[go: up one dir, main page]

JP3049312B2 - Crosslinked titanium-niobium layered composite oxide - Google Patents

Crosslinked titanium-niobium layered composite oxide

Info

Publication number
JP3049312B2
JP3049312B2 JP9364890A JP36489097A JP3049312B2 JP 3049312 B2 JP3049312 B2 JP 3049312B2 JP 9364890 A JP9364890 A JP 9364890A JP 36489097 A JP36489097 A JP 36489097A JP 3049312 B2 JP3049312 B2 JP 3049312B2
Authority
JP
Japan
Prior art keywords
composite oxide
layered composite
tinbo
layers
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9364890A
Other languages
Japanese (ja)
Other versions
JPH11180715A (en
Inventor
官 文 峰 上
田 章 吉
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP9364890A priority Critical patent/JP3049312B2/en
Publication of JPH11180715A publication Critical patent/JPH11180715A/en
Application granted granted Critical
Publication of JP3049312B2 publication Critical patent/JP3049312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光化学変換、光を
用いた合成化学、環境汚染物質の除去処理等に有用な光
触媒や吸着剤など、及びその製造方法に関する。そし
て、より詳細には、K[TiNbO5] を用いて、その層間を修
飾することにより、より優れた材料の製造方法に関する
ものである。
The present invention relates to a photocatalyst and an adsorbent useful for photochemical conversion, synthetic chemistry using light, removal treatment of environmental pollutants, and the like, and a method for producing the same. More specifically, the present invention relates to a method for manufacturing a more excellent material by modifying the interlayer using K [TiNbO 5 ].

【0002】[0002]

【従来の技術】酸化チタン(TiO2)に代表される、光応
答性半導体特性を有する金属化合物を利用した半導体光
触媒反応については、1969年以来、多くの研究がな
さてきており、様々な分野におけるその潜在的有用性が
明らかになりつつある。
2. Description of the Related Art Since 1969, much research has been conducted on a semiconductor photocatalytic reaction using a metal compound having photoresponsive semiconductor characteristics represented by titanium oxide (TiO 2 ). Its potential utility is becoming apparent.

【0003】上記光応答性半導体特性を有する金属化合
物は、その結晶分子における価電子帯と伝導帯との間の
エネルギーギャップである「禁止帯」の値以上のエネル
ギーを有する光を吸収すると、価電子帯の電子が伝導帯
に光励起されて、伝導帯には自由電子が、価電子帯には
正孔が生成し、これらがそれぞれ還元反応と酸化反応を
起こすことができれば、光触媒反応が進行する。しか
し、半導体光触媒によって水の光分解が起こるために
は、半導体のバンド幅が水の電解圧(理論値1.23
V)より大きくなければならず、さらに、伝導体の電子
が水を還元でき、かつ価電子帯の正孔が水を酸化できる
能力がなければならない。すなわち、伝導帯の下端が水
からの水素発生電位よりマイナス側に、価電子帯の上端
が酸素発生電位よりプラス側に位置していなくてはなら
ない。この制約のために、理論的に水を完全分解できる
半導体の種類は限られている。
A metal compound having the above-mentioned photoresponsive semiconductor properties absorbs light having an energy equal to or greater than the value of a “forbidden band” which is an energy gap between a valence band and a conduction band in a crystal molecule. Electrons in the electronic band are photoexcited into the conduction band, producing free electrons in the conduction band and holes in the valence band. If these can cause reduction and oxidation reactions, respectively, the photocatalytic reaction proceeds. . However, in order for photodecomposition of water to occur by the semiconductor photocatalyst, the bandwidth of the semiconductor is determined by the electrolytic pressure of water (theoretical value: 1.23).
V), and the ability of the conductor electrons to reduce water and the valence band holes to oxidize water. That is, the lower end of the conduction band must be located on the minus side of the hydrogen generation potential from water, and the upper end of the valence band must be located on the plus side of the oxygen generation potential. Due to this limitation, the types of semiconductors that can completely decompose water theoretically are limited.

【0004】上記の金属化合物(TiO2)を主体とする光
触媒を製造する方法としては、無機材料粉末を用いて、
直接高温焼結させる方法、化学処理により、半導体に一
層優れた光応答性を付与するために、半導体に金属或い
は金属化合物の水溶液を吸着させた後、この半導体材料
に吸着した上記金属或いは金属化合物を酸化、還元、或
いは還元後に一部分酸化する方法、ゾルーゲル方法等が
これまで知られている。
[0004] As a method for producing a photocatalyst mainly containing the above metal compound (TiO 2 ), an inorganic material powder is used.
A method of directly sintering at a high temperature, by chemical treatment, in order to impart more excellent photoresponsiveness to the semiconductor, after adsorbing an aqueous solution of a metal or metal compound on the semiconductor, and then adsorbing the metal or metal compound on the semiconductor material A method of oxidizing, reducing, or partially oxidizing after reduction, a sol-gel method, and the like have been known.

【0005】ところで、上記の光応答性半導体特性を有
する金属化合物を用いた光触媒においては、半導体のバ
ンド幅が大きすぎるため、太陽光の可視光部分を吸収で
きず、ほぼ紫外光のみを吸収し、また光エネルギーによ
る励起により生じた電子と正孔が容易に再結合しやす
く、種々の反応系における反応量子収率が容易には上が
らないと言う問題点がある。
In the photocatalyst using a metal compound having the above-mentioned photoresponsive semiconductor characteristics, the semiconductor has a too large bandwidth, so that it cannot absorb the visible light portion of sunlight but absorbs almost only ultraviolet light. Further, there is a problem that electrons and holes generated by excitation by light energy are easily recombined, and the reaction quantum yield in various reaction systems is not easily increased.

【0006】最近、層状複合酸化物は光応答性半導体特
性を有する光触媒として報告されている。光触媒として
層状複合酸化物を用いる時の一つの魅力的な点は、用い
る元素に種々の組み合わせが可能なことである。
Recently, layered composite oxides have been reported as photocatalysts having photoresponsive semiconductor properties. One attractive point when using a layered composite oxide as a photocatalyst is that various combinations of the elements used are possible.

【0007】一般に、層状複合酸化物を用いて、高機能
の光触媒、例えば可視光による水の水素と酸素への完全
分解触媒を調整する際には、層間を如何に修飾するか
が、重要な問題となる。しかし、層間電荷密度が高いた
め、層間距離を拡大しにくく、層間を修飾することは困
難であり、高機能触媒が得られにくいという欠点があ
る。
In general, when a highly functional photocatalyst, for example, a catalyst for completely decomposing water into hydrogen and oxygen by visible light, is prepared using a layered composite oxide, it is important how the layers are modified. It becomes a problem. However, since the interlayer charge density is high, it is difficult to increase the interlayer distance, it is difficult to modify the interlayer, and it is difficult to obtain a high-performance catalyst.

【0008】[0008]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、層状複合酸化物の層間距離を拡大して層
間を修飾し、高機能光触媒として有用な架橋型層状複合
酸化物を効率よく製造する方法を提供する目的としてな
されたものである。
SUMMARY OF THE INVENTION Under such circumstances, the present invention provides a crosslinked layered composite oxide useful as a high-performance photocatalyst by modifying the interlayer by increasing the interlayer distance of the layered composite oxide. The purpose of the present invention is to provide a method for efficiently producing a.

【0009】[0009]

【課題を解決するための手段】本発明者らは、層状複合
酸化物の層間を修飾する方法について鋭意研究を重ねた
結果、高温反応により調製した層状複合酸化物を用い、
これをプロトン交換処理したのち、長鎖アルキルアミン
のインターカレーション処理、テトラアルコキシシラン
による処理及び焼成処理を順次施すことにより、層間に
シリカの支柱を有する架橋型層状複合酸化物が容易に得
られることを見出し、この知見に基づいて本発明を完成
するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies on a method of modifying the interlayer of a layered composite oxide, and as a result, using a layered composite oxide prepared by a high-temperature reaction,
After this is subjected to a proton exchange treatment, a long-chain alkylamine intercalation treatment, a treatment with tetraalkoxysilane, and a calcination treatment are sequentially performed, whereby a crosslinked layered composite oxide having pillars of silica between layers can be easily obtained. This led to the completion of the present invention based on this finding.

【0010】すなわち、本発明は、層状構造を有するA
[TiNbO5](A=K、Rb、Tl、Cs)複合酸化物の層間に支柱
を立てて物理的に層間距離を拡げ、その後で層空間を修
飾することを可能性にすることにより、高表面積、高活
性、高安定性を有する層間架橋された触媒の製造方法を
提供する。
[0010] That is, the present invention provides an A having a layered structure.
[TiNbO 5 ] (A = K, Rb, Tl, Cs) by increasing the distance between the layers of the composite oxide by physically extending columns and then modifying the layer space, Provided is a method for producing an interlayer crosslinked catalyst having a surface area, a high activity and a high stability.

【0011】[0011]

【発明の実施の形態】本発明方法においては、層状複合
酸化物として、A[TiNbO5](A=K、Rb、Tl、Cs)で表わさ
れる化合物が用いられるが、この層状複合酸化物は高温
反応によって調製される。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, a compound represented by A [TiNbO 5 ] (A = K, Rb, Tl, Cs) is used as a layered composite oxide. It is prepared by a high temperature reaction.

【0012】例としては、K[TiNbO5]の層状複合酸化物
は、通常用いられている方法、例えば酸化ニオブ、酸化
チタン及び炭酸カリウム粉末を、それぞれ所定の割合で
混合し、この粉末混合物を、空気などの酸素含有ガス雰
囲気下に、950〜1100℃で焼成することにより調
製される。
As an example, the layered composite oxide of K [TiNbO 5 ] can be prepared by a commonly used method, for example, mixing niobium oxide, titanium oxide and potassium carbonate powders at predetermined ratios, and mixing this powder mixture. It is prepared by baking at 950 to 1100 ° C. in an oxygen-containing gas atmosphere such as air.

【0013】本発明方法においては、このようにして調
製された前記の層状複合酸化物に対し、まず、プロトン
交換処理を施すことが必要である。次いで、このプロト
ン交換層状複合酸化物に長鎖アルキルアミンをインター
カレートする。この際用いられる長鎖アルキルアミンと
しては、炭素数5〜15程度のものが好ましく、特にn
−ヘキシルアミンが好適である。このインターカレーシ
ョン反応は、低級アルコールなどの適当な溶媒中におい
て、長鎖アルキルアミンと前記プロトン変換層状複合酸
化物とを常温で50〜200時間程度接触させることに
より、行うことができる。この反応により、層状複合酸
化物の層間に、長鎖アルキルアミンがインターカレート
され、層間距離が拡大する。
In the method of the present invention, it is necessary to first apply a proton exchange treatment to the layered composite oxide thus prepared. Next, a long-chain alkylamine is intercalated into the proton exchange layered composite oxide. The long-chain alkylamine used at this time is preferably one having about 5 to 15 carbon atoms, particularly n
-Hexylamine is preferred. This intercalation reaction can be performed by contacting the long-chain alkylamine with the proton-converted layered composite oxide at room temperature for about 50 to 200 hours in an appropriate solvent such as a lower alcohol. By this reaction, the long-chain alkylamine is intercalated between the layers of the layered composite oxide, and the interlayer distance is increased.

【0014】次に、このようにして長鎖アルキルアミン
がインターカレートされた層状複合酸化物にテトラアル
コキシシランを反応させる。この際用いられるテトラア
ルコキシシランとしては、アルコキシル基がエトキシ
基、n−プロポキシ基、イソプロポキシ基などの低級ア
ルコキシル基であるものが好ましく、特にテトラエトキ
シシランが好適である。この反応は、一般に40〜80
℃程度において50〜200時間程度行われる。
Next, tetraalkoxysilane is reacted with the layered composite oxide in which the long-chain alkylamine has been intercalated as described above. As the tetraalkoxysilane used at this time, those in which the alkoxyl group is a lower alkoxyl group such as an ethoxy group, an n-propoxy group, and an isopropoxy group are preferable, and tetraethoxysilane is particularly preferable. This reaction is generally 40-80
This is performed at about 50 ° C. for about 50 to 200 hours.

【0015】最後に、空気などの酸素含有ガス雰囲気下
に、400〜600℃の範囲の温度において焼成処理
し、層間中の有機物を燃焼させる。この焼成処理によ
り、層間にシリカの支柱を有する架橋型層状複合酸化物
が得られる。このものは多孔体であって、大きな表面積
を有するとともに、高温安定性も良好である。
Finally, a baking treatment is performed at a temperature in the range of 400 to 600 ° C. in an atmosphere of an oxygen-containing gas such as air to burn organic substances in the interlayer. By this baking treatment, a crosslinked layered composite oxide having silica pillars between layers is obtained. This is a porous body, has a large surface area, and has good high-temperature stability.

【0016】[0016]

【発明の効果】本発明によれば、層状複合酸化物を用
い、インターカレーション反応を利用して、層間にシリ
カの支柱を有する架橋型層状複合酸化物からなる多孔体
を効率よく製造することができる。このものは、高機能
光触媒として、例えば光化学変換や光を用いた合成化学
分野、あるいは光触媒反応を利用した環境汚染物質の除
去処理分野などに有用である。
According to the present invention, it is possible to efficiently manufacture a porous body composed of a crosslinked layered composite oxide having silica pillars between layers by using a layered composite oxide and utilizing an intercalation reaction. Can be. This is useful as a highly functional photocatalyst, for example, in the field of synthetic chemistry using photochemical conversion or light, or in the field of removal of environmental pollutants using photocatalysis.

【0017】[0017]

【実施例】以下、実施例により、K[TiNbO5]を例にとし
て、本発明を具体的に説明する。しかしながら、これら
の実施例によって、本発明の技術的範囲が制限的に解釈
されるべきものではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples using K [TiNbO 5 ] as an example. However, the technical scope of the present invention should not be construed as being limited by these examples.

【0018】参考例1 K[TiNbO5]の製造 酸化ニオブ(V)[ 和光純薬工業(株)製,99.9%
] 0.015モルと、炭酸カリウム [ 片山化学工業
(株)製、特級 ] 0.016モルと、酸化チタン[ 片
山化学工業(株)製、特級 ] 0.03モルを、よく混
合した後、950〜1100℃にて空気中で二回焼成し
て得られたものを粉砕した後、蒸留水で充分洗滌し、1
10℃で乾燥処理して、粉末状のK[TiNbO5]を調製し
た。
Reference Example 1 Production of K [TiNbO 5 ] Niobium oxide (V) [Wako Pure Chemical Industries, Ltd., 99.9%
] 0.015 mol, potassium carbonate [Katayama Chemical Industry Co., Ltd., special grade] 0.016 mol and titanium oxide [Katayama Chemical Industry Co., Ltd., special grade] 0.03 mol are mixed well. The product obtained by baking twice in the air at 950 to 1100 ° C. was pulverized, washed sufficiently with distilled water, and dried.
Drying was performed at 10 ° C. to prepare powdery K [TiNbO 5 ].

【0019】参考例2 K[TiNbO5]のプロトン交換 参考例1で調製した粉末状K[TiNbO5]4.0gを6規定
硝酸(和光純薬工業(株)製、特級品)150ml溶液
中に入れ、室温で攪拌しながら、三日間プロトン交換さ
せた後、濾過、洗滌、乾燥処理して、粉末状のH[TiNb
O5]を得た。
[0019] Reference Example 2 K [TiNbO 5] powdered K prepared in proton exchange Reference Example 1 [TiNbO 5] 4.0 g of 6 N nitric acid (manufactured by Wako Pure Chemical Industries, Ltd., special grade) 150 ml solution After proton exchange for 3 days while stirring at room temperature, the mixture was filtered, washed and dried to obtain powdered H [TiNb
O 5] was obtained.

【0020】参考例3 ヘキシルアミン によるインタ
ーカレーション反応 上記のH[TiNbO5]粉末3.0gをn−ヘキシルアミン
[和光純薬工業(株)製、一級] 80mlとエタノール
[和光純薬工業(株)製、試薬特級] 40mlの混合溶
液中に入れ、室温で攪拌しながら、七日間反応させた
後、濾過、洗滌、乾燥処理して、粉末状の[C6H13NH3][T
iNbO5]を得た。
The intercalation reaction above according to Reference Example 3 hexylamine H [TiNbO 5] Powder 3.0 g n-hexylamine
[Wako Pure Chemical Industries, Ltd., first grade] 80ml and ethanol
[Wako Pure Chemical Industries, Ltd., reagent grade] Put into 40 ml of a mixed solution, react at room temperature with stirring for 7 days, then filter, wash and dry to obtain powdered [C 6 H 13 NH 3 ] [T
iNbO 5 ] was obtained.

【0021】参考例4 テトラエトキシシランによるイ
ンターカレーション反応 上記の[C6H13NH3][TiNbO5]の粉末2.5gをテトラエト
キシシラン[ 和光純薬工業(株)製、試薬特級 ] 80
ml中に入れ、65℃で攪拌しながら、七日間(その間
に(C2H5O)4Siを二回20ml添加した)反応させた後、
濾過し、エタノール、または蒸留水で洗滌、乾燥処理し
た。これによりテトラエトキシシランを層間に導入する
ことができた。次いで、これを空気中で500℃にて焼
成することにより、層間にシリカの支柱を形成させ、架
橋型層状複合酸化物であるSiO2-TiNbO5を製造した。
Reference Example 4 Intercalation Reaction with Tetraethoxysilane 2.5 g of the above powder of [C 6 H 13 NH 3 ] [TiNbO 5 ] was mixed with tetraethoxysilane [Wako Pure Chemical Industries, Ltd., reagent grade] 80
After reacting for 7 days (while adding 20 ml of (C 2 H 5 O) 4 Si during this period) with stirring at 65 ° C.,
The mixture was filtered, washed with ethanol or distilled water, and dried. Thereby, tetraethoxysilane could be introduced between the layers. Next, this was baked at 500 ° C. in air to form a pillar of silica between the layers, thereby producing SiO 2 —TiNbO 5 as a crosslinked layered composite oxide.

【0022】上記参考例1〜4から、XRDによる同定
及びTEM測定によって、層状複合酸化物K[TiNbO5]の
層間のKを他のものに変え、また、高温処理によって、
層間距離は変わったことがわかった。以下詳細な説明を
する。
From the above Reference Examples 1 to 4, the K between the layers of the layered composite oxide K [TiNbO 5 ] was changed to another by the identification and TEM measurement by XRD,
It was found that the interlayer distance had changed. The details will be described below.

【0023】参考例2記載のプロトン交換により、K[Ti
NbO5]の層間のKをプロトンに変えると、層間距離がやや
小さくなったが、参考例3記載の発明により,H[TiNb
O5]はn−ヘキシルアミン によるインターカレーション
反応をすると、層間距離が0.83nmから、2.17
nmになった。さらに、テトラエトキシシランにより支
柱を立てると、層間距離が2.40nmになった。40
0℃、500℃、及び600℃で焼成させると、層間距
離がそれぞれ1.56nm、1.41nm、1.30n
mとなり、層間の有機物を燃焼させたことに伴って、層
間距離がやや小さくなったが、層状構造の高温安定性が
認められた。
By the proton exchange described in Reference Example 2, K [Ti
When the K between the layers of NbO 5 ] was changed to protons, the distance between the layers became slightly smaller. However, according to the invention described in Reference Example 3, H [TiNb
O 5 ] was subjected to an intercalation reaction with n-hexylamine, and the interlayer distance was changed from 0.83 nm to 2.17 nm.
nm. Further, when the support was made up of tetraethoxysilane, the interlayer distance became 2.40 nm. 40
When baked at 0 ° C., 500 ° C., and 600 ° C., the interlayer distances are 1.56 nm, 1.41 nm, and 1.30 n, respectively.
m, and the interlayer distance was slightly reduced with the burning of the organic matter between the layers, but the high-temperature stability of the layered structure was recognized.

【0024】[0024]

【図面の簡単な説明】[Brief description of the drawings]

【図1】生成した層状化合物のX線回折図 (a)KTiNbO5未処理もの (b)(a)を6 N硝酸水溶液で処理したもの (c)(b)をn−ヘキシルアミンを用いてインターカレ
−トしたもの (d)(c)を450℃で処理したもの (e)(c)のn−ヘキシルアミンをテトラエトキシシラ
ンで置換したもの (f)(e)の400℃で処理したもの (g)(f)の500℃で処理したもの (h)(g)の600℃で処理したもの 尚、図中の数値は底面間隔を示す。
FIG. 1 X-ray diffraction diagram of the layered compound produced (a) KTiNbO 5 untreated (b) (a) treated with 6N nitric acid aqueous solution (c) (b) using n-hexylamine Intercalated (d) (c) treated at 450 ° C. (e) (c) n-hexylamine substituted with tetraethoxysilane (f) (e) treated at 400 ° C. (G) (f) treated at 500 ° C (h) (g) treated at 600 ° C The numerical values in the figure indicate the bottom spacing.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−241036(JP,A) 特開 平8−196912(JP,A) 特開 平6−48742(JP,A) 特開 平11−139826(JP,A) J.Chem.Soc.,Chem. Commun.(1993),(14),1144 −5= (58)調査した分野(Int.Cl.7,DB名) C01G 33/00 C01G 1/00 CA(STN)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-9-241036 (JP, A) JP-A-8-196912 (JP, A) JP-A-6-48742 (JP, A) JP-A-11-11 139826 (JP, A) Chem. Soc. , Chem. Commun. (1993), (14), 1144-5 = (58) Fields investigated (Int. Cl. 7 , DB name) C01G 33/00 C01G 1/00 CA (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】層状A[TiNbO5](A=K、Rb、Tl、Cs)複合酸
化物をプロトン交換処理した後、長鎖アルキルアミンを
インターカレートし、次いでテトラアルコキシシランを
反応させ、さらに酸素含有ガス雰囲気中、400〜60
0℃の温度で焼成処理して層間にシリカの支柱を生成さ
せることを特徴とする層間架橋構造を有する層状複合酸
化物の製造方法。
(1) After subjecting a layered A [TiNbO 5 ] (A = K, Rb, Tl, Cs) composite oxide to a proton exchange treatment, a long-chain alkylamine is intercalated, and then a tetraalkoxysilane is reacted. 400 to 60 in an oxygen-containing gas atmosphere
A method for producing a layered composite oxide having an interlayer cross-linking structure, wherein a sintering treatment is performed at a temperature of 0 ° C. to generate silica pillars between layers.
JP9364890A 1997-12-19 1997-12-19 Crosslinked titanium-niobium layered composite oxide Expired - Lifetime JP3049312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9364890A JP3049312B2 (en) 1997-12-19 1997-12-19 Crosslinked titanium-niobium layered composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9364890A JP3049312B2 (en) 1997-12-19 1997-12-19 Crosslinked titanium-niobium layered composite oxide

Publications (2)

Publication Number Publication Date
JPH11180715A JPH11180715A (en) 1999-07-06
JP3049312B2 true JP3049312B2 (en) 2000-06-05

Family

ID=18482925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9364890A Expired - Lifetime JP3049312B2 (en) 1997-12-19 1997-12-19 Crosslinked titanium-niobium layered composite oxide

Country Status (1)

Country Link
JP (1) JP3049312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110697774A (en) * 2019-09-26 2020-01-17 清远佳致新材料研究院有限公司 Method for preventing tantalum-niobium material from caking in sintering process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1463071A3 (en) * 2003-03-28 2007-05-16 Wataru Sugimoto Ruthenic acid nanosheet and production method thereof
JP4752048B2 (en) * 2005-02-22 2011-08-17 国立大学法人信州大学 Layered ruthenic acid compound film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.Chem.Soc.,Chem.Commun.(1993),(14),1144−5=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110697774A (en) * 2019-09-26 2020-01-17 清远佳致新材料研究院有限公司 Method for preventing tantalum-niobium material from caking in sintering process

Also Published As

Publication number Publication date
JPH11180715A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
Yang et al. Hollow β-Bi2O3@ CeO2 heterostructure microsphere with controllable crystal phase for efficient photocatalysis
Hu et al. Synthesis, structures and applications of single component core-shell structured TiO2: A review
Yu et al. Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process
Yang et al. Mesoporous TiO 2/SBA-15, and Cu/TiO 2/SBA-15 composite photocatalysts for photoreduction of CO 2 to methanol
CN103240130B (en) TiO2/MIL-101 composite catalyst for photocatalytic water splitting and its preparation method and application
Garza-Tovar et al. Photocatalytic degradation of methylene blue on Bi2MNbO7 (M= Al, Fe, In, Sm) sol–gel catalysts
CN100467122C (en) Nitrogen and phosphorus co-doped titanium oxide hierarchical porous photocatalytic material and preparation method thereof
CN106475127A (en) A kind of nitrogen-doped graphene quantum dot/mesopore titania photocatalyst and preparation method thereof
WO2003048048A1 (en) Titanium dioxide photocatalyst and a method of preparation and uses of the same
An et al. The multiple roles of rare earth elements in the field of photocatalysis
Zangeneh et al. Modification of photocatalytic property of BaTiO 3 perovskite structure by Fe 2 O 3 nanoparticles for CO 2 reduction in gas phase
CN102125831A (en) Preparation Method of Mesoporous Bi2O3/TiO2 Nano Photocatalyst
CN101507921B (en) Carbon-doped niobium pentaoxide nano-structure visible-light photocatalyst and non-water body low-temperature preparation method thereof
JP3049312B2 (en) Crosslinked titanium-niobium layered composite oxide
KR100753055B1 (en) Titanium dioxide having an anatase crystal structure prepared by an improved sol-gel process using an ionic liquid, a preparation method thereof, and a catalyst using the same
CN106915769A (en) A kind of ultra-thin mixed crystal titanium dioxide nanoplate and its preparation method and application
CN115569658B (en) CABB/UCNT heterojunction composite photocatalyst, and preparation method and application thereof
JP3146351B2 (en) Method for producing layered compound having interlayer crosslinked structure
KR100945250B1 (en) Preparation method of oxide nanopowder having perovskite structure and composite nanopowder of oxide and silica using porous porous silica
JP4253234B2 (en) Titania nanocrystallite aggregate, method for producing the same, and photocatalyst
CN115999613A (en) Titanium dioxide particles doped with nitrogen and transition metals, their preparation and use
CN111790418B (en) Calcium-titanium composite material and preparation method and application thereof
KR100354857B1 (en) Process for Preparing Silica/Titania Photocatalyst by the Sol-Gel Method
KR100443260B1 (en) Preparation of high efficient photocatalyst for reduction of carbon dioxide to form fuels
JP3138738B1 (en) Photocatalyst and method for producing the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term