[go: up one dir, main page]

JP3046339B2 - Method for producing low oxygen aluminum nitride powder - Google Patents

Method for producing low oxygen aluminum nitride powder

Info

Publication number
JP3046339B2
JP3046339B2 JP2270379A JP27037990A JP3046339B2 JP 3046339 B2 JP3046339 B2 JP 3046339B2 JP 2270379 A JP2270379 A JP 2270379A JP 27037990 A JP27037990 A JP 27037990A JP 3046339 B2 JP3046339 B2 JP 3046339B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride powder
low oxygen
heat treatment
producing low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2270379A
Other languages
Japanese (ja)
Other versions
JPH04149009A (en
Inventor
鉄夫 加賀
美幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2270379A priority Critical patent/JP3046339B2/en
Publication of JPH04149009A publication Critical patent/JPH04149009A/en
Application granted granted Critical
Publication of JP3046339B2 publication Critical patent/JP3046339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高熱伝導性窒化アルミニウム焼結体を得る
為の窒化アルミニウム粉末の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing an aluminum nitride powder for obtaining a highly thermally conductive aluminum nitride sintered body.

〔従来の技術〕[Conventional technology]

窒化アルミニウム焼結体は、高熱伝導性及び電気絶縁
性を有するので電子回路用基板や高温構造材等広い範囲
に利用されている。窒化アルミニウム焼結体の熱伝導性
を左右する主な要因は焼結体中に残留する酸素量であり
(機能材料1987年9月号、p.54〜p.62)、それは原料窒
化アルミニウム粉末中に含まれる酸素量に大きく影響を
受ける。
BACKGROUND ART Aluminum nitride sintered bodies have high thermal conductivity and electrical insulation properties, and are therefore used in a wide range of electronic circuit boards and high-temperature structural materials. The main factor that determines the thermal conductivity of aluminum nitride sintered bodies is the amount of oxygen remaining in the sintered bodies (functional materials, September 1987, p.54-p.62). It is greatly affected by the amount of oxygen contained in it.

従来より、窒化アルミニウム粉末の低酸素化について
は、活性に検討されてきているが酸素量の少ないもので
も0.8〜1重量%程度あった。
Conventionally, the reduction of oxygen in aluminum nitride powder has been studied in terms of its activity. However, even if the amount of oxygen is small, it has been about 0.8 to 1% by weight.

窒化アルミニウム粉末の後処理により酸素量を低減さ
せる方法としては、特開平2−26813号公報に示されて
いるように、カーボン容器に窒化アルミニウム粉末を充
填し1200〜1800℃で加熱処理する方法が知られている
が、加熱温度が高い為に微粉の窒化アルミニウム粉末が
凝集してしまい、焼結性が損なわれるという欠点があっ
た。
As a method of reducing the amount of oxygen by post-treatment of aluminum nitride powder, as shown in JP-A-2-26813, a method of filling aluminum nitride powder in a carbon container and performing heat treatment at 1200 to 1800 ° C. It is known, however, that the high heating temperature has a disadvantage that fine aluminum nitride powder is agglomerated and sinterability is impaired.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明者らは、焼結性を損なうことなく効率的に低酸
素窒化アルミニウム粉末を製造する方法について種々検
討した結果、窒化アルミニウム粉末を炭化水素ガスとN2
及び/又はNH3雰囲気下で加熱処理をすればよいことを
見出し本発明を完成したものである。
The present inventors have studied a result the method for producing efficiently hypoxic aluminum nitride powder without impairing the sinterability, the aluminum nitride powder hydrocarbon gas and N 2
It has been found that heat treatment may be performed in an atmosphere of NH 3 and / or NH 3 and the present invention has been completed.

〔課題を解決するための手段〕[Means for solving the problem]

すなわち、本発明は、窒化アルミニウム粉末を、炭化
水素ガス1〜20容量%を含むN2及び/又はNH3雰囲気
下、温度1000〜1500℃で加熱処理することを特徴とする
低酸素窒化アルミニウム粉末の製造方法である。
That is, the present invention provides a low-oxygen aluminum nitride powder characterized in that the aluminum nitride powder is heat-treated at a temperature of 1000 to 1500 ° C. in an N 2 and / or NH 3 atmosphere containing 1 to 20% by volume of a hydrocarbon gas. It is a manufacturing method of.

以下本発明の内容を詳細に説明する。 Hereinafter, the contents of the present invention will be described in detail.

本発明は、黒鉛、アルミナ、窒化アルミニウム等の材
質からなる1500℃以上の温度に耐え得る容器に窒化アル
ミニウム粉末を充填し、CH4、C2H2、C2H4等に代表され
る炭化水素ガスとN2及び/又はNH3の混合雰囲気下で加
熱処理をするものである。このとき混合ガスと窒化アル
ミニウム粉末とを十分に接触させるために窒化アルミニ
ウム粉末の充填密度を上げすぎないようにすることが好
ましい。混合ガス中の炭化水素ガスの濃度は、処理する
窒化アルミニウム粉末の量と加熱炉の形状等により一概
に特定することはできないが1〜20容量%であることが
好ましい。また、混合ガスは流動させて使用することが
望ましくその流量は多い方が好ましい。
The present invention fills a container made of a material such as graphite, alumina, aluminum nitride or the like, which can withstand a temperature of 1500 ° C. or more, with aluminum nitride powder and forms a carbonized material represented by CH 4 , C 2 H 2 , C 2 H 4 and the like. The heat treatment is performed in a mixed atmosphere of hydrogen gas and N 2 and / or NH 3 . At this time, in order to bring the mixed gas and the aluminum nitride powder into sufficient contact, it is preferable that the packing density of the aluminum nitride powder is not excessively increased. The concentration of the hydrocarbon gas in the mixed gas cannot be specified unconditionally depending on the amount of the aluminum nitride powder to be treated and the shape of the heating furnace, but is preferably 1 to 20% by volume. Further, the mixed gas is desirably used by flowing, and the flow rate thereof is preferably higher.

加熱処理の温度は、1000℃〜1500℃であることが好ま
しい。1000℃未満の温度では全く効果がないわけではな
いが非常に長時間を要し工業的に好ましくない。一方、
1500℃をこえると窒化アルミニウム粉末の凝集が顕著と
なり焼結性を損なう恐れがある。処理効果と得られた低
酸素窒化アルミニウム粉末の焼結性を考慮すると1100℃
〜1300℃での加熱処理が最適である。また、処理時間に
ついては、処理する窒化アルミニウム粉末の量や炭化水
素ガスの濃度などにより異なるが、1〜5時間長くても
10時間程度が良くこれ以上長時間処理を行なっても効果
はあまり変わらない。
The temperature of the heat treatment is preferably from 1000C to 1500C. Temperatures below 1000 ° C. are not without effect at all, but require a very long time and are not industrially desirable. on the other hand,
If the temperature exceeds 1500 ° C., the aggregation of the aluminum nitride powder becomes remarkable and the sinterability may be impaired. Considering the processing effect and the sinterability of the obtained low oxygen aluminum nitride powder, 1100 ° C
Heat treatment at ~ 1300 ° C is optimal. The processing time varies depending on the amount of aluminum nitride powder to be processed, the concentration of hydrocarbon gas, and the like.
About 10 hours is good, and the effect does not change much even if the processing is performed for a longer time.

加熱処理に供する窒化アルミニウム粉末の量に対して
過剰な炭化水素ガスが存在する場合、その処理温度やガ
スの種類によっては分解してカーボンが沈積することが
ある。この場合、加熱処理後にNH3またはNH3を含む不活
性ガス気流中700〜1000℃の温度で加熱することにより
それを除去することができる。この脱カーボン処理を行
なっても窒化アルミニウム粉末中の酸素量が増加したり
凝集したりすることはない。本発明によって得られた窒
化アルミニウム粉末に適当な焼結助剤を添加して焼結す
ると、未処理の窒化アルミニウム粉末に近い焼結性を維
持したまま高い熱伝導率を有する窒化アルミニウム焼結
体を得ることができる。
If an excessive amount of the hydrocarbon gas is present relative to the amount of the aluminum nitride powder to be subjected to the heat treatment, it may be decomposed and carbon may be deposited depending on the treatment temperature or the type of the gas. In this case, it can be removed by heating at a temperature of NH 3 or NH 3 inert gas stream 700 to 1000 ° C. containing after heat treatment. Even if this decarbonizing treatment is performed, the amount of oxygen in the aluminum nitride powder does not increase or agglomerate. When an appropriate sintering aid is added to the aluminum nitride powder obtained by the present invention and sintered, an aluminum nitride sintered body having high thermal conductivity while maintaining sinterability close to that of untreated aluminum nitride powder Can be obtained.

〔実施例〕〔Example〕

次に実施例と比較例をあげてさらに具体的に本発明を
説明する。なお、実施例に記載した諸物性は以下のよう
にして測定した。
Next, the present invention will be described more specifically with reference to examples and comparative examples. In addition, various physical properties described in the examples were measured as follows.

窒化アルミニウム粉末の比表面積は窒素ガス吸着によ
るBET法により求めた。
The specific surface area of the aluminum nitride powder was determined by the BET method using nitrogen gas adsorption.

窒化アルミニウム粉末中の酸素含有量はLECO社製TC−
136型分析装置により測定を行なった。
The oxygen content in the aluminum nitride powder is LECO TC-
The measurement was performed using a 136 type analyzer.

窒化アルミニウム焼結体の熱伝導率は真空理工社製レ
ーザーフラッシュ法熱定数測定装置TC−3000型により測
定し、また、焼結密度はアルキメデス法で測定した。な
お、窒化アルミニウム焼結体は、窒化アルミニウム粉末
にY2O3を4重量%添加混合し、金型を使用してプレス圧
1t/cm2で15mmφ×5mmtのペレット状に成型し、この成型
をBN製容器に入れ黒鉛抵抗炉、窒素気流中で1900℃×2
時間焼成して製造した。
The thermal conductivity of the aluminum nitride sintered body was measured with a laser flash method thermal constant measuring device TC-3000 manufactured by Vacuum Riko Co., and the sintered density was measured by Archimedes method. The aluminum nitride sintered body is obtained by adding and mixing 4% by weight of Y 2 O 3 to aluminum nitride powder and pressing the mixture using a mold.
It is molded into a pellet of 15mmφ × 5mmt at 1t / cm 2 , put this molding into a container made of BN, and put it in a graphite resistance furnace at 1900 ℃ × 2 in a nitrogen stream.
Produced by firing for hours.

実施例1 酸素含有量1.3重量%、比表面積3.7m2/gの窒化アルミ
ニウム粉末をアルミナ製ボート(巾40mm長さ100mm深さ1
0mm)に充填(嵩密度≒1g/cc程度)し、電気炉に入れ、
CH4ガスを10容量%混合したNH3を5/minで流入しなが
ら1300℃まで加熱し2時間保持した後自然冷却し取り出
した。
Example 1 Aluminum nitride powder having an oxygen content of 1.3% by weight and a specific surface area of 3.7 m 2 / g was prepared by using an alumina boat (width 40 mm, length 100 mm, depth 1).
0mm) (bulk density ≒ 1g / cc), put in electric furnace,
NH 3 mixed with 10% by volume of CH 4 gas was heated to 1300 ° C. while flowing at 5 / min, kept for 2 hours, then cooled naturally and taken out.

得られた粉末は過剰のCH4によりカーボンが沈積し全
体に黒くカーボンの存在が確認されたので再び電気炉に
入れNH3を5/minで流入しながら800℃まで加熱し5時
間保持した。得られた窒化アルミニウム粉末と焼結体の
物性の測定結果を第1表に示す。
The resulting powder was found to have carbon deposited by excess CH 4, and the presence of carbon was confirmed as a whole. Therefore, the powder was put into an electric furnace again, heated to 800 ° C. while flowing NH 3 at 5 / min, and held for 5 hours. Table 1 shows the measurement results of the physical properties of the obtained aluminum nitride powder and the sintered body.

実施例2 加熱処理条件を1200℃、5時間としたこと以外は実施
例1と同様に行なった。その結果を第1表に示す。
Example 2 Example 2 was carried out in the same manner as in Example 1 except that the heat treatment was performed at 1200 ° C. for 5 hours. Table 1 shows the results.

実施例3 加熱処理条件をCH4濃度2容量%、脱カーボン条件を8
00℃で3時間としたこと以外は実施例1と同様に行なっ
た。その結果を第1表に示す。
Example 3 The heat treatment conditions were CH 4 concentration 2% by volume, and the decarbonization condition was 8
The procedure was performed in the same manner as in Example 1 except that the temperature was set to 00 ° C. for 3 hours. Table 1 shows the results.

実施例4 原料窒化アルミニウム粉末の酸素含有量が1.5重量%
で比表面積が4.6m2/gであるものを用いたこと以外は実
施例1と同様に行なった。その結果を第1表に示す。
Example 4 The oxygen content of the raw aluminum nitride powder was 1.5% by weight.
The procedure was performed in the same manner as in Example 1 except that the specific surface area was 4.6 m 2 / g. Table 1 shows the results.

実施例5 実施例1で用いた原料窒化アルミニウム粉末を実施例
1と同様な電気炉に入れ、C2H2ガスを5容量%混合した
NH3を5/minで流入しながら1200℃まで加熱し5時間
保持した。次いで、NH3を5/minで流入しながら800℃
で10時間保持して脱カーボン処理を行った。得られた窒
化アルミニウム粉末と焼結体の物性の測定結果を第1表
に示す。
Example 5 The raw material aluminum nitride powder used in Example 1 was placed in the same electric furnace as in Example 1, and 5% by volume of C 2 H 2 gas was mixed.
The system was heated to 1200 ° C. while flowing NH 3 at a rate of 5 / min and maintained for 5 hours. Next, 800 ° C. while flowing NH 3 at 5 / min.
For 10 hours to carry out a decarbonizing treatment. Table 1 shows the measurement results of the physical properties of the obtained aluminum nitride powder and the sintered body.

実施例6 加熱処理条件を1300℃で5時間、CH4濃度を1容量%
としたこと以外は実施例1と同様に処理を行なったとこ
ろ、カーボンの沈積がほとんど見られなかったので脱カ
ーボン処理を省略した。得られた窒化アルミニウム粉末
と焼結体の物性を測定した。その結果を第1表に示す。
Example 6 Heat treatment conditions were 1300 ° C. for 5 hours, and CH 4 concentration was 1% by volume.
The treatment was performed in the same manner as in Example 1 except that carbon deposition was hardly observed. Therefore, the decarbonization treatment was omitted. The physical properties of the obtained aluminum nitride powder and the sintered body were measured. Table 1 shows the results.

比較例1 実施例1で用いた原料窒化アルミニウム粉末の焼結体
の物性を第1表に示す。
Comparative Example 1 Table 1 shows the physical properties of the sintered body of the raw material aluminum nitride powder used in Example 1.

比較例2 実施例4で用いた原料窒化アルミニウム粉末の焼結体
の物性を第1表に示す。
Comparative Example 2 Table 1 shows the physical properties of the sintered body of the raw material aluminum nitride powder used in Example 4.

〔発明の効果〕 本発明によれば、窒化アルミニウム粉末の酸素含有量
を容易に低減でき、しかも熱処理温度が低温であるの
で、粉末の凝集をおこすことなく、また焼結性を損なわ
せずに、酸素量を低減した窒化アルミニウム粉末を製造
することができる。また、本発明により得られた窒化ア
ルミニウム粉末を焼結体の原料に使用した場合、焼結助
剤の添加量を少なくすることが可能であり、また得られ
た焼結体は高熱伝導特性を有したものとなる。さらに
は、本発明は、ガスによる処理である為、連続的かつ均
一な処理が可能となる。
[Effects of the Invention] According to the present invention, the oxygen content of the aluminum nitride powder can be easily reduced, and the heat treatment temperature is low, so that the powder does not agglomerate and does not impair the sinterability. Thus, an aluminum nitride powder with a reduced oxygen content can be manufactured. Further, when the aluminum nitride powder obtained according to the present invention is used as a raw material for a sintered body, it is possible to reduce the amount of a sintering additive, and the obtained sintered body has high thermal conductivity. Will have. Furthermore, since the present invention is a process using a gas, continuous and uniform processing can be performed.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01B 21/072 C04B 35/626 CA(STN)──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C01B 21/072 C04B 35/626 CA (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化アルミニウム粉末を、炭化水素ガス1
〜20容量%を含むN2及び/又はNH3雰囲気下、温度1000
〜1500℃で加熱処理することを特徴とする低酸素窒化ア
ルミニウム粉末の製造方法。
An aluminum nitride powder is mixed with a hydrocarbon gas (1).
N 2 and / or NH 3 atmosphere containing 20 volume%, temperature 1000
A method for producing a low-oxygen aluminum nitride powder, comprising performing heat treatment at a temperature of about 1500 ° C.
JP2270379A 1990-10-11 1990-10-11 Method for producing low oxygen aluminum nitride powder Expired - Fee Related JP3046339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2270379A JP3046339B2 (en) 1990-10-11 1990-10-11 Method for producing low oxygen aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2270379A JP3046339B2 (en) 1990-10-11 1990-10-11 Method for producing low oxygen aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPH04149009A JPH04149009A (en) 1992-05-22
JP3046339B2 true JP3046339B2 (en) 2000-05-29

Family

ID=17485438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270379A Expired - Fee Related JP3046339B2 (en) 1990-10-11 1990-10-11 Method for producing low oxygen aluminum nitride powder

Country Status (1)

Country Link
JP (1) JP3046339B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799269B2 (en) * 2007-09-25 2010-09-21 Osram Sylvania Inc. Method of sintering AIN under a methane-containing nitrogen atmosphere

Also Published As

Publication number Publication date
JPH04149009A (en) 1992-05-22

Similar Documents

Publication Publication Date Title
JPS60180965A (en) High heat conductivity aluminum nitride ceramic body and manufacture
GB2167771A (en) Sintered high thermal conductivity aluminium nitride ceramic body
GB2168722A (en) High thermal conductivity ceramic body
JPS62197353A (en) Manufacture of silicon carbide sintered body
JP3046339B2 (en) Method for producing low oxygen aluminum nitride powder
JPH0362643B2 (en)
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
JPS63277567A (en) Sintered aluminum nitride having high thermal conductivity
JPH0329023B2 (en)
JPS61201668A (en) High heat conducting aluminum nitride sintered body and manufacture
JPS6355108A (en) Aluminum nitride powder and production thereof
JP2002018267A (en) Graphite material for synthesizing semiconductor diamond and semiconductor diamond manufactured using the same
JP2846375B2 (en) Aluminum nitride powder and method for producing the same
JPH0224787B2 (en)
JPS6324952B2 (en)
KR950001033B1 (en) Process for the preparation of low carbon content silicon nitride
JPS60186479A (en) Manufacture of high heat conductivity aluminum nitride sintered body
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS6212191B2 (en)
JPH02221163A (en) Production of aluminum nitride sintered body
JPS6328873B2 (en)
JPH0226813A (en) Purification of aluminum nitride powder
JPH0610081B2 (en) Method for producing hexagonal boron nitride
JPH058123B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees