2 (en) * 1995-12-25 1999-04-19 日本電気株式会社 Charge transfer device and method of manufacturing the same
DE69738645T2 (en) * 1996-05-22 2009-06-10 Eastman Kodak Co. Active pixel sensor with breakthrough reset structure and suppression of crosstalk signal
JP2004007833A (en) * 2003-08-28 2004-01-08 Nikon Corp Solid state imaging unit

Also Published As

Publication number Publication date
JPH05102201A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
US4984045A (en) Output sensor of charge transfer device
US4012759A (en) Bulk channel charge transfer device
US5191398A (en) Charge transfer device producing a noise-free output
JP4295740B2 (en) Charge coupled device image sensor
JPS588150B2 (en) How a charge-coupled semiconductor device operates
JPH0518465B2 (en)
US5892251A (en) Apparatus for transferring electric charges
JP3060649B2 (en) Semiconductor device and driving method thereof
JPH07106553A (en) Solid state image pickup element
JPH06216161A (en) Pseudo two-phase charge-coupled device with narrow channel effect
JP2572181B2 (en) CCD image element
US5204989A (en) Charge sensing device
JP3152920B2 (en) Charge transfer device and method of manufacturing the same
JPH04133336A (en) Charge transfer device
JP2993112B2 (en) Charge transfer device
JP2877183B2 (en) Charge transfer device
JP3578611B2 (en) Solid-state imaging device
JPS61123172A (en) solid state imaging device
JPS63300561A (en) Semiconductor device
JPS6351670A (en) Solid-state image pickup device
JPH0555543A (en) Semiconductor device
JPH01283870A (en) Charge transfer device
JPH0760895B2 (en) Charge coupled device and driving method thereof
JPS603717B2 (en) charge transfer device
JPS6313280B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000328