[go: up one dir, main page]

JP3042097B2 - Apparatus and method for growing single crystal - Google Patents

Apparatus and method for growing single crystal

Info

Publication number
JP3042097B2
JP3042097B2 JP3301466A JP30146691A JP3042097B2 JP 3042097 B2 JP3042097 B2 JP 3042097B2 JP 3301466 A JP3301466 A JP 3301466A JP 30146691 A JP30146691 A JP 30146691A JP 3042097 B2 JP3042097 B2 JP 3042097B2
Authority
JP
Japan
Prior art keywords
single crystal
container
cooling body
vertical
vertical container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3301466A
Other languages
Japanese (ja)
Other versions
JPH05139878A (en
Inventor
伸介 藤原
雅美 龍見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3301466A priority Critical patent/JP3042097B2/en
Publication of JPH05139878A publication Critical patent/JPH05139878A/en
Application granted granted Critical
Publication of JP3042097B2 publication Critical patent/JP3042097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Si,Ge等の半導
体、GaAs,InP等のIII-V族化合物半導体単結
晶、CdTe等のII-VI 族化合物半導体、BSO,LB
O等の酸化物などの単結晶を垂直ブリッジマン法若しく
は垂直グラディエントフリージング法で育成する装置並
びに育成方法に関する。
The present invention relates to semiconductors such as Si and Ge, III-V compound semiconductor single crystals such as GaAs and InP, II-VI compound semiconductors such as CdTe, BSO and LB.
The present invention relates to an apparatus and a method for growing a single crystal such as an oxide such as O by a vertical Bridgman method or a vertical gradient freezing method.

【0002】[0002]

【従来の技術】上記の単結晶は、従来、垂直ブリッジマ
ン法、水平ブリッジマン法、垂直徐冷法、引き上げ法な
どにより育成されてきた。垂直ブリッジマン法は、原料
融液を収容する縦型容器を温度勾配炉内に配置し、該容
器を下方に移動することにより原料融液の下方より冷却
固化し、単結晶を育成する方法である。また、垂直グラ
ディエントフリージング法は、垂直ブリッジマン法で縦
型容器を下方に移動する代わりに、炉内の温度勾配を上
方に移動するように炉のヒータを制御して単結晶を育成
する方法である。これらの方法は、いずれも縦型容器の
側壁に沿った円柱状の結晶を容易に育成することができ
るという利点がある。しかし、これらの方法は原料融液
の温度分布の制御が難しく、結晶性に優れた単結晶を得
ることが難しい。
2. Description of the Related Art The above-mentioned single crystal has been conventionally grown by a vertical Bridgman method, a horizontal Bridgman method, a vertical slow cooling method, a pulling method, or the like. The vertical Bridgman method is a method of arranging a vertical container containing a raw material melt in a temperature gradient furnace, cooling and solidifying from below the raw material melt by moving the container downward, and growing a single crystal. is there. The vertical gradient freezing method is a method of growing a single crystal by controlling a heater of a furnace so as to move a temperature gradient inside a furnace upward instead of moving a vertical container downward by a vertical Bridgman method. is there. Each of these methods has an advantage that a columnar crystal along the side wall of the vertical container can be easily grown. However, in these methods, it is difficult to control the temperature distribution of the raw material melt, and it is difficult to obtain a single crystal having excellent crystallinity.

【0003】そこで、特公平3─21511号公報で
は、縦型容器を2重壁構造となし、外壁の温度変動の影
響を抑制し、該容器の底部に熱流出促進手段を取り付
け、壁内面における結晶核の発生を抑制することが提案
されている。
[0003] In Japanese Patent Publication No. 3-21511, the vertical container has a double wall structure to suppress the influence of temperature fluctuations on the outer wall, and a heat outflow promoting means is attached to the bottom of the container, and the inner surface of the wall is It has been proposed to suppress the generation of crystal nuclei.

【0004】また、特公平3─21511号公報では、
縦型容器の逆円錐形底部支持台に複数のチャネルからな
る間隙を設けて上記底部からの熱流を制御することが提
案されている。
In Japanese Patent Publication No. Hei 3-21511,
It has been proposed to provide a gap consisting of a plurality of channels in the inverted conical bottom support of a vertical container to control the heat flow from said bottom.

【0005】さらに、特開昭64─56392号公報で
は、垂直ブリッジマン装置のるつぼと支持台の間に単結
晶化金属と同一の金属を介在させて熱流の放散を促進す
ることが提案されている。
Further, Japanese Patent Application Laid-Open No. 64-56392 proposes that a metal identical to a single crystallized metal is interposed between a crucible and a support of a vertical Bridgman apparatus to promote the dissipation of heat flow. I have.

【0006】[0006]

【発明が解決しようとする課題】これらの装置は、縦型
容器底部から放散する熱流の制御が困難であり、原料融
液の温度分布の制御並びに結晶との固液界面の形状制御
を確実に行うことができなかった。そこで、本発明は、
垂直ブリッジマン法若しくは垂直グラディエントフリー
ジング法で単結晶を育成する装置において、上記の欠点
を解消し、縦型容器底面から下方に流れる熱流の制御を
可能とし、かつ、結晶との固液界面の形状制御を容易に
行うことができる単結晶の育成装置及び育成方法を提供
しようとするものである。
In these devices, it is difficult to control the heat flow radiated from the bottom of the vertical container, and it is necessary to control the temperature distribution of the raw material melt and the shape of the solid-liquid interface with the crystal without fail. Could not do. Therefore, the present invention
In a device that grows a single crystal by the vertical Bridgman method or the vertical gradient freezing method, the above disadvantages are solved, the heat flow that flows downward from the bottom of the vertical container can be controlled, and the shape of the solid-liquid interface with the crystal It is an object of the present invention to provide a single crystal growing apparatus and a single crystal growing method that can be easily controlled.

【0007】[0007]

【問題を解決するための手段】本発明は、下記の構成を
採用することにより、上記課題の解決に成功した。 (1)原料融液を収容する縦型容器と、該縦型容器に温
度勾配を形成する炉を有し、下方より原料融液を冷却固
化して単結晶を育成する装置において、上記縦型容器の
逆円錐形の底面に対して平行に、冷却体の逆円錐形冷却
面を隙間を設けて配置したことを特徴とする単結晶の育
成装置。(2) 原料融液を収容する縦型容器と、該縦型容器に温
度勾配を形成する炉を有し、下方より原料融液を冷却固
化して単結晶を育成する装置において、上記縦型容器の
逆円錐形の底面と冷却体の逆円錐形冷却面の距離が、1
〜10mmであることを特徴とする上記(1)記載の単
結晶の育成装置。(3) 上記縦型容器の逆円錐形底面の先端に小径の円筒
部を突出させ、上記冷却体中央に穴を開けて、該穴に上
記の円筒部を挿入したことを特徴とする上記(1)又は
(2)記載の単結晶育成装置。(4) 冷却体に温度制御手段を付与し、縦型容器の逆円
錐形底面及び逆円錐形冷却面の温度差に基づいて冷却体
の温度を制御しながら原料融液を冷却固化することを特
徴とする上記(1)〜(3)のいずれか1つに記載の単
結晶育成装置を用いて単結晶を育成する方法。
Means for Solving the Problems The present invention has succeeded in solving the above problems by employing the following constitution. (1) An apparatus for growing a single crystal by cooling and solidifying a raw material melt from below, comprising a vertical container for accommodating a raw material melt and a furnace for forming a temperature gradient in the vertical container. Inverted conical cooling of the cooling body, parallel to the inverted conical bottom of the vessel
An apparatus for growing a single crystal, wherein the surfaces are arranged with a gap . (2) An apparatus for growing a single crystal by cooling and solidifying a raw material melt from below, comprising a vertical container for accommodating the raw material melt and a furnace for forming a temperature gradient in the vertical container. The distance between the inverted conical bottom surface of the container and the inverted conical cooling surface of the cooling body is 1
(1) Symbol placement of a single crystal of growth apparatus characterized in that it is a to 10 mm. (3) A small-diameter cylindrical portion protrudes from the tip of the inverted conical bottom surface of the vertical container, a hole is formed in the center of the cooling body, and the cylindrical portion is inserted into the hole. 1) or
(2) single crystal growing apparatus according. (4) The temperature control means is provided to the cooling body to cool and solidify the raw material melt while controlling the temperature of the cooling body based on the temperature difference between the inverted conical bottom surface and the inverted conical cooling surface of the vertical container. how to grow a single crystal by using the growth apparatus of the single crystal according to any one of the above (1) to (3), wherein.

【0008】上記の装置において、縦型容器の支持は、
逆円錐形底面の先端に突出させた小径の円筒容器を冷却
体中央の穴に装着して行うことも可能であるが、縦型容
器と冷却体を直接接触させずに、縦型容器を上方からつ
り下げて支持することも可能である。また、冷却体に
は、循環パイプを埋設して冷媒を流したり、逆円錐形の
冷却面にヒータを埋設して加熱したりして温度制御を行
うことも可能である。
In the above apparatus, the support of the vertical container is
It is also possible to mount a small-diameter cylindrical container protruding from the tip of the inverted conical bottom in the hole in the center of the cooling body, but it is necessary to raise the vertical container upward without directly contacting the vertical container and the cooling body. It is also possible to support it by hanging from it. It is also possible to control the temperature by burying a circulation pipe in the cooling body to flow the refrigerant, or burying a heater in the inverted conical cooling surface to heat the cooling body.

【0009】[0009]

【作用】熱の伝達を大きく分けると、対流、熱伝導、放
射伝熱があるが、対流はナビエ・ストークスの式の解法
が困難であるため、制御が難しく、熱伝導は取扱は簡単
であるが、結晶成長時の容器から支持台への放熱が両者
の接触状況などにより変動するため、熱流の大きさを推
定するたとが難しい。放射伝熱はステファン・ボルソマ
ンの法則にしたがい、平行配置された2物体の間の熱の
授受においては形態係数が1となり、熱流の推定が簡単
で比較的信頼性が高い。そこで、本発明者等は放射伝熱
を検知して結晶成長を制御することを検討した。即ち、
本発明は、縦型容器の逆円錐形底面に対して平行になる
ように、冷却体の冷却面を配置し、両者の表面温度の差
に基づいて冷却体内の冷却手段及び加熱手段を制御する
ことにより、該容器から冷却体への熱流を制御するもの
である。なお、冷却体の温度調節による容器底面温度の
変化は無視できる程度であるため、予め容器底面の温度
を測定しておけば、冷却体表面温度を測定するだけで冷
却体の温度制御を行うことができる。
[Function] Heat transfer can be roughly divided into convection, heat conduction, and radiant heat transfer. However, convection is difficult to solve because the Navier-Stokes equation is difficult to solve, and heat conduction is easy to handle. However, it is difficult to estimate the magnitude of the heat flow because the heat radiation from the container to the support during crystal growth varies depending on the state of contact between the two. The radiant heat transfer follows Stephen-Bolsoman's law, and the transfer of heat between two objects arranged in parallel has a view factor of 1, making it easy to estimate the heat flow and relatively reliable. Therefore, the present inventors have studied control of crystal growth by detecting radiation heat transfer. That is,
According to the present invention, the cooling surface of the cooling body is arranged so as to be parallel to the inverted conical bottom surface of the vertical container, and the cooling means and the heating means in the cooling body are controlled based on the difference between the two surface temperatures. Thereby, the heat flow from the container to the cooling body is controlled. Since the change in the temperature of the bottom of the container due to the temperature adjustment of the cooling body is negligible, if the temperature of the bottom of the container is measured in advance, the temperature of the cooling body should be controlled only by measuring the surface temperature of the cooling body. Can be.

【0010】図1は、本発明の1具体例である単結晶育
成装置の概念図である。断熱材2を内張りしたチャンバ
1には、ヒータ3〜6を上下に配置して温度勾配炉を形
成し、その中央に縦型容器7を配置する。該容器7は逆
円錐形の底部とその先端に小径の円筒部8を有し、冷却
体9の穴に挿入して該容器7を支持している。該冷却体
9は、縦型容器の逆円錐形の底面に対して1〜10mm
の間隔で平行になるように、冷却体9の逆円錐形冷却面
を配置し、該冷却面には熱電対12を設け、また、冷却
体9には冷媒管10及びヒータ11を設けて熱電対12
の測定値により温度制御を行う。そして、縦型容器7内
の原料融液13は、上記ヒータにより形成された温度勾
配の中で該容器7から冷却体9への熱流を制御しながら
下方より冷却固化され単結晶14が育成される。
FIG. 1 is a conceptual view of a single crystal growing apparatus according to one embodiment of the present invention. In the chamber 1 in which the heat insulating material 2 is lined, heaters 3 to 6 are vertically arranged to form a temperature gradient furnace, and a vertical container 7 is arranged in the center thereof. The container 7 has an inverted conical bottom and a small-diameter cylindrical portion 8 at the end thereof, and is inserted into a hole of the cooling body 9 to support the container 7. The cooling body 9 is 1 to 10 mm with respect to the inverted conical bottom surface of the vertical container.
An inverted conical cooling surface of the cooling body 9 is arranged so as to be parallel at intervals of, and a thermocouple 12 is provided on the cooling surface. Vs. 12
The temperature is controlled by the measured value of. The raw material melt 13 in the vertical container 7 is cooled and solidified from below while controlling the heat flow from the container 7 to the cooling body 9 in the temperature gradient formed by the heater, and the single crystal 14 is grown. You.

【0011】なお、縦型容器の逆円錐形底部における単
結晶の育成時に、原料融液からの熱流を十分に下方に放
散できないときには、図2の矢印のような熱流の流れを
示し、容器の周囲の温度が低下するため、結晶の固液界
面が下方に凸状態になり、容器内壁で発生する欠陥が結
晶中に取り込まれて単結晶化を困難にする。図1の装置
では、縦型容器7の底部先端に設けた小径の円筒部8を
冷却体9に挿入するため、原料融液からの熱流を十分に
下方に放散することができ、図3の矢印のような熱流の
流れを示し、結晶の固液界面も上に凸状態が維持される
ため、単結晶を容易に育成することができる。即ち、縦
型容器の逆円錐形底部における単結晶の育成時には、こ
の小径の円筒部からの伝熱で熱流を支配的に制御できれ
ば、図3のような熱流の流れを容易に確保することがで
きる。放射伝熱は温度の4乗に比例し、熱伝導が温度勾
配に比例するところから、冷却体表面温度を原料融液の
融点より僅かに低い温度にすればよい。
When the heat flow from the raw material melt cannot be sufficiently dissipated downward during the growth of the single crystal at the inverted conical bottom of the vertical container, the flow of the heat flow as shown by the arrow in FIG. Since the ambient temperature decreases, the solid-liquid interface of the crystal becomes convex downward, and defects generated on the inner wall of the container are taken into the crystal, making single crystallization difficult. In the apparatus shown in FIG. 1, the small-diameter cylindrical portion 8 provided at the bottom end of the vertical container 7 is inserted into the cooling body 9, so that the heat flow from the raw material melt can be sufficiently radiated downward. Since the flow of the heat flow as shown by the arrow is shown, and the solid-liquid interface of the crystal is also maintained in the upwardly convex state, the single crystal can be easily grown. That is, when growing a single crystal at the inverted conical bottom of the vertical container, if the heat flow can be controlled dominantly by the heat transfer from the small-diameter cylindrical portion, the flow of the heat flow as shown in FIG. 3 can be easily secured. it can. Since the radiant heat transfer is proportional to the fourth power of the temperature and the heat conduction is proportional to the temperature gradient, the surface temperature of the cooling body may be set to a temperature slightly lower than the melting point of the raw material melt.

【0012】[0012]

【実施例】図1の装置を使用して垂直ブリッジマン法に
よりCdTe単結晶を育成した。直径85mmの石英製
の縦型容器に400gのCdTe多結晶を投入し、この
容器内を1×10-6torrまで排気した後、石英製の
キャップで蓋をした。この容器底部の小径円筒部を冷却
体に挿入して支持し、チャンバ内を排気した後、4つの
ヒータで縦方向の温度勾配を形成し、まず、炉内の高温
部に容器を置いて原料を溶融した。次いで、約1℃/m
mの温度勾配中を3mm/hrの下降速度で容器を下方
に移動して単結晶の育成を行った。冷却体表面温度はC
dTeの融点1092℃からスタートして予め設定した
プログラムにしたがって降温し、最終的に950℃まで
下げた。なお、温度勾配炉の最下段のヒータは冷却体の
温度制御の制御性を挙げるため適宜出力を調整した。冷
却体の表面温度のプログラムは、得られたCdTe単結
晶の縦方向断面のスリリエーションの形状から下方への
熱流の過不足を推定して最適化を図った。その結果、結
晶全体にわたって結晶性に優れたCdTe単結晶を得る
ことができ、その再現性も良く、安定した結晶成長を可
能にした。
EXAMPLE A single crystal of CdTe was grown by the vertical Bridgman method using the apparatus shown in FIG. 400 g of CdTe polycrystal was charged into a quartz vertical vessel having a diameter of 85 mm, and the inside of the vessel was evacuated to 1 × 10 −6 torr, and then covered with a quartz cap. The small-diameter cylindrical portion at the bottom of the vessel is inserted into the cooling body to support it, and the inside of the chamber is evacuated. After that, a vertical temperature gradient is formed by four heaters. Was melted. Then, about 1 ° C / m
A single crystal was grown by moving the container downward at a rate of 3 mm / hr in a temperature gradient of m. Cooling body surface temperature is C
Starting from the dTe melting point of 1092 ° C., the temperature was lowered according to a preset program, and finally lowered to 950 ° C. The output of the lowermost heater of the temperature gradient furnace was appropriately adjusted to improve the controllability of the temperature control of the cooling body. The program of the surface temperature of the cooling body was optimized by estimating the excess or deficiency of the downward heat flow from the shape of the swelling of the longitudinal section of the obtained CdTe single crystal. As a result, a CdTe single crystal having excellent crystallinity could be obtained over the entire crystal, and the reproducibility was good, and stable crystal growth was enabled.

【0013】[0013]

【発明の効果】本発明は、上記の構成を採用することに
より、縦型容器から下方に流れる熱流の制御が容易にな
り、また、縦型容器の底部先端の小径円筒部を冷却体に
挿入支持するときには固液界面の形状制御も一層容易に
行うことができるようになり、その結果、結晶性に優れ
た単結晶を安定して育成することが可能になった。
According to the present invention, by adopting the above structure, the control of the heat flow flowing downward from the vertical container becomes easy, and the small diameter cylindrical portion at the bottom end of the vertical container is inserted into the cooling body. When supported, the shape of the solid-liquid interface can be more easily controlled, and as a result, a single crystal having excellent crystallinity can be stably grown.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1具体例である単結晶育成装置の概念
図である。
FIG. 1 is a conceptual diagram of a single crystal growing apparatus as one specific example of the present invention.

【図2】縦型容器から下方に流れる熱流が不足するとき
の、熱流と固液界面の関係を説明するための図である。
FIG. 2 is a diagram for explaining a relationship between a heat flow and a solid-liquid interface when a heat flow flowing downward from a vertical container is insufficient.

【図3】図1の装置を使用するときの、縦型容器から下
方に流れる熱流と固液界面の関係を説明するための図で
ある。
FIG. 3 is a diagram for explaining a relationship between a heat flow flowing downward from a vertical container and a solid-liquid interface when the apparatus of FIG. 1 is used.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料融液を収容する縦型容器と、該縦型
容器に温度勾配を形成する炉を有し、下方より原料融液
を冷却固化して単結晶を育成する装置において、上記縦
型容器の逆円錐形の底面に対して平行に、冷却体の逆円
錐形冷却面を隙間を設けて配置したことを特徴とする単
結晶の育成装置。
An apparatus for growing a single crystal, comprising: a vertical container for accommodating a raw material melt; and a furnace for forming a temperature gradient in the vertical container, wherein the raw material melt is cooled and solidified from below to grow a single crystal. The inverted circle of the cooling body is parallel to the inverted conical bottom of the vertical container.
An apparatus for growing a single crystal, wherein a conical cooling surface is arranged with a gap .
【請求項2】 原料融液を収容する縦型容器と、該縦型
容器に温度勾配を形成する炉を有し、下方より原料融液
を冷却固化して単結晶を育成する装置において、上記縦
型容器の逆円錐形の底面と冷却体の逆円錐形冷却面の距
離が、1〜10mmであることを特徴とする請求項1記
載の単結晶の育成装置。
2. An apparatus for growing a single crystal, comprising: a vertical container containing a raw material melt; and a furnace for forming a temperature gradient in the vertical container, wherein the raw material melt is cooled and solidified from below to grow a single crystal. vertical distance inverted conical cooling face of the inverted conical bottom the cooling body of the container, growth apparatus of claim 1 Symbol <br/> mounting of the single crystal, characterized in that a 1 to 10 mm.
【請求項3】 上記縦型容器の逆円錐形底面の先端に小
径の円筒部を突出させ、上記冷却体中央に穴を開けて、
該穴に上記の円筒部を挿入したことを特徴とする請求項
又は2記載の単結晶育成装置。
3. A small-diameter cylindrical portion is projected from a tip of an inverted conical bottom surface of the vertical container, and a hole is formed in the center of the cooling body.
3. The apparatus for growing a single crystal according to claim 1, wherein said cylindrical portion is inserted into said hole.
【請求項4】 冷却体に温度制御手段を付与し、縦型容
器の逆円錐形底面及び逆円錐形冷却面の温度差に基づい
て冷却体の温度を制御しながら原料融液を冷却固化する
ことを特徴とする請求項1〜3のいずれか1項に記載の
単結晶育成装置を用いて単結晶を育成する方法。
4. A temperature control means is provided to the cooling body, and the raw material melt is cooled and solidified while controlling the temperature of the cooling body based on the temperature difference between the inverted conical bottom surface and the inverted conical cooling surface of the vertical container. how to grow a single crystal by using the growth apparatus of the single crystal according to any one of claims 1-3, characterized in that.
JP3301466A 1991-11-18 1991-11-18 Apparatus and method for growing single crystal Expired - Fee Related JP3042097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3301466A JP3042097B2 (en) 1991-11-18 1991-11-18 Apparatus and method for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3301466A JP3042097B2 (en) 1991-11-18 1991-11-18 Apparatus and method for growing single crystal

Publications (2)

Publication Number Publication Date
JPH05139878A JPH05139878A (en) 1993-06-08
JP3042097B2 true JP3042097B2 (en) 2000-05-15

Family

ID=17897241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3301466A Expired - Fee Related JP3042097B2 (en) 1991-11-18 1991-11-18 Apparatus and method for growing single crystal

Country Status (1)

Country Link
JP (1) JP3042097B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19912484A1 (en) * 1999-03-19 2000-09-28 Freiberger Compound Mat Gmbh Device for the production of single crystals
KR100428699B1 (en) * 2001-03-06 2004-04-27 주식회사 사파이어테크놀로지 Large Crystal Growing Apparatus Having Vertical and Horizontal Temperature Gradients and Growing Method thereof
JP4579122B2 (en) * 2005-10-06 2010-11-10 日本電信電話株式会社 Method for producing oxide single crystal and apparatus for producing the same

Also Published As

Publication number Publication date
JPH05139878A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
JP3232461B2 (en) Single crystal growth method
JPH10158088A (en) Production of solid material and device therefor
JP3042097B2 (en) Apparatus and method for growing single crystal
JP4830312B2 (en) Compound semiconductor single crystal and manufacturing method thereof
JPH09175889A (en) Single crystal pull-up apparatus
US7972439B2 (en) Method of growing single crystals from melt
JP2985040B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP2011148694A (en) Compound semiconductor single crystal substrate
US4046617A (en) Method of crystallization
JP2704032B2 (en) Method for manufacturing compound semiconductor single crystal
Kikuma et al. Growth of ZnSe crystals free from rod-like low angle grain boundaries from the melt under argon pressure
JP2543449B2 (en) Crystal growth method and apparatus
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JP3812573B2 (en) Semiconductor crystal growth method
JPH0940492A (en) Production of single crystal and apparatus for production therefor
KR100193051B1 (en) Single crystal growth apparatus
CN119177486A (en) Growth method and device of tellurium-zinc-cadmium monocrystal
JPS59227797A (en) Method for pulling up single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPH0559873B2 (en)
JPS62148389A (en) Method for growing single crystal
JPH0733303B2 (en) Crystal growth equipment
JP3125313B2 (en) Single crystal growth method
JPH061689A (en) Single crystal growth method
JPH0380180A (en) Device for producing single crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees